1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/CGSCCPassManager.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/Optional.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/Analysis/LazyCallGraph.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/InstIterator.h" 20 #include "llvm/IR/Instruction.h" 21 #include "llvm/IR/PassManager.h" 22 #include "llvm/IR/PassManagerImpl.h" 23 #include "llvm/IR/ValueHandle.h" 24 #include "llvm/Support/Casting.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/TimeProfiler.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <iterator> 33 34 #define DEBUG_TYPE "cgscc" 35 36 using namespace llvm; 37 38 // Explicit template instantiations and specialization definitions for core 39 // template typedefs. 40 namespace llvm { 41 static cl::opt<bool> AbortOnMaxDevirtIterationsReached( 42 "abort-on-max-devirt-iterations-reached", 43 cl::desc("Abort when the max iterations for devirtualization CGSCC repeat " 44 "pass is reached")); 45 46 AnalysisKey ShouldNotRunFunctionPassesAnalysis::Key; 47 48 // Explicit instantiations for the core proxy templates. 49 template class AllAnalysesOn<LazyCallGraph::SCC>; 50 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 51 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 52 LazyCallGraph &, CGSCCUpdateResult &>; 53 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 54 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 55 LazyCallGraph::SCC, LazyCallGraph &>; 56 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 57 58 /// Explicitly specialize the pass manager run method to handle call graph 59 /// updates. 60 template <> 61 PreservedAnalyses 62 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 63 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 64 CGSCCAnalysisManager &AM, 65 LazyCallGraph &G, CGSCCUpdateResult &UR) { 66 // Request PassInstrumentation from analysis manager, will use it to run 67 // instrumenting callbacks for the passes later. 68 PassInstrumentation PI = 69 AM.getResult<PassInstrumentationAnalysis>(InitialC, G); 70 71 PreservedAnalyses PA = PreservedAnalyses::all(); 72 73 // The SCC may be refined while we are running passes over it, so set up 74 // a pointer that we can update. 75 LazyCallGraph::SCC *C = &InitialC; 76 77 // Get Function analysis manager from its proxy. 78 FunctionAnalysisManager &FAM = 79 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager(); 80 81 for (auto &Pass : Passes) { 82 // Check the PassInstrumentation's BeforePass callbacks before running the 83 // pass, skip its execution completely if asked to (callback returns false). 84 if (!PI.runBeforePass(*Pass, *C)) 85 continue; 86 87 PreservedAnalyses PassPA; 88 { 89 TimeTraceScope TimeScope(Pass->name()); 90 PassPA = Pass->run(*C, AM, G, UR); 91 } 92 93 if (UR.InvalidatedSCCs.count(C)) 94 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 95 else 96 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 97 98 // Update the SCC if necessary. 99 C = UR.UpdatedC ? UR.UpdatedC : C; 100 if (UR.UpdatedC) { 101 // If C is updated, also create a proxy and update FAM inside the result. 102 auto *ResultFAMCP = 103 &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); 104 ResultFAMCP->updateFAM(FAM); 105 } 106 107 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 108 // current SCC may simply need to be skipped if invalid. 109 if (UR.InvalidatedSCCs.count(C)) { 110 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 111 break; 112 } 113 // Check that we didn't miss any update scenario. 114 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 115 116 // Update the analysis manager as each pass runs and potentially 117 // invalidates analyses. 118 AM.invalidate(*C, PassPA); 119 120 // Finally, we intersect the final preserved analyses to compute the 121 // aggregate preserved set for this pass manager. 122 PA.intersect(std::move(PassPA)); 123 } 124 125 // Before we mark all of *this* SCC's analyses as preserved below, intersect 126 // this with the cross-SCC preserved analysis set. This is used to allow 127 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation 128 // for them. 129 UR.CrossSCCPA.intersect(PA); 130 131 // Invalidation was handled after each pass in the above loop for the current 132 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 133 // preserved. We mark this with a set so that we don't need to inspect each 134 // one individually. 135 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 136 137 return PA; 138 } 139 140 PreservedAnalyses 141 ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) { 142 // Setup the CGSCC analysis manager from its proxy. 143 CGSCCAnalysisManager &CGAM = 144 AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager(); 145 146 // Get the call graph for this module. 147 LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M); 148 149 // Get Function analysis manager from its proxy. 150 FunctionAnalysisManager &FAM = 151 AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager(); 152 153 // We keep worklists to allow us to push more work onto the pass manager as 154 // the passes are run. 155 SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist; 156 SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist; 157 158 // Keep sets for invalidated SCCs and RefSCCs that should be skipped when 159 // iterating off the worklists. 160 SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet; 161 SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet; 162 163 SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4> 164 InlinedInternalEdges; 165 166 CGSCCUpdateResult UR = { 167 RCWorklist, CWorklist, InvalidRefSCCSet, InvalidSCCSet, 168 nullptr, nullptr, PreservedAnalyses::all(), InlinedInternalEdges, 169 {}}; 170 171 // Request PassInstrumentation from analysis manager, will use it to run 172 // instrumenting callbacks for the passes later. 173 PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M); 174 175 PreservedAnalyses PA = PreservedAnalyses::all(); 176 CG.buildRefSCCs(); 177 for (auto RCI = CG.postorder_ref_scc_begin(), 178 RCE = CG.postorder_ref_scc_end(); 179 RCI != RCE;) { 180 assert(RCWorklist.empty() && 181 "Should always start with an empty RefSCC worklist"); 182 // The postorder_ref_sccs range we are walking is lazily constructed, so 183 // we only push the first one onto the worklist. The worklist allows us 184 // to capture *new* RefSCCs created during transformations. 185 // 186 // We really want to form RefSCCs lazily because that makes them cheaper 187 // to update as the program is simplified and allows us to have greater 188 // cache locality as forming a RefSCC touches all the parts of all the 189 // functions within that RefSCC. 190 // 191 // We also eagerly increment the iterator to the next position because 192 // the CGSCC passes below may delete the current RefSCC. 193 RCWorklist.insert(&*RCI++); 194 195 do { 196 LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val(); 197 if (InvalidRefSCCSet.count(RC)) { 198 LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n"); 199 continue; 200 } 201 202 assert(CWorklist.empty() && 203 "Should always start with an empty SCC worklist"); 204 205 LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC 206 << "\n"); 207 208 // The top of the worklist may *also* be the same SCC we just ran over 209 // (and invalidated for). Keep track of that last SCC we processed due 210 // to SCC update to avoid redundant processing when an SCC is both just 211 // updated itself and at the top of the worklist. 212 LazyCallGraph::SCC *LastUpdatedC = nullptr; 213 214 // Push the initial SCCs in reverse post-order as we'll pop off the 215 // back and so see this in post-order. 216 for (LazyCallGraph::SCC &C : llvm::reverse(*RC)) 217 CWorklist.insert(&C); 218 219 do { 220 LazyCallGraph::SCC *C = CWorklist.pop_back_val(); 221 // Due to call graph mutations, we may have invalid SCCs or SCCs from 222 // other RefSCCs in the worklist. The invalid ones are dead and the 223 // other RefSCCs should be queued above, so we just need to skip both 224 // scenarios here. 225 if (InvalidSCCSet.count(C)) { 226 LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n"); 227 continue; 228 } 229 if (LastUpdatedC == C) { 230 LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n"); 231 continue; 232 } 233 if (&C->getOuterRefSCC() != RC) { 234 LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other " 235 "RefSCC...\n"); 236 continue; 237 } 238 239 // Ensure we can proxy analysis updates from the CGSCC analysis manager 240 // into the the Function analysis manager by getting a proxy here. 241 // This also needs to update the FunctionAnalysisManager, as this may be 242 // the first time we see this SCC. 243 CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM( 244 FAM); 245 246 // Each time we visit a new SCC pulled off the worklist, 247 // a transformation of a child SCC may have also modified this parent 248 // and invalidated analyses. So we invalidate using the update record's 249 // cross-SCC preserved set. This preserved set is intersected by any 250 // CGSCC pass that handles invalidation (primarily pass managers) prior 251 // to marking its SCC as preserved. That lets us track everything that 252 // might need invalidation across SCCs without excessive invalidations 253 // on a single SCC. 254 // 255 // This essentially allows SCC passes to freely invalidate analyses 256 // of any ancestor SCC. If this becomes detrimental to successfully 257 // caching analyses, we could force each SCC pass to manually 258 // invalidate the analyses for any SCCs other than themselves which 259 // are mutated. However, that seems to lose the robustness of the 260 // pass-manager driven invalidation scheme. 261 CGAM.invalidate(*C, UR.CrossSCCPA); 262 263 do { 264 // Check that we didn't miss any update scenario. 265 assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!"); 266 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 267 assert(&C->getOuterRefSCC() == RC && 268 "Processing an SCC in a different RefSCC!"); 269 270 LastUpdatedC = UR.UpdatedC; 271 UR.UpdatedRC = nullptr; 272 UR.UpdatedC = nullptr; 273 274 // Check the PassInstrumentation's BeforePass callbacks before 275 // running the pass, skip its execution completely if asked to 276 // (callback returns false). 277 if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C)) 278 continue; 279 280 PreservedAnalyses PassPA; 281 { 282 TimeTraceScope TimeScope(Pass->name()); 283 PassPA = Pass->run(*C, CGAM, CG, UR); 284 } 285 286 if (UR.InvalidatedSCCs.count(C)) 287 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 288 else 289 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 290 291 // Update the SCC and RefSCC if necessary. 292 C = UR.UpdatedC ? UR.UpdatedC : C; 293 RC = UR.UpdatedRC ? UR.UpdatedRC : RC; 294 295 if (UR.UpdatedC) { 296 // If we're updating the SCC, also update the FAM inside the proxy's 297 // result. 298 CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM( 299 FAM); 300 } 301 302 // If the CGSCC pass wasn't able to provide a valid updated SCC, 303 // the current SCC may simply need to be skipped if invalid. 304 if (UR.InvalidatedSCCs.count(C)) { 305 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 306 break; 307 } 308 // Check that we didn't miss any update scenario. 309 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 310 311 // We handle invalidating the CGSCC analysis manager's information 312 // for the (potentially updated) SCC here. Note that any other SCCs 313 // whose structure has changed should have been invalidated by 314 // whatever was updating the call graph. This SCC gets invalidated 315 // late as it contains the nodes that were actively being 316 // processed. 317 CGAM.invalidate(*C, PassPA); 318 319 // Then intersect the preserved set so that invalidation of module 320 // analyses will eventually occur when the module pass completes. 321 // Also intersect with the cross-SCC preserved set to capture any 322 // cross-SCC invalidation. 323 UR.CrossSCCPA.intersect(PassPA); 324 PA.intersect(std::move(PassPA)); 325 326 // The pass may have restructured the call graph and refined the 327 // current SCC and/or RefSCC. We need to update our current SCC and 328 // RefSCC pointers to follow these. Also, when the current SCC is 329 // refined, re-run the SCC pass over the newly refined SCC in order 330 // to observe the most precise SCC model available. This inherently 331 // cannot cycle excessively as it only happens when we split SCCs 332 // apart, at most converging on a DAG of single nodes. 333 // FIXME: If we ever start having RefSCC passes, we'll want to 334 // iterate there too. 335 if (UR.UpdatedC) 336 LLVM_DEBUG(dbgs() 337 << "Re-running SCC passes after a refinement of the " 338 "current SCC: " 339 << *UR.UpdatedC << "\n"); 340 341 // Note that both `C` and `RC` may at this point refer to deleted, 342 // invalid SCC and RefSCCs respectively. But we will short circuit 343 // the processing when we check them in the loop above. 344 } while (UR.UpdatedC); 345 } while (!CWorklist.empty()); 346 347 // We only need to keep internal inlined edge information within 348 // a RefSCC, clear it to save on space and let the next time we visit 349 // any of these functions have a fresh start. 350 InlinedInternalEdges.clear(); 351 } while (!RCWorklist.empty()); 352 } 353 354 // By definition we preserve the call garph, all SCC analyses, and the 355 // analysis proxies by handling them above and in any nested pass managers. 356 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 357 PA.preserve<LazyCallGraphAnalysis>(); 358 PA.preserve<CGSCCAnalysisManagerModuleProxy>(); 359 PA.preserve<FunctionAnalysisManagerModuleProxy>(); 360 return PA; 361 } 362 363 PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC, 364 CGSCCAnalysisManager &AM, 365 LazyCallGraph &CG, 366 CGSCCUpdateResult &UR) { 367 PreservedAnalyses PA = PreservedAnalyses::all(); 368 PassInstrumentation PI = 369 AM.getResult<PassInstrumentationAnalysis>(InitialC, CG); 370 371 // The SCC may be refined while we are running passes over it, so set up 372 // a pointer that we can update. 373 LazyCallGraph::SCC *C = &InitialC; 374 375 // Struct to track the counts of direct and indirect calls in each function 376 // of the SCC. 377 struct CallCount { 378 int Direct; 379 int Indirect; 380 }; 381 382 // Put value handles on all of the indirect calls and return the number of 383 // direct calls for each function in the SCC. 384 auto ScanSCC = [](LazyCallGraph::SCC &C, 385 SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) { 386 assert(CallHandles.empty() && "Must start with a clear set of handles."); 387 388 SmallDenseMap<Function *, CallCount> CallCounts; 389 CallCount CountLocal = {0, 0}; 390 for (LazyCallGraph::Node &N : C) { 391 CallCount &Count = 392 CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal)) 393 .first->second; 394 for (Instruction &I : instructions(N.getFunction())) 395 if (auto *CB = dyn_cast<CallBase>(&I)) { 396 if (CB->getCalledFunction()) { 397 ++Count.Direct; 398 } else { 399 ++Count.Indirect; 400 CallHandles.insert({CB, WeakTrackingVH(CB)}); 401 } 402 } 403 } 404 405 return CallCounts; 406 }; 407 408 UR.IndirectVHs.clear(); 409 // Populate the initial call handles and get the initial call counts. 410 auto CallCounts = ScanSCC(*C, UR.IndirectVHs); 411 412 for (int Iteration = 0;; ++Iteration) { 413 if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C)) 414 continue; 415 416 PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR); 417 418 if (UR.InvalidatedSCCs.count(C)) 419 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 420 else 421 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 422 423 // If the SCC structure has changed, bail immediately and let the outer 424 // CGSCC layer handle any iteration to reflect the refined structure. 425 if (UR.UpdatedC && UR.UpdatedC != C) { 426 PA.intersect(std::move(PassPA)); 427 break; 428 } 429 430 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 431 // current SCC may simply need to be skipped if invalid. 432 if (UR.InvalidatedSCCs.count(C)) { 433 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 434 break; 435 } 436 437 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 438 439 // Check whether any of the handles were devirtualized. 440 bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool { 441 if (P.second) { 442 if (CallBase *CB = dyn_cast<CallBase>(P.second)) { 443 if (CB->getCalledFunction()) { 444 LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n"); 445 return true; 446 } 447 } 448 } 449 return false; 450 }); 451 452 // Rescan to build up a new set of handles and count how many direct 453 // calls remain. If we decide to iterate, this also sets up the input to 454 // the next iteration. 455 UR.IndirectVHs.clear(); 456 auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs); 457 458 // If we haven't found an explicit devirtualization already see if we 459 // have decreased the number of indirect calls and increased the number 460 // of direct calls for any function in the SCC. This can be fooled by all 461 // manner of transformations such as DCE and other things, but seems to 462 // work well in practice. 463 if (!Devirt) 464 // Iterate over the keys in NewCallCounts, if Function also exists in 465 // CallCounts, make the check below. 466 for (auto &Pair : NewCallCounts) { 467 auto &CallCountNew = Pair.second; 468 auto CountIt = CallCounts.find(Pair.first); 469 if (CountIt != CallCounts.end()) { 470 const auto &CallCountOld = CountIt->second; 471 if (CallCountOld.Indirect > CallCountNew.Indirect && 472 CallCountOld.Direct < CallCountNew.Direct) { 473 Devirt = true; 474 break; 475 } 476 } 477 } 478 479 if (!Devirt) { 480 PA.intersect(std::move(PassPA)); 481 break; 482 } 483 484 // Otherwise, if we've already hit our max, we're done. 485 if (Iteration >= MaxIterations) { 486 if (AbortOnMaxDevirtIterationsReached) 487 report_fatal_error("Max devirtualization iterations reached"); 488 LLVM_DEBUG( 489 dbgs() << "Found another devirtualization after hitting the max " 490 "number of repetitions (" 491 << MaxIterations << ") on SCC: " << *C << "\n"); 492 PA.intersect(std::move(PassPA)); 493 break; 494 } 495 496 LLVM_DEBUG( 497 dbgs() << "Repeating an SCC pass after finding a devirtualization in: " 498 << *C << "\n"); 499 500 // Move over the new call counts in preparation for iterating. 501 CallCounts = std::move(NewCallCounts); 502 503 // Update the analysis manager with each run and intersect the total set 504 // of preserved analyses so we're ready to iterate. 505 AM.invalidate(*C, PassPA); 506 507 PA.intersect(std::move(PassPA)); 508 } 509 510 // Note that we don't add any preserved entries here unlike a more normal 511 // "pass manager" because we only handle invalidation *between* iterations, 512 // not after the last iteration. 513 return PA; 514 } 515 516 PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C, 517 CGSCCAnalysisManager &AM, 518 LazyCallGraph &CG, 519 CGSCCUpdateResult &UR) { 520 // Setup the function analysis manager from its proxy. 521 FunctionAnalysisManager &FAM = 522 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 523 524 SmallVector<LazyCallGraph::Node *, 4> Nodes; 525 for (LazyCallGraph::Node &N : C) 526 Nodes.push_back(&N); 527 528 // The SCC may get split while we are optimizing functions due to deleting 529 // edges. If this happens, the current SCC can shift, so keep track of 530 // a pointer we can overwrite. 531 LazyCallGraph::SCC *CurrentC = &C; 532 533 LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n"); 534 535 PreservedAnalyses PA = PreservedAnalyses::all(); 536 for (LazyCallGraph::Node *N : Nodes) { 537 // Skip nodes from other SCCs. These may have been split out during 538 // processing. We'll eventually visit those SCCs and pick up the nodes 539 // there. 540 if (CG.lookupSCC(*N) != CurrentC) 541 continue; 542 543 Function &F = N->getFunction(); 544 545 if (NoRerun && FAM.getCachedResult<ShouldNotRunFunctionPassesAnalysis>(F)) 546 continue; 547 548 PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F); 549 if (!PI.runBeforePass<Function>(*Pass, F)) 550 continue; 551 552 PreservedAnalyses PassPA; 553 { 554 TimeTraceScope TimeScope(Pass->name()); 555 PassPA = Pass->run(F, FAM); 556 } 557 558 PI.runAfterPass<Function>(*Pass, F, PassPA); 559 560 // We know that the function pass couldn't have invalidated any other 561 // function's analyses (that's the contract of a function pass), so 562 // directly handle the function analysis manager's invalidation here. 563 FAM.invalidate(F, EagerlyInvalidate ? PreservedAnalyses::none() : PassPA); 564 if (NoRerun) 565 (void)FAM.getResult<ShouldNotRunFunctionPassesAnalysis>(F); 566 567 // Then intersect the preserved set so that invalidation of module 568 // analyses will eventually occur when the module pass completes. 569 PA.intersect(std::move(PassPA)); 570 571 // If the call graph hasn't been preserved, update it based on this 572 // function pass. This may also update the current SCC to point to 573 // a smaller, more refined SCC. 574 auto PAC = PA.getChecker<LazyCallGraphAnalysis>(); 575 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) { 576 CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N, 577 AM, UR, FAM); 578 assert(CG.lookupSCC(*N) == CurrentC && 579 "Current SCC not updated to the SCC containing the current node!"); 580 } 581 } 582 583 // By definition we preserve the proxy. And we preserve all analyses on 584 // Functions. This precludes *any* invalidation of function analyses by the 585 // proxy, but that's OK because we've taken care to invalidate analyses in 586 // the function analysis manager incrementally above. 587 PA.preserveSet<AllAnalysesOn<Function>>(); 588 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 589 590 // We've also ensured that we updated the call graph along the way. 591 PA.preserve<LazyCallGraphAnalysis>(); 592 593 return PA; 594 } 595 596 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 597 Module &M, const PreservedAnalyses &PA, 598 ModuleAnalysisManager::Invalidator &Inv) { 599 // If literally everything is preserved, we're done. 600 if (PA.areAllPreserved()) 601 return false; // This is still a valid proxy. 602 603 // If this proxy or the call graph is going to be invalidated, we also need 604 // to clear all the keys coming from that analysis. 605 // 606 // We also directly invalidate the FAM's module proxy if necessary, and if 607 // that proxy isn't preserved we can't preserve this proxy either. We rely on 608 // it to handle module -> function analysis invalidation in the face of 609 // structural changes and so if it's unavailable we conservatively clear the 610 // entire SCC layer as well rather than trying to do invalidation ourselves. 611 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 612 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 613 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 614 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 615 InnerAM->clear(); 616 617 // And the proxy itself should be marked as invalid so that we can observe 618 // the new call graph. This isn't strictly necessary because we cheat 619 // above, but is still useful. 620 return true; 621 } 622 623 // Directly check if the relevant set is preserved so we can short circuit 624 // invalidating SCCs below. 625 bool AreSCCAnalysesPreserved = 626 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 627 628 // Ok, we have a graph, so we can propagate the invalidation down into it. 629 G->buildRefSCCs(); 630 for (auto &RC : G->postorder_ref_sccs()) 631 for (auto &C : RC) { 632 Optional<PreservedAnalyses> InnerPA; 633 634 // Check to see whether the preserved set needs to be adjusted based on 635 // module-level analysis invalidation triggering deferred invalidation 636 // for this SCC. 637 if (auto *OuterProxy = 638 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 639 for (const auto &OuterInvalidationPair : 640 OuterProxy->getOuterInvalidations()) { 641 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 642 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 643 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 644 if (!InnerPA) 645 InnerPA = PA; 646 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 647 InnerPA->abandon(InnerAnalysisID); 648 } 649 } 650 651 // Check if we needed a custom PA set. If so we'll need to run the inner 652 // invalidation. 653 if (InnerPA) { 654 InnerAM->invalidate(C, *InnerPA); 655 continue; 656 } 657 658 // Otherwise we only need to do invalidation if the original PA set didn't 659 // preserve all SCC analyses. 660 if (!AreSCCAnalysesPreserved) 661 InnerAM->invalidate(C, PA); 662 } 663 664 // Return false to indicate that this result is still a valid proxy. 665 return false; 666 } 667 668 template <> 669 CGSCCAnalysisManagerModuleProxy::Result 670 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 671 // Force the Function analysis manager to also be available so that it can 672 // be accessed in an SCC analysis and proxied onward to function passes. 673 // FIXME: It is pretty awkward to just drop the result here and assert that 674 // we can find it again later. 675 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 676 677 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 678 } 679 680 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 681 682 FunctionAnalysisManagerCGSCCProxy::Result 683 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 684 CGSCCAnalysisManager &AM, 685 LazyCallGraph &CG) { 686 // Note: unconditionally getting checking that the proxy exists may get it at 687 // this point. There are cases when this is being run unnecessarily, but 688 // it is cheap and having the assertion in place is more valuable. 689 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG); 690 Module &M = *C.begin()->getFunction().getParent(); 691 bool ProxyExists = 692 MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M); 693 assert(ProxyExists && 694 "The CGSCC pass manager requires that the FAM module proxy is run " 695 "on the module prior to entering the CGSCC walk"); 696 (void)ProxyExists; 697 698 // We just return an empty result. The caller will use the updateFAM interface 699 // to correctly register the relevant FunctionAnalysisManager based on the 700 // context in which this proxy is run. 701 return Result(); 702 } 703 704 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 705 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 706 CGSCCAnalysisManager::Invalidator &Inv) { 707 // If literally everything is preserved, we're done. 708 if (PA.areAllPreserved()) 709 return false; // This is still a valid proxy. 710 711 // All updates to preserve valid results are done below, so we don't need to 712 // invalidate this proxy. 713 // 714 // Note that in order to preserve this proxy, a module pass must ensure that 715 // the FAM has been completely updated to handle the deletion of functions. 716 // Specifically, any FAM-cached results for those functions need to have been 717 // forcibly cleared. When preserved, this proxy will only invalidate results 718 // cached on functions *still in the module* at the end of the module pass. 719 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); 720 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { 721 for (LazyCallGraph::Node &N : C) 722 FAM->invalidate(N.getFunction(), PA); 723 724 return false; 725 } 726 727 // Directly check if the relevant set is preserved. 728 bool AreFunctionAnalysesPreserved = 729 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); 730 731 // Now walk all the functions to see if any inner analysis invalidation is 732 // necessary. 733 for (LazyCallGraph::Node &N : C) { 734 Function &F = N.getFunction(); 735 Optional<PreservedAnalyses> FunctionPA; 736 737 // Check to see whether the preserved set needs to be pruned based on 738 // SCC-level analysis invalidation that triggers deferred invalidation 739 // registered with the outer analysis manager proxy for this function. 740 if (auto *OuterProxy = 741 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) 742 for (const auto &OuterInvalidationPair : 743 OuterProxy->getOuterInvalidations()) { 744 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 745 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 746 if (Inv.invalidate(OuterAnalysisID, C, PA)) { 747 if (!FunctionPA) 748 FunctionPA = PA; 749 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 750 FunctionPA->abandon(InnerAnalysisID); 751 } 752 } 753 754 // Check if we needed a custom PA set, and if so we'll need to run the 755 // inner invalidation. 756 if (FunctionPA) { 757 FAM->invalidate(F, *FunctionPA); 758 continue; 759 } 760 761 // Otherwise we only need to do invalidation if the original PA set didn't 762 // preserve all function analyses. 763 if (!AreFunctionAnalysesPreserved) 764 FAM->invalidate(F, PA); 765 } 766 767 // Return false to indicate that this result is still a valid proxy. 768 return false; 769 } 770 771 } // end namespace llvm 772 773 /// When a new SCC is created for the graph we first update the 774 /// FunctionAnalysisManager in the Proxy's result. 775 /// As there might be function analysis results cached for the functions now in 776 /// that SCC, two forms of updates are required. 777 /// 778 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be 779 /// created so that any subsequent invalidation events to the SCC are 780 /// propagated to the function analysis results cached for functions within it. 781 /// 782 /// Second, if any of the functions within the SCC have analysis results with 783 /// outer analysis dependencies, then those dependencies would point to the 784 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary 785 /// function analyses so that they don't retain stale handles. 786 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, 787 LazyCallGraph &G, 788 CGSCCAnalysisManager &AM, 789 FunctionAnalysisManager &FAM) { 790 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM); 791 792 // Now walk the functions in this SCC and invalidate any function analysis 793 // results that might have outer dependencies on an SCC analysis. 794 for (LazyCallGraph::Node &N : C) { 795 Function &F = N.getFunction(); 796 797 auto *OuterProxy = 798 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); 799 if (!OuterProxy) 800 // No outer analyses were queried, nothing to do. 801 continue; 802 803 // Forcibly abandon all the inner analyses with dependencies, but 804 // invalidate nothing else. 805 auto PA = PreservedAnalyses::all(); 806 for (const auto &OuterInvalidationPair : 807 OuterProxy->getOuterInvalidations()) { 808 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 809 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 810 PA.abandon(InnerAnalysisID); 811 } 812 813 // Now invalidate anything we found. 814 FAM.invalidate(F, PA); 815 } 816 } 817 818 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 819 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 820 /// added SCCs. 821 /// 822 /// The range of new SCCs must be in postorder already. The SCC they were split 823 /// out of must be provided as \p C. The current node being mutated and 824 /// triggering updates must be passed as \p N. 825 /// 826 /// This function returns the SCC containing \p N. This will be either \p C if 827 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 828 template <typename SCCRangeT> 829 static LazyCallGraph::SCC * 830 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 831 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 832 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 833 using SCC = LazyCallGraph::SCC; 834 835 if (NewSCCRange.empty()) 836 return C; 837 838 // Add the current SCC to the worklist as its shape has changed. 839 UR.CWorklist.insert(C); 840 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C 841 << "\n"); 842 843 SCC *OldC = C; 844 845 // Update the current SCC. Note that if we have new SCCs, this must actually 846 // change the SCC. 847 assert(C != &*NewSCCRange.begin() && 848 "Cannot insert new SCCs without changing current SCC!"); 849 C = &*NewSCCRange.begin(); 850 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 851 852 // If we had a cached FAM proxy originally, we will want to create more of 853 // them for each SCC that was split off. 854 FunctionAnalysisManager *FAM = nullptr; 855 if (auto *FAMProxy = 856 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC)) 857 FAM = &FAMProxy->getManager(); 858 859 // We need to propagate an invalidation call to all but the newly current SCC 860 // because the outer pass manager won't do that for us after splitting them. 861 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if 862 // there are preserved analysis we can avoid invalidating them here for 863 // split-off SCCs. 864 // We know however that this will preserve any FAM proxy so go ahead and mark 865 // that. 866 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 867 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 868 AM.invalidate(*OldC, PA); 869 870 // Ensure the now-current SCC's function analyses are updated. 871 if (FAM) 872 updateNewSCCFunctionAnalyses(*C, G, AM, *FAM); 873 874 for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) { 875 assert(C != &NewC && "No need to re-visit the current SCC!"); 876 assert(OldC != &NewC && "Already handled the original SCC!"); 877 UR.CWorklist.insert(&NewC); 878 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); 879 880 // Ensure new SCCs' function analyses are updated. 881 if (FAM) 882 updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM); 883 884 // Also propagate a normal invalidation to the new SCC as only the current 885 // will get one from the pass manager infrastructure. 886 AM.invalidate(NewC, PA); 887 } 888 return C; 889 } 890 891 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass( 892 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 893 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 894 FunctionAnalysisManager &FAM, bool FunctionPass) { 895 using Node = LazyCallGraph::Node; 896 using Edge = LazyCallGraph::Edge; 897 using SCC = LazyCallGraph::SCC; 898 using RefSCC = LazyCallGraph::RefSCC; 899 900 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 901 SCC *C = &InitialC; 902 RefSCC *RC = &InitialRC; 903 Function &F = N.getFunction(); 904 905 // Walk the function body and build up the set of retained, promoted, and 906 // demoted edges. 907 SmallVector<Constant *, 16> Worklist; 908 SmallPtrSet<Constant *, 16> Visited; 909 SmallPtrSet<Node *, 16> RetainedEdges; 910 SmallSetVector<Node *, 4> PromotedRefTargets; 911 SmallSetVector<Node *, 4> DemotedCallTargets; 912 SmallSetVector<Node *, 4> NewCallEdges; 913 SmallSetVector<Node *, 4> NewRefEdges; 914 915 // First walk the function and handle all called functions. We do this first 916 // because if there is a single call edge, whether there are ref edges is 917 // irrelevant. 918 for (Instruction &I : instructions(F)) { 919 if (auto *CB = dyn_cast<CallBase>(&I)) { 920 if (Function *Callee = CB->getCalledFunction()) { 921 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 922 Node *CalleeN = G.lookup(*Callee); 923 assert(CalleeN && 924 "Visited function should already have an associated node"); 925 Edge *E = N->lookup(*CalleeN); 926 assert((E || !FunctionPass) && 927 "No function transformations should introduce *new* " 928 "call edges! Any new calls should be modeled as " 929 "promoted existing ref edges!"); 930 bool Inserted = RetainedEdges.insert(CalleeN).second; 931 (void)Inserted; 932 assert(Inserted && "We should never visit a function twice."); 933 if (!E) 934 NewCallEdges.insert(CalleeN); 935 else if (!E->isCall()) 936 PromotedRefTargets.insert(CalleeN); 937 } 938 } else { 939 // We can miss devirtualization if an indirect call is created then 940 // promoted before updateCGAndAnalysisManagerForPass runs. 941 auto *Entry = UR.IndirectVHs.find(CB); 942 if (Entry == UR.IndirectVHs.end()) 943 UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)}); 944 else if (!Entry->second) 945 Entry->second = WeakTrackingVH(CB); 946 } 947 } 948 } 949 950 // Now walk all references. 951 for (Instruction &I : instructions(F)) 952 for (Value *Op : I.operand_values()) 953 if (auto *OpC = dyn_cast<Constant>(Op)) 954 if (Visited.insert(OpC).second) 955 Worklist.push_back(OpC); 956 957 auto VisitRef = [&](Function &Referee) { 958 Node *RefereeN = G.lookup(Referee); 959 assert(RefereeN && 960 "Visited function should already have an associated node"); 961 Edge *E = N->lookup(*RefereeN); 962 assert((E || !FunctionPass) && 963 "No function transformations should introduce *new* ref " 964 "edges! Any new ref edges would require IPO which " 965 "function passes aren't allowed to do!"); 966 bool Inserted = RetainedEdges.insert(RefereeN).second; 967 (void)Inserted; 968 assert(Inserted && "We should never visit a function twice."); 969 if (!E) 970 NewRefEdges.insert(RefereeN); 971 else if (E->isCall()) 972 DemotedCallTargets.insert(RefereeN); 973 }; 974 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); 975 976 // Handle new ref edges. 977 for (Node *RefTarget : NewRefEdges) { 978 SCC &TargetC = *G.lookupSCC(*RefTarget); 979 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 980 (void)TargetRC; 981 // TODO: This only allows trivial edges to be added for now. 982 #ifdef EXPENSIVE_CHECKS 983 assert((RC == &TargetRC || 984 RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!"); 985 #endif 986 RC->insertTrivialRefEdge(N, *RefTarget); 987 } 988 989 // Handle new call edges. 990 for (Node *CallTarget : NewCallEdges) { 991 SCC &TargetC = *G.lookupSCC(*CallTarget); 992 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 993 (void)TargetRC; 994 // TODO: This only allows trivial edges to be added for now. 995 #ifdef EXPENSIVE_CHECKS 996 assert((RC == &TargetRC || 997 RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!"); 998 #endif 999 // Add a trivial ref edge to be promoted later on alongside 1000 // PromotedRefTargets. 1001 RC->insertTrivialRefEdge(N, *CallTarget); 1002 } 1003 1004 // Include synthetic reference edges to known, defined lib functions. 1005 for (auto *LibFn : G.getLibFunctions()) 1006 // While the list of lib functions doesn't have repeats, don't re-visit 1007 // anything handled above. 1008 if (!Visited.count(LibFn)) 1009 VisitRef(*LibFn); 1010 1011 // First remove all of the edges that are no longer present in this function. 1012 // The first step makes these edges uniformly ref edges and accumulates them 1013 // into a separate data structure so removal doesn't invalidate anything. 1014 SmallVector<Node *, 4> DeadTargets; 1015 for (Edge &E : *N) { 1016 if (RetainedEdges.count(&E.getNode())) 1017 continue; 1018 1019 SCC &TargetC = *G.lookupSCC(E.getNode()); 1020 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1021 if (&TargetRC == RC && E.isCall()) { 1022 if (C != &TargetC) { 1023 // For separate SCCs this is trivial. 1024 RC->switchTrivialInternalEdgeToRef(N, E.getNode()); 1025 } else { 1026 // Now update the call graph. 1027 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), 1028 G, N, C, AM, UR); 1029 } 1030 } 1031 1032 // Now that this is ready for actual removal, put it into our list. 1033 DeadTargets.push_back(&E.getNode()); 1034 } 1035 // Remove the easy cases quickly and actually pull them out of our list. 1036 llvm::erase_if(DeadTargets, [&](Node *TargetN) { 1037 SCC &TargetC = *G.lookupSCC(*TargetN); 1038 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1039 1040 // We can't trivially remove internal targets, so skip 1041 // those. 1042 if (&TargetRC == RC) 1043 return false; 1044 1045 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '" 1046 << *TargetN << "'\n"); 1047 RC->removeOutgoingEdge(N, *TargetN); 1048 return true; 1049 }); 1050 1051 // Now do a batch removal of the internal ref edges left. 1052 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); 1053 if (!NewRefSCCs.empty()) { 1054 // The old RefSCC is dead, mark it as such. 1055 UR.InvalidatedRefSCCs.insert(RC); 1056 1057 // Note that we don't bother to invalidate analyses as ref-edge 1058 // connectivity is not really observable in any way and is intended 1059 // exclusively to be used for ordering of transforms rather than for 1060 // analysis conclusions. 1061 1062 // Update RC to the "bottom". 1063 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 1064 RC = &C->getOuterRefSCC(); 1065 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 1066 1067 // The RC worklist is in reverse postorder, so we enqueue the new ones in 1068 // RPO except for the one which contains the source node as that is the 1069 // "bottom" we will continue processing in the bottom-up walk. 1070 assert(NewRefSCCs.front() == RC && 1071 "New current RefSCC not first in the returned list!"); 1072 for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) { 1073 assert(NewRC != RC && "Should not encounter the current RefSCC further " 1074 "in the postorder list of new RefSCCs."); 1075 UR.RCWorklist.insert(NewRC); 1076 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " 1077 << *NewRC << "\n"); 1078 } 1079 } 1080 1081 // Next demote all the call edges that are now ref edges. This helps make 1082 // the SCCs small which should minimize the work below as we don't want to 1083 // form cycles that this would break. 1084 for (Node *RefTarget : DemotedCallTargets) { 1085 SCC &TargetC = *G.lookupSCC(*RefTarget); 1086 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1087 1088 // The easy case is when the target RefSCC is not this RefSCC. This is 1089 // only supported when the target RefSCC is a child of this RefSCC. 1090 if (&TargetRC != RC) { 1091 #ifdef EXPENSIVE_CHECKS 1092 assert(RC->isAncestorOf(TargetRC) && 1093 "Cannot potentially form RefSCC cycles here!"); 1094 #endif 1095 RC->switchOutgoingEdgeToRef(N, *RefTarget); 1096 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N 1097 << "' to '" << *RefTarget << "'\n"); 1098 continue; 1099 } 1100 1101 // We are switching an internal call edge to a ref edge. This may split up 1102 // some SCCs. 1103 if (C != &TargetC) { 1104 // For separate SCCs this is trivial. 1105 RC->switchTrivialInternalEdgeToRef(N, *RefTarget); 1106 continue; 1107 } 1108 1109 // Now update the call graph. 1110 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, 1111 C, AM, UR); 1112 } 1113 1114 // We added a ref edge earlier for new call edges, promote those to call edges 1115 // alongside PromotedRefTargets. 1116 for (Node *E : NewCallEdges) 1117 PromotedRefTargets.insert(E); 1118 1119 // Now promote ref edges into call edges. 1120 for (Node *CallTarget : PromotedRefTargets) { 1121 SCC &TargetC = *G.lookupSCC(*CallTarget); 1122 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1123 1124 // The easy case is when the target RefSCC is not this RefSCC. This is 1125 // only supported when the target RefSCC is a child of this RefSCC. 1126 if (&TargetRC != RC) { 1127 #ifdef EXPENSIVE_CHECKS 1128 assert(RC->isAncestorOf(TargetRC) && 1129 "Cannot potentially form RefSCC cycles here!"); 1130 #endif 1131 RC->switchOutgoingEdgeToCall(N, *CallTarget); 1132 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N 1133 << "' to '" << *CallTarget << "'\n"); 1134 continue; 1135 } 1136 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" 1137 << N << "' to '" << *CallTarget << "'\n"); 1138 1139 // Otherwise we are switching an internal ref edge to a call edge. This 1140 // may merge away some SCCs, and we add those to the UpdateResult. We also 1141 // need to make sure to update the worklist in the event SCCs have moved 1142 // before the current one in the post-order sequence 1143 bool HasFunctionAnalysisProxy = false; 1144 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 1145 bool FormedCycle = RC->switchInternalEdgeToCall( 1146 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { 1147 for (SCC *MergedC : MergedSCCs) { 1148 assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); 1149 1150 HasFunctionAnalysisProxy |= 1151 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( 1152 *MergedC) != nullptr; 1153 1154 // Mark that this SCC will no longer be valid. 1155 UR.InvalidatedSCCs.insert(MergedC); 1156 1157 // FIXME: We should really do a 'clear' here to forcibly release 1158 // memory, but we don't have a good way of doing that and 1159 // preserving the function analyses. 1160 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 1161 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1162 AM.invalidate(*MergedC, PA); 1163 } 1164 }); 1165 1166 // If we formed a cycle by creating this call, we need to update more data 1167 // structures. 1168 if (FormedCycle) { 1169 C = &TargetC; 1170 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 1171 1172 // If one of the invalidated SCCs had a cached proxy to a function 1173 // analysis manager, we need to create a proxy in the new current SCC as 1174 // the invalidated SCCs had their functions moved. 1175 if (HasFunctionAnalysisProxy) 1176 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM); 1177 1178 // Any analyses cached for this SCC are no longer precise as the shape 1179 // has changed by introducing this cycle. However, we have taken care to 1180 // update the proxies so it remains valide. 1181 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 1182 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1183 AM.invalidate(*C, PA); 1184 } 1185 auto NewSCCIndex = RC->find(*C) - RC->begin(); 1186 // If we have actually moved an SCC to be topologically "below" the current 1187 // one due to merging, we will need to revisit the current SCC after 1188 // visiting those moved SCCs. 1189 // 1190 // It is critical that we *do not* revisit the current SCC unless we 1191 // actually move SCCs in the process of merging because otherwise we may 1192 // form a cycle where an SCC is split apart, merged, split, merged and so 1193 // on infinitely. 1194 if (InitialSCCIndex < NewSCCIndex) { 1195 // Put our current SCC back onto the worklist as we'll visit other SCCs 1196 // that are now definitively ordered prior to the current one in the 1197 // post-order sequence, and may end up observing more precise context to 1198 // optimize the current SCC. 1199 UR.CWorklist.insert(C); 1200 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C 1201 << "\n"); 1202 // Enqueue in reverse order as we pop off the back of the worklist. 1203 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, 1204 RC->begin() + NewSCCIndex))) { 1205 UR.CWorklist.insert(&MovedC); 1206 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " 1207 << MovedC << "\n"); 1208 } 1209 } 1210 } 1211 1212 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 1213 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 1214 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 1215 1216 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 1217 // manager now that all the updates have been applied. 1218 if (RC != &InitialRC) 1219 UR.UpdatedRC = RC; 1220 if (C != &InitialC) 1221 UR.UpdatedC = C; 1222 1223 return *C; 1224 } 1225 1226 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 1227 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 1228 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 1229 FunctionAnalysisManager &FAM) { 1230 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 1231 /* FunctionPass */ true); 1232 } 1233 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass( 1234 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 1235 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 1236 FunctionAnalysisManager &FAM) { 1237 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 1238 /* FunctionPass */ false); 1239 } 1240