xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/CGSCCPassManager.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/Optional.h"
12 #include "llvm/ADT/PriorityWorklist.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/Analysis/LazyCallGraph.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/InstIterator.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/PassManager.h"
23 #include "llvm/IR/PassManagerImpl.h"
24 #include "llvm/IR/ValueHandle.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/TimeProfiler.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <cassert>
32 #include <iterator>
33 
34 #define DEBUG_TYPE "cgscc"
35 
36 using namespace llvm;
37 
38 // Explicit template instantiations and specialization definitions for core
39 // template typedefs.
40 namespace llvm {
41 static cl::opt<bool> AbortOnMaxDevirtIterationsReached(
42     "abort-on-max-devirt-iterations-reached",
43     cl::desc("Abort when the max iterations for devirtualization CGSCC repeat "
44              "pass is reached"));
45 
46 AnalysisKey ShouldNotRunFunctionPassesAnalysis::Key;
47 
48 // Explicit instantiations for the core proxy templates.
49 template class AllAnalysesOn<LazyCallGraph::SCC>;
50 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
51 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
52                            LazyCallGraph &, CGSCCUpdateResult &>;
53 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
54 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
55                                          LazyCallGraph::SCC, LazyCallGraph &>;
56 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
57 
58 /// Explicitly specialize the pass manager run method to handle call graph
59 /// updates.
60 template <>
61 PreservedAnalyses
62 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
63             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
64                                       CGSCCAnalysisManager &AM,
65                                       LazyCallGraph &G, CGSCCUpdateResult &UR) {
66   // Request PassInstrumentation from analysis manager, will use it to run
67   // instrumenting callbacks for the passes later.
68   PassInstrumentation PI =
69       AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
70 
71   PreservedAnalyses PA = PreservedAnalyses::all();
72 
73   // The SCC may be refined while we are running passes over it, so set up
74   // a pointer that we can update.
75   LazyCallGraph::SCC *C = &InitialC;
76 
77   // Get Function analysis manager from its proxy.
78   FunctionAnalysisManager &FAM =
79       AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager();
80 
81   for (auto &Pass : Passes) {
82     // Check the PassInstrumentation's BeforePass callbacks before running the
83     // pass, skip its execution completely if asked to (callback returns false).
84     if (!PI.runBeforePass(*Pass, *C))
85       continue;
86 
87     PreservedAnalyses PassPA;
88     {
89       TimeTraceScope TimeScope(Pass->name());
90       PassPA = Pass->run(*C, AM, G, UR);
91     }
92 
93     if (UR.InvalidatedSCCs.count(C))
94       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
95     else
96       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
97 
98     // Update the SCC if necessary.
99     C = UR.UpdatedC ? UR.UpdatedC : C;
100     if (UR.UpdatedC) {
101       // If C is updated, also create a proxy and update FAM inside the result.
102       auto *ResultFAMCP =
103           &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
104       ResultFAMCP->updateFAM(FAM);
105     }
106 
107     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
108     // current SCC may simply need to be skipped if invalid.
109     if (UR.InvalidatedSCCs.count(C)) {
110       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
111       break;
112     }
113     // Check that we didn't miss any update scenario.
114     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
115 
116     // Update the analysis manager as each pass runs and potentially
117     // invalidates analyses.
118     AM.invalidate(*C, PassPA);
119 
120     // Finally, we intersect the final preserved analyses to compute the
121     // aggregate preserved set for this pass manager.
122     PA.intersect(std::move(PassPA));
123   }
124 
125   // Before we mark all of *this* SCC's analyses as preserved below, intersect
126   // this with the cross-SCC preserved analysis set. This is used to allow
127   // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
128   // for them.
129   UR.CrossSCCPA.intersect(PA);
130 
131   // Invalidation was handled after each pass in the above loop for the current
132   // SCC. Therefore, the remaining analysis results in the AnalysisManager are
133   // preserved. We mark this with a set so that we don't need to inspect each
134   // one individually.
135   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
136 
137   return PA;
138 }
139 
140 PreservedAnalyses
141 ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) {
142   // Setup the CGSCC analysis manager from its proxy.
143   CGSCCAnalysisManager &CGAM =
144       AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager();
145 
146   // Get the call graph for this module.
147   LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M);
148 
149   // Get Function analysis manager from its proxy.
150   FunctionAnalysisManager &FAM =
151       AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager();
152 
153   // We keep worklists to allow us to push more work onto the pass manager as
154   // the passes are run.
155   SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist;
156   SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist;
157 
158   // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
159   // iterating off the worklists.
160   SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet;
161   SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet;
162 
163   SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
164       InlinedInternalEdges;
165 
166   CGSCCUpdateResult UR = {
167       RCWorklist,           CWorklist, InvalidRefSCCSet,
168       InvalidSCCSet,        nullptr,   PreservedAnalyses::all(),
169       InlinedInternalEdges, {}};
170 
171   // Request PassInstrumentation from analysis manager, will use it to run
172   // instrumenting callbacks for the passes later.
173   PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
174 
175   PreservedAnalyses PA = PreservedAnalyses::all();
176   CG.buildRefSCCs();
177   for (LazyCallGraph::RefSCC &RC :
178        llvm::make_early_inc_range(CG.postorder_ref_sccs())) {
179     assert(RCWorklist.empty() &&
180            "Should always start with an empty RefSCC worklist");
181     // The postorder_ref_sccs range we are walking is lazily constructed, so
182     // we only push the first one onto the worklist. The worklist allows us
183     // to capture *new* RefSCCs created during transformations.
184     //
185     // We really want to form RefSCCs lazily because that makes them cheaper
186     // to update as the program is simplified and allows us to have greater
187     // cache locality as forming a RefSCC touches all the parts of all the
188     // functions within that RefSCC.
189     //
190     // We also eagerly increment the iterator to the next position because
191     // the CGSCC passes below may delete the current RefSCC.
192     RCWorklist.insert(&RC);
193 
194     do {
195       LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val();
196       if (InvalidRefSCCSet.count(RC)) {
197         LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
198         continue;
199       }
200 
201       assert(CWorklist.empty() &&
202              "Should always start with an empty SCC worklist");
203 
204       LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
205                         << "\n");
206 
207       // The top of the worklist may *also* be the same SCC we just ran over
208       // (and invalidated for). Keep track of that last SCC we processed due
209       // to SCC update to avoid redundant processing when an SCC is both just
210       // updated itself and at the top of the worklist.
211       LazyCallGraph::SCC *LastUpdatedC = nullptr;
212 
213       // Push the initial SCCs in reverse post-order as we'll pop off the
214       // back and so see this in post-order.
215       for (LazyCallGraph::SCC &C : llvm::reverse(*RC))
216         CWorklist.insert(&C);
217 
218       do {
219         LazyCallGraph::SCC *C = CWorklist.pop_back_val();
220         // Due to call graph mutations, we may have invalid SCCs or SCCs from
221         // other RefSCCs in the worklist. The invalid ones are dead and the
222         // other RefSCCs should be queued above, so we just need to skip both
223         // scenarios here.
224         if (InvalidSCCSet.count(C)) {
225           LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
226           continue;
227         }
228         if (LastUpdatedC == C) {
229           LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n");
230           continue;
231         }
232         // We used to also check if the current SCC is part of the current
233         // RefSCC and bail if it wasn't, since it should be in RCWorklist.
234         // However, this can cause compile time explosions in some cases on
235         // modules with a huge RefSCC. If a non-trivial amount of SCCs in the
236         // huge RefSCC can become their own child RefSCC, we create one child
237         // RefSCC, bail on the current RefSCC, visit the child RefSCC, revisit
238         // the huge RefSCC, and repeat. By visiting all SCCs in the original
239         // RefSCC we create all the child RefSCCs in one pass of the RefSCC,
240         // rather one pass of the RefSCC creating one child RefSCC at a time.
241 
242         // Ensure we can proxy analysis updates from the CGSCC analysis manager
243         // into the the Function analysis manager by getting a proxy here.
244         // This also needs to update the FunctionAnalysisManager, as this may be
245         // the first time we see this SCC.
246         CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
247             FAM);
248 
249         // Each time we visit a new SCC pulled off the worklist,
250         // a transformation of a child SCC may have also modified this parent
251         // and invalidated analyses. So we invalidate using the update record's
252         // cross-SCC preserved set. This preserved set is intersected by any
253         // CGSCC pass that handles invalidation (primarily pass managers) prior
254         // to marking its SCC as preserved. That lets us track everything that
255         // might need invalidation across SCCs without excessive invalidations
256         // on a single SCC.
257         //
258         // This essentially allows SCC passes to freely invalidate analyses
259         // of any ancestor SCC. If this becomes detrimental to successfully
260         // caching analyses, we could force each SCC pass to manually
261         // invalidate the analyses for any SCCs other than themselves which
262         // are mutated. However, that seems to lose the robustness of the
263         // pass-manager driven invalidation scheme.
264         CGAM.invalidate(*C, UR.CrossSCCPA);
265 
266         do {
267           // Check that we didn't miss any update scenario.
268           assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!");
269           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
270 
271           LastUpdatedC = UR.UpdatedC;
272           UR.UpdatedC = nullptr;
273 
274           // Check the PassInstrumentation's BeforePass callbacks before
275           // running the pass, skip its execution completely if asked to
276           // (callback returns false).
277           if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
278             continue;
279 
280           PreservedAnalyses PassPA;
281           {
282             TimeTraceScope TimeScope(Pass->name());
283             PassPA = Pass->run(*C, CGAM, CG, UR);
284           }
285 
286           if (UR.InvalidatedSCCs.count(C))
287             PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
288           else
289             PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
290 
291           // Update the SCC and RefSCC if necessary.
292           C = UR.UpdatedC ? UR.UpdatedC : C;
293 
294           if (UR.UpdatedC) {
295             // If we're updating the SCC, also update the FAM inside the proxy's
296             // result.
297             CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
298                 FAM);
299           }
300 
301           // If the CGSCC pass wasn't able to provide a valid updated SCC,
302           // the current SCC may simply need to be skipped if invalid.
303           if (UR.InvalidatedSCCs.count(C)) {
304             LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
305             break;
306           }
307           // Check that we didn't miss any update scenario.
308           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
309 
310           // We handle invalidating the CGSCC analysis manager's information
311           // for the (potentially updated) SCC here. Note that any other SCCs
312           // whose structure has changed should have been invalidated by
313           // whatever was updating the call graph. This SCC gets invalidated
314           // late as it contains the nodes that were actively being
315           // processed.
316           CGAM.invalidate(*C, PassPA);
317 
318           // Then intersect the preserved set so that invalidation of module
319           // analyses will eventually occur when the module pass completes.
320           // Also intersect with the cross-SCC preserved set to capture any
321           // cross-SCC invalidation.
322           UR.CrossSCCPA.intersect(PassPA);
323           PA.intersect(std::move(PassPA));
324 
325           // The pass may have restructured the call graph and refined the
326           // current SCC and/or RefSCC. We need to update our current SCC and
327           // RefSCC pointers to follow these. Also, when the current SCC is
328           // refined, re-run the SCC pass over the newly refined SCC in order
329           // to observe the most precise SCC model available. This inherently
330           // cannot cycle excessively as it only happens when we split SCCs
331           // apart, at most converging on a DAG of single nodes.
332           // FIXME: If we ever start having RefSCC passes, we'll want to
333           // iterate there too.
334           if (UR.UpdatedC)
335             LLVM_DEBUG(dbgs()
336                        << "Re-running SCC passes after a refinement of the "
337                           "current SCC: "
338                        << *UR.UpdatedC << "\n");
339 
340           // Note that both `C` and `RC` may at this point refer to deleted,
341           // invalid SCC and RefSCCs respectively. But we will short circuit
342           // the processing when we check them in the loop above.
343         } while (UR.UpdatedC);
344       } while (!CWorklist.empty());
345 
346       // We only need to keep internal inlined edge information within
347       // a RefSCC, clear it to save on space and let the next time we visit
348       // any of these functions have a fresh start.
349       InlinedInternalEdges.clear();
350     } while (!RCWorklist.empty());
351   }
352 
353   // By definition we preserve the call garph, all SCC analyses, and the
354   // analysis proxies by handling them above and in any nested pass managers.
355   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
356   PA.preserve<LazyCallGraphAnalysis>();
357   PA.preserve<CGSCCAnalysisManagerModuleProxy>();
358   PA.preserve<FunctionAnalysisManagerModuleProxy>();
359   return PA;
360 }
361 
362 PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC,
363                                              CGSCCAnalysisManager &AM,
364                                              LazyCallGraph &CG,
365                                              CGSCCUpdateResult &UR) {
366   PreservedAnalyses PA = PreservedAnalyses::all();
367   PassInstrumentation PI =
368       AM.getResult<PassInstrumentationAnalysis>(InitialC, CG);
369 
370   // The SCC may be refined while we are running passes over it, so set up
371   // a pointer that we can update.
372   LazyCallGraph::SCC *C = &InitialC;
373 
374   // Struct to track the counts of direct and indirect calls in each function
375   // of the SCC.
376   struct CallCount {
377     int Direct;
378     int Indirect;
379   };
380 
381   // Put value handles on all of the indirect calls and return the number of
382   // direct calls for each function in the SCC.
383   auto ScanSCC = [](LazyCallGraph::SCC &C,
384                     SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) {
385     assert(CallHandles.empty() && "Must start with a clear set of handles.");
386 
387     SmallDenseMap<Function *, CallCount> CallCounts;
388     CallCount CountLocal = {0, 0};
389     for (LazyCallGraph::Node &N : C) {
390       CallCount &Count =
391           CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal))
392               .first->second;
393       for (Instruction &I : instructions(N.getFunction()))
394         if (auto *CB = dyn_cast<CallBase>(&I)) {
395           if (CB->getCalledFunction()) {
396             ++Count.Direct;
397           } else {
398             ++Count.Indirect;
399             CallHandles.insert({CB, WeakTrackingVH(CB)});
400           }
401         }
402     }
403 
404     return CallCounts;
405   };
406 
407   UR.IndirectVHs.clear();
408   // Populate the initial call handles and get the initial call counts.
409   auto CallCounts = ScanSCC(*C, UR.IndirectVHs);
410 
411   for (int Iteration = 0;; ++Iteration) {
412     if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
413       continue;
414 
415     PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR);
416 
417     if (UR.InvalidatedSCCs.count(C))
418       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
419     else
420       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
421 
422     // If the SCC structure has changed, bail immediately and let the outer
423     // CGSCC layer handle any iteration to reflect the refined structure.
424     if (UR.UpdatedC && UR.UpdatedC != C) {
425       PA.intersect(std::move(PassPA));
426       break;
427     }
428 
429     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
430     // current SCC may simply need to be skipped if invalid.
431     if (UR.InvalidatedSCCs.count(C)) {
432       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
433       break;
434     }
435 
436     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
437 
438     // Check whether any of the handles were devirtualized.
439     bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool {
440       if (P.second) {
441         if (CallBase *CB = dyn_cast<CallBase>(P.second)) {
442           if (CB->getCalledFunction()) {
443             LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n");
444             return true;
445           }
446         }
447       }
448       return false;
449     });
450 
451     // Rescan to build up a new set of handles and count how many direct
452     // calls remain. If we decide to iterate, this also sets up the input to
453     // the next iteration.
454     UR.IndirectVHs.clear();
455     auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs);
456 
457     // If we haven't found an explicit devirtualization already see if we
458     // have decreased the number of indirect calls and increased the number
459     // of direct calls for any function in the SCC. This can be fooled by all
460     // manner of transformations such as DCE and other things, but seems to
461     // work well in practice.
462     if (!Devirt)
463       // Iterate over the keys in NewCallCounts, if Function also exists in
464       // CallCounts, make the check below.
465       for (auto &Pair : NewCallCounts) {
466         auto &CallCountNew = Pair.second;
467         auto CountIt = CallCounts.find(Pair.first);
468         if (CountIt != CallCounts.end()) {
469           const auto &CallCountOld = CountIt->second;
470           if (CallCountOld.Indirect > CallCountNew.Indirect &&
471               CallCountOld.Direct < CallCountNew.Direct) {
472             Devirt = true;
473             break;
474           }
475         }
476       }
477 
478     if (!Devirt) {
479       PA.intersect(std::move(PassPA));
480       break;
481     }
482 
483     // Otherwise, if we've already hit our max, we're done.
484     if (Iteration >= MaxIterations) {
485       if (AbortOnMaxDevirtIterationsReached)
486         report_fatal_error("Max devirtualization iterations reached");
487       LLVM_DEBUG(
488           dbgs() << "Found another devirtualization after hitting the max "
489                     "number of repetitions ("
490                  << MaxIterations << ") on SCC: " << *C << "\n");
491       PA.intersect(std::move(PassPA));
492       break;
493     }
494 
495     LLVM_DEBUG(
496         dbgs() << "Repeating an SCC pass after finding a devirtualization in: "
497                << *C << "\n");
498 
499     // Move over the new call counts in preparation for iterating.
500     CallCounts = std::move(NewCallCounts);
501 
502     // Update the analysis manager with each run and intersect the total set
503     // of preserved analyses so we're ready to iterate.
504     AM.invalidate(*C, PassPA);
505 
506     PA.intersect(std::move(PassPA));
507   }
508 
509   // Note that we don't add any preserved entries here unlike a more normal
510   // "pass manager" because we only handle invalidation *between* iterations,
511   // not after the last iteration.
512   return PA;
513 }
514 
515 PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C,
516                                                   CGSCCAnalysisManager &AM,
517                                                   LazyCallGraph &CG,
518                                                   CGSCCUpdateResult &UR) {
519   // Setup the function analysis manager from its proxy.
520   FunctionAnalysisManager &FAM =
521       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
522 
523   SmallVector<LazyCallGraph::Node *, 4> Nodes;
524   for (LazyCallGraph::Node &N : C)
525     Nodes.push_back(&N);
526 
527   // The SCC may get split while we are optimizing functions due to deleting
528   // edges. If this happens, the current SCC can shift, so keep track of
529   // a pointer we can overwrite.
530   LazyCallGraph::SCC *CurrentC = &C;
531 
532   LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n");
533 
534   PreservedAnalyses PA = PreservedAnalyses::all();
535   for (LazyCallGraph::Node *N : Nodes) {
536     // Skip nodes from other SCCs. These may have been split out during
537     // processing. We'll eventually visit those SCCs and pick up the nodes
538     // there.
539     if (CG.lookupSCC(*N) != CurrentC)
540       continue;
541 
542     Function &F = N->getFunction();
543 
544     if (NoRerun && FAM.getCachedResult<ShouldNotRunFunctionPassesAnalysis>(F))
545       continue;
546 
547     PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F);
548     if (!PI.runBeforePass<Function>(*Pass, F))
549       continue;
550 
551     PreservedAnalyses PassPA;
552     {
553       TimeTraceScope TimeScope(Pass->name());
554       PassPA = Pass->run(F, FAM);
555     }
556 
557     PI.runAfterPass<Function>(*Pass, F, PassPA);
558 
559     // We know that the function pass couldn't have invalidated any other
560     // function's analyses (that's the contract of a function pass), so
561     // directly handle the function analysis manager's invalidation here.
562     FAM.invalidate(F, EagerlyInvalidate ? PreservedAnalyses::none() : PassPA);
563     if (NoRerun)
564       (void)FAM.getResult<ShouldNotRunFunctionPassesAnalysis>(F);
565 
566     // Then intersect the preserved set so that invalidation of module
567     // analyses will eventually occur when the module pass completes.
568     PA.intersect(std::move(PassPA));
569 
570     // If the call graph hasn't been preserved, update it based on this
571     // function pass. This may also update the current SCC to point to
572     // a smaller, more refined SCC.
573     auto PAC = PA.getChecker<LazyCallGraphAnalysis>();
574     if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) {
575       CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N,
576                                                             AM, UR, FAM);
577       assert(CG.lookupSCC(*N) == CurrentC &&
578              "Current SCC not updated to the SCC containing the current node!");
579     }
580   }
581 
582   // By definition we preserve the proxy. And we preserve all analyses on
583   // Functions. This precludes *any* invalidation of function analyses by the
584   // proxy, but that's OK because we've taken care to invalidate analyses in
585   // the function analysis manager incrementally above.
586   PA.preserveSet<AllAnalysesOn<Function>>();
587   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
588 
589   // We've also ensured that we updated the call graph along the way.
590   PA.preserve<LazyCallGraphAnalysis>();
591 
592   return PA;
593 }
594 
595 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
596     Module &M, const PreservedAnalyses &PA,
597     ModuleAnalysisManager::Invalidator &Inv) {
598   // If literally everything is preserved, we're done.
599   if (PA.areAllPreserved())
600     return false; // This is still a valid proxy.
601 
602   // If this proxy or the call graph is going to be invalidated, we also need
603   // to clear all the keys coming from that analysis.
604   //
605   // We also directly invalidate the FAM's module proxy if necessary, and if
606   // that proxy isn't preserved we can't preserve this proxy either. We rely on
607   // it to handle module -> function analysis invalidation in the face of
608   // structural changes and so if it's unavailable we conservatively clear the
609   // entire SCC layer as well rather than trying to do invalidation ourselves.
610   auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
611   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
612       Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
613       Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
614     InnerAM->clear();
615 
616     // And the proxy itself should be marked as invalid so that we can observe
617     // the new call graph. This isn't strictly necessary because we cheat
618     // above, but is still useful.
619     return true;
620   }
621 
622   // Directly check if the relevant set is preserved so we can short circuit
623   // invalidating SCCs below.
624   bool AreSCCAnalysesPreserved =
625       PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
626 
627   // Ok, we have a graph, so we can propagate the invalidation down into it.
628   G->buildRefSCCs();
629   for (auto &RC : G->postorder_ref_sccs())
630     for (auto &C : RC) {
631       Optional<PreservedAnalyses> InnerPA;
632 
633       // Check to see whether the preserved set needs to be adjusted based on
634       // module-level analysis invalidation triggering deferred invalidation
635       // for this SCC.
636       if (auto *OuterProxy =
637               InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
638         for (const auto &OuterInvalidationPair :
639              OuterProxy->getOuterInvalidations()) {
640           AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
641           const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
642           if (Inv.invalidate(OuterAnalysisID, M, PA)) {
643             if (!InnerPA)
644               InnerPA = PA;
645             for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
646               InnerPA->abandon(InnerAnalysisID);
647           }
648         }
649 
650       // Check if we needed a custom PA set. If so we'll need to run the inner
651       // invalidation.
652       if (InnerPA) {
653         InnerAM->invalidate(C, *InnerPA);
654         continue;
655       }
656 
657       // Otherwise we only need to do invalidation if the original PA set didn't
658       // preserve all SCC analyses.
659       if (!AreSCCAnalysesPreserved)
660         InnerAM->invalidate(C, PA);
661     }
662 
663   // Return false to indicate that this result is still a valid proxy.
664   return false;
665 }
666 
667 template <>
668 CGSCCAnalysisManagerModuleProxy::Result
669 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
670   // Force the Function analysis manager to also be available so that it can
671   // be accessed in an SCC analysis and proxied onward to function passes.
672   // FIXME: It is pretty awkward to just drop the result here and assert that
673   // we can find it again later.
674   (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
675 
676   return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
677 }
678 
679 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
680 
681 FunctionAnalysisManagerCGSCCProxy::Result
682 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
683                                        CGSCCAnalysisManager &AM,
684                                        LazyCallGraph &CG) {
685   // Note: unconditionally getting checking that the proxy exists may get it at
686   // this point. There are cases when this is being run unnecessarily, but
687   // it is cheap and having the assertion in place is more valuable.
688   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
689   Module &M = *C.begin()->getFunction().getParent();
690   bool ProxyExists =
691       MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M);
692   assert(ProxyExists &&
693          "The CGSCC pass manager requires that the FAM module proxy is run "
694          "on the module prior to entering the CGSCC walk");
695   (void)ProxyExists;
696 
697   // We just return an empty result. The caller will use the updateFAM interface
698   // to correctly register the relevant FunctionAnalysisManager based on the
699   // context in which this proxy is run.
700   return Result();
701 }
702 
703 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
704     LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
705     CGSCCAnalysisManager::Invalidator &Inv) {
706   // If literally everything is preserved, we're done.
707   if (PA.areAllPreserved())
708     return false; // This is still a valid proxy.
709 
710   // All updates to preserve valid results are done below, so we don't need to
711   // invalidate this proxy.
712   //
713   // Note that in order to preserve this proxy, a module pass must ensure that
714   // the FAM has been completely updated to handle the deletion of functions.
715   // Specifically, any FAM-cached results for those functions need to have been
716   // forcibly cleared. When preserved, this proxy will only invalidate results
717   // cached on functions *still in the module* at the end of the module pass.
718   auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
719   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
720     for (LazyCallGraph::Node &N : C)
721       FAM->invalidate(N.getFunction(), PA);
722 
723     return false;
724   }
725 
726   // Directly check if the relevant set is preserved.
727   bool AreFunctionAnalysesPreserved =
728       PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
729 
730   // Now walk all the functions to see if any inner analysis invalidation is
731   // necessary.
732   for (LazyCallGraph::Node &N : C) {
733     Function &F = N.getFunction();
734     Optional<PreservedAnalyses> FunctionPA;
735 
736     // Check to see whether the preserved set needs to be pruned based on
737     // SCC-level analysis invalidation that triggers deferred invalidation
738     // registered with the outer analysis manager proxy for this function.
739     if (auto *OuterProxy =
740             FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
741       for (const auto &OuterInvalidationPair :
742            OuterProxy->getOuterInvalidations()) {
743         AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
744         const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
745         if (Inv.invalidate(OuterAnalysisID, C, PA)) {
746           if (!FunctionPA)
747             FunctionPA = PA;
748           for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
749             FunctionPA->abandon(InnerAnalysisID);
750         }
751       }
752 
753     // Check if we needed a custom PA set, and if so we'll need to run the
754     // inner invalidation.
755     if (FunctionPA) {
756       FAM->invalidate(F, *FunctionPA);
757       continue;
758     }
759 
760     // Otherwise we only need to do invalidation if the original PA set didn't
761     // preserve all function analyses.
762     if (!AreFunctionAnalysesPreserved)
763       FAM->invalidate(F, PA);
764   }
765 
766   // Return false to indicate that this result is still a valid proxy.
767   return false;
768 }
769 
770 } // end namespace llvm
771 
772 /// When a new SCC is created for the graph we first update the
773 /// FunctionAnalysisManager in the Proxy's result.
774 /// As there might be function analysis results cached for the functions now in
775 /// that SCC, two forms of  updates are required.
776 ///
777 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
778 /// created so that any subsequent invalidation events to the SCC are
779 /// propagated to the function analysis results cached for functions within it.
780 ///
781 /// Second, if any of the functions within the SCC have analysis results with
782 /// outer analysis dependencies, then those dependencies would point to the
783 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
784 /// function analyses so that they don't retain stale handles.
785 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
786                                          LazyCallGraph &G,
787                                          CGSCCAnalysisManager &AM,
788                                          FunctionAnalysisManager &FAM) {
789   AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM);
790 
791   // Now walk the functions in this SCC and invalidate any function analysis
792   // results that might have outer dependencies on an SCC analysis.
793   for (LazyCallGraph::Node &N : C) {
794     Function &F = N.getFunction();
795 
796     auto *OuterProxy =
797         FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
798     if (!OuterProxy)
799       // No outer analyses were queried, nothing to do.
800       continue;
801 
802     // Forcibly abandon all the inner analyses with dependencies, but
803     // invalidate nothing else.
804     auto PA = PreservedAnalyses::all();
805     for (const auto &OuterInvalidationPair :
806          OuterProxy->getOuterInvalidations()) {
807       const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
808       for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
809         PA.abandon(InnerAnalysisID);
810     }
811 
812     // Now invalidate anything we found.
813     FAM.invalidate(F, PA);
814   }
815 }
816 
817 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
818 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
819 /// added SCCs.
820 ///
821 /// The range of new SCCs must be in postorder already. The SCC they were split
822 /// out of must be provided as \p C. The current node being mutated and
823 /// triggering updates must be passed as \p N.
824 ///
825 /// This function returns the SCC containing \p N. This will be either \p C if
826 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
827 template <typename SCCRangeT>
828 static LazyCallGraph::SCC *
829 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
830                        LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
831                        CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
832   using SCC = LazyCallGraph::SCC;
833 
834   if (NewSCCRange.empty())
835     return C;
836 
837   // Add the current SCC to the worklist as its shape has changed.
838   UR.CWorklist.insert(C);
839   LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
840                     << "\n");
841 
842   SCC *OldC = C;
843 
844   // Update the current SCC. Note that if we have new SCCs, this must actually
845   // change the SCC.
846   assert(C != &*NewSCCRange.begin() &&
847          "Cannot insert new SCCs without changing current SCC!");
848   C = &*NewSCCRange.begin();
849   assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
850 
851   // If we had a cached FAM proxy originally, we will want to create more of
852   // them for each SCC that was split off.
853   FunctionAnalysisManager *FAM = nullptr;
854   if (auto *FAMProxy =
855           AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC))
856     FAM = &FAMProxy->getManager();
857 
858   // We need to propagate an invalidation call to all but the newly current SCC
859   // because the outer pass manager won't do that for us after splitting them.
860   // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
861   // there are preserved analysis we can avoid invalidating them here for
862   // split-off SCCs.
863   // We know however that this will preserve any FAM proxy so go ahead and mark
864   // that.
865   auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
866   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
867   AM.invalidate(*OldC, PA);
868 
869   // Ensure the now-current SCC's function analyses are updated.
870   if (FAM)
871     updateNewSCCFunctionAnalyses(*C, G, AM, *FAM);
872 
873   for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) {
874     assert(C != &NewC && "No need to re-visit the current SCC!");
875     assert(OldC != &NewC && "Already handled the original SCC!");
876     UR.CWorklist.insert(&NewC);
877     LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
878 
879     // Ensure new SCCs' function analyses are updated.
880     if (FAM)
881       updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM);
882 
883     // Also propagate a normal invalidation to the new SCC as only the current
884     // will get one from the pass manager infrastructure.
885     AM.invalidate(NewC, PA);
886   }
887   return C;
888 }
889 
890 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass(
891     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
892     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
893     FunctionAnalysisManager &FAM, bool FunctionPass) {
894   using Node = LazyCallGraph::Node;
895   using Edge = LazyCallGraph::Edge;
896   using SCC = LazyCallGraph::SCC;
897   using RefSCC = LazyCallGraph::RefSCC;
898 
899   RefSCC &InitialRC = InitialC.getOuterRefSCC();
900   SCC *C = &InitialC;
901   RefSCC *RC = &InitialRC;
902   Function &F = N.getFunction();
903 
904   // Walk the function body and build up the set of retained, promoted, and
905   // demoted edges.
906   SmallVector<Constant *, 16> Worklist;
907   SmallPtrSet<Constant *, 16> Visited;
908   SmallPtrSet<Node *, 16> RetainedEdges;
909   SmallSetVector<Node *, 4> PromotedRefTargets;
910   SmallSetVector<Node *, 4> DemotedCallTargets;
911   SmallSetVector<Node *, 4> NewCallEdges;
912   SmallSetVector<Node *, 4> NewRefEdges;
913 
914   // First walk the function and handle all called functions. We do this first
915   // because if there is a single call edge, whether there are ref edges is
916   // irrelevant.
917   for (Instruction &I : instructions(F)) {
918     if (auto *CB = dyn_cast<CallBase>(&I)) {
919       if (Function *Callee = CB->getCalledFunction()) {
920         if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
921           Node *CalleeN = G.lookup(*Callee);
922           assert(CalleeN &&
923                  "Visited function should already have an associated node");
924           Edge *E = N->lookup(*CalleeN);
925           assert((E || !FunctionPass) &&
926                  "No function transformations should introduce *new* "
927                  "call edges! Any new calls should be modeled as "
928                  "promoted existing ref edges!");
929           bool Inserted = RetainedEdges.insert(CalleeN).second;
930           (void)Inserted;
931           assert(Inserted && "We should never visit a function twice.");
932           if (!E)
933             NewCallEdges.insert(CalleeN);
934           else if (!E->isCall())
935             PromotedRefTargets.insert(CalleeN);
936         }
937       } else {
938         // We can miss devirtualization if an indirect call is created then
939         // promoted before updateCGAndAnalysisManagerForPass runs.
940         auto *Entry = UR.IndirectVHs.find(CB);
941         if (Entry == UR.IndirectVHs.end())
942           UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)});
943         else if (!Entry->second)
944           Entry->second = WeakTrackingVH(CB);
945       }
946     }
947   }
948 
949   // Now walk all references.
950   for (Instruction &I : instructions(F))
951     for (Value *Op : I.operand_values())
952       if (auto *OpC = dyn_cast<Constant>(Op))
953         if (Visited.insert(OpC).second)
954           Worklist.push_back(OpC);
955 
956   auto VisitRef = [&](Function &Referee) {
957     Node *RefereeN = G.lookup(Referee);
958     assert(RefereeN &&
959            "Visited function should already have an associated node");
960     Edge *E = N->lookup(*RefereeN);
961     assert((E || !FunctionPass) &&
962            "No function transformations should introduce *new* ref "
963            "edges! Any new ref edges would require IPO which "
964            "function passes aren't allowed to do!");
965     bool Inserted = RetainedEdges.insert(RefereeN).second;
966     (void)Inserted;
967     assert(Inserted && "We should never visit a function twice.");
968     if (!E)
969       NewRefEdges.insert(RefereeN);
970     else if (E->isCall())
971       DemotedCallTargets.insert(RefereeN);
972   };
973   LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
974 
975   // Handle new ref edges.
976   for (Node *RefTarget : NewRefEdges) {
977     SCC &TargetC = *G.lookupSCC(*RefTarget);
978     RefSCC &TargetRC = TargetC.getOuterRefSCC();
979     (void)TargetRC;
980     // TODO: This only allows trivial edges to be added for now.
981 #ifdef EXPENSIVE_CHECKS
982     assert((RC == &TargetRC ||
983            RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!");
984 #endif
985     RC->insertTrivialRefEdge(N, *RefTarget);
986   }
987 
988   // Handle new call edges.
989   for (Node *CallTarget : NewCallEdges) {
990     SCC &TargetC = *G.lookupSCC(*CallTarget);
991     RefSCC &TargetRC = TargetC.getOuterRefSCC();
992     (void)TargetRC;
993     // TODO: This only allows trivial edges to be added for now.
994 #ifdef EXPENSIVE_CHECKS
995     assert((RC == &TargetRC ||
996            RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!");
997 #endif
998     // Add a trivial ref edge to be promoted later on alongside
999     // PromotedRefTargets.
1000     RC->insertTrivialRefEdge(N, *CallTarget);
1001   }
1002 
1003   // Include synthetic reference edges to known, defined lib functions.
1004   for (auto *LibFn : G.getLibFunctions())
1005     // While the list of lib functions doesn't have repeats, don't re-visit
1006     // anything handled above.
1007     if (!Visited.count(LibFn))
1008       VisitRef(*LibFn);
1009 
1010   // First remove all of the edges that are no longer present in this function.
1011   // The first step makes these edges uniformly ref edges and accumulates them
1012   // into a separate data structure so removal doesn't invalidate anything.
1013   SmallVector<Node *, 4> DeadTargets;
1014   for (Edge &E : *N) {
1015     if (RetainedEdges.count(&E.getNode()))
1016       continue;
1017 
1018     SCC &TargetC = *G.lookupSCC(E.getNode());
1019     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1020     if (&TargetRC == RC && E.isCall()) {
1021       if (C != &TargetC) {
1022         // For separate SCCs this is trivial.
1023         RC->switchTrivialInternalEdgeToRef(N, E.getNode());
1024       } else {
1025         // Now update the call graph.
1026         C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
1027                                    G, N, C, AM, UR);
1028       }
1029     }
1030 
1031     // Now that this is ready for actual removal, put it into our list.
1032     DeadTargets.push_back(&E.getNode());
1033   }
1034   // Remove the easy cases quickly and actually pull them out of our list.
1035   llvm::erase_if(DeadTargets, [&](Node *TargetN) {
1036     SCC &TargetC = *G.lookupSCC(*TargetN);
1037     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1038 
1039     // We can't trivially remove internal targets, so skip
1040     // those.
1041     if (&TargetRC == RC)
1042       return false;
1043 
1044     LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '"
1045                       << *TargetN << "'\n");
1046     RC->removeOutgoingEdge(N, *TargetN);
1047     return true;
1048   });
1049 
1050   // Now do a batch removal of the internal ref edges left.
1051   auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
1052   if (!NewRefSCCs.empty()) {
1053     // The old RefSCC is dead, mark it as such.
1054     UR.InvalidatedRefSCCs.insert(RC);
1055 
1056     // Note that we don't bother to invalidate analyses as ref-edge
1057     // connectivity is not really observable in any way and is intended
1058     // exclusively to be used for ordering of transforms rather than for
1059     // analysis conclusions.
1060 
1061     // Update RC to the "bottom".
1062     assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
1063     RC = &C->getOuterRefSCC();
1064     assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
1065 
1066     // The RC worklist is in reverse postorder, so we enqueue the new ones in
1067     // RPO except for the one which contains the source node as that is the
1068     // "bottom" we will continue processing in the bottom-up walk.
1069     assert(NewRefSCCs.front() == RC &&
1070            "New current RefSCC not first in the returned list!");
1071     for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) {
1072       assert(NewRC != RC && "Should not encounter the current RefSCC further "
1073                             "in the postorder list of new RefSCCs.");
1074       UR.RCWorklist.insert(NewRC);
1075       LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
1076                         << *NewRC << "\n");
1077     }
1078   }
1079 
1080   // Next demote all the call edges that are now ref edges. This helps make
1081   // the SCCs small which should minimize the work below as we don't want to
1082   // form cycles that this would break.
1083   for (Node *RefTarget : DemotedCallTargets) {
1084     SCC &TargetC = *G.lookupSCC(*RefTarget);
1085     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1086 
1087     // The easy case is when the target RefSCC is not this RefSCC. This is
1088     // only supported when the target RefSCC is a child of this RefSCC.
1089     if (&TargetRC != RC) {
1090 #ifdef EXPENSIVE_CHECKS
1091       assert(RC->isAncestorOf(TargetRC) &&
1092              "Cannot potentially form RefSCC cycles here!");
1093 #endif
1094       RC->switchOutgoingEdgeToRef(N, *RefTarget);
1095       LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
1096                         << "' to '" << *RefTarget << "'\n");
1097       continue;
1098     }
1099 
1100     // We are switching an internal call edge to a ref edge. This may split up
1101     // some SCCs.
1102     if (C != &TargetC) {
1103       // For separate SCCs this is trivial.
1104       RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
1105       continue;
1106     }
1107 
1108     // Now update the call graph.
1109     C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
1110                                C, AM, UR);
1111   }
1112 
1113   // We added a ref edge earlier for new call edges, promote those to call edges
1114   // alongside PromotedRefTargets.
1115   for (Node *E : NewCallEdges)
1116     PromotedRefTargets.insert(E);
1117 
1118   // Now promote ref edges into call edges.
1119   for (Node *CallTarget : PromotedRefTargets) {
1120     SCC &TargetC = *G.lookupSCC(*CallTarget);
1121     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1122 
1123     // The easy case is when the target RefSCC is not this RefSCC. This is
1124     // only supported when the target RefSCC is a child of this RefSCC.
1125     if (&TargetRC != RC) {
1126 #ifdef EXPENSIVE_CHECKS
1127       assert(RC->isAncestorOf(TargetRC) &&
1128              "Cannot potentially form RefSCC cycles here!");
1129 #endif
1130       RC->switchOutgoingEdgeToCall(N, *CallTarget);
1131       LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
1132                         << "' to '" << *CallTarget << "'\n");
1133       continue;
1134     }
1135     LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
1136                       << N << "' to '" << *CallTarget << "'\n");
1137 
1138     // Otherwise we are switching an internal ref edge to a call edge. This
1139     // may merge away some SCCs, and we add those to the UpdateResult. We also
1140     // need to make sure to update the worklist in the event SCCs have moved
1141     // before the current one in the post-order sequence
1142     bool HasFunctionAnalysisProxy = false;
1143     auto InitialSCCIndex = RC->find(*C) - RC->begin();
1144     bool FormedCycle = RC->switchInternalEdgeToCall(
1145         N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
1146           for (SCC *MergedC : MergedSCCs) {
1147             assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
1148 
1149             HasFunctionAnalysisProxy |=
1150                 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
1151                     *MergedC) != nullptr;
1152 
1153             // Mark that this SCC will no longer be valid.
1154             UR.InvalidatedSCCs.insert(MergedC);
1155 
1156             // FIXME: We should really do a 'clear' here to forcibly release
1157             // memory, but we don't have a good way of doing that and
1158             // preserving the function analyses.
1159             auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1160             PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1161             AM.invalidate(*MergedC, PA);
1162           }
1163         });
1164 
1165     // If we formed a cycle by creating this call, we need to update more data
1166     // structures.
1167     if (FormedCycle) {
1168       C = &TargetC;
1169       assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
1170 
1171       // If one of the invalidated SCCs had a cached proxy to a function
1172       // analysis manager, we need to create a proxy in the new current SCC as
1173       // the invalidated SCCs had their functions moved.
1174       if (HasFunctionAnalysisProxy)
1175         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM);
1176 
1177       // Any analyses cached for this SCC are no longer precise as the shape
1178       // has changed by introducing this cycle. However, we have taken care to
1179       // update the proxies so it remains valide.
1180       auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1181       PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1182       AM.invalidate(*C, PA);
1183     }
1184     auto NewSCCIndex = RC->find(*C) - RC->begin();
1185     // If we have actually moved an SCC to be topologically "below" the current
1186     // one due to merging, we will need to revisit the current SCC after
1187     // visiting those moved SCCs.
1188     //
1189     // It is critical that we *do not* revisit the current SCC unless we
1190     // actually move SCCs in the process of merging because otherwise we may
1191     // form a cycle where an SCC is split apart, merged, split, merged and so
1192     // on infinitely.
1193     if (InitialSCCIndex < NewSCCIndex) {
1194       // Put our current SCC back onto the worklist as we'll visit other SCCs
1195       // that are now definitively ordered prior to the current one in the
1196       // post-order sequence, and may end up observing more precise context to
1197       // optimize the current SCC.
1198       UR.CWorklist.insert(C);
1199       LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
1200                         << "\n");
1201       // Enqueue in reverse order as we pop off the back of the worklist.
1202       for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
1203                                                   RC->begin() + NewSCCIndex))) {
1204         UR.CWorklist.insert(&MovedC);
1205         LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
1206                           << MovedC << "\n");
1207       }
1208     }
1209   }
1210 
1211   assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
1212   assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
1213   assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
1214 
1215   // Record the current SCC for higher layers of the CGSCC pass manager now that
1216   // all the updates have been applied.
1217   if (C != &InitialC)
1218     UR.UpdatedC = C;
1219 
1220   return *C;
1221 }
1222 
1223 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
1224     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1225     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1226     FunctionAnalysisManager &FAM) {
1227   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1228                                            /* FunctionPass */ true);
1229 }
1230 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass(
1231     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1232     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1233     FunctionAnalysisManager &FAM) {
1234   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1235                                            /* FunctionPass */ false);
1236 }
1237