xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/CGSCCPassManager.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/Optional.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/LazyCallGraph.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/InstIterator.h"
20 #include "llvm/IR/Instruction.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/IR/PassManagerImpl.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/TimeProfiler.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <iterator>
33 
34 #define DEBUG_TYPE "cgscc"
35 
36 using namespace llvm;
37 
38 // Explicit template instantiations and specialization definitions for core
39 // template typedefs.
40 namespace llvm {
41 
42 static cl::opt<bool> AbortOnMaxDevirtIterationsReached(
43     "abort-on-max-devirt-iterations-reached",
44     cl::desc("Abort when the max iterations for devirtualization CGSCC repeat "
45              "pass is reached"));
46 
47 // Explicit instantiations for the core proxy templates.
48 template class AllAnalysesOn<LazyCallGraph::SCC>;
49 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
50 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
51                            LazyCallGraph &, CGSCCUpdateResult &>;
52 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
53 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
54                                          LazyCallGraph::SCC, LazyCallGraph &>;
55 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
56 
57 /// Explicitly specialize the pass manager run method to handle call graph
58 /// updates.
59 template <>
60 PreservedAnalyses
61 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
62             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
63                                       CGSCCAnalysisManager &AM,
64                                       LazyCallGraph &G, CGSCCUpdateResult &UR) {
65   // Request PassInstrumentation from analysis manager, will use it to run
66   // instrumenting callbacks for the passes later.
67   PassInstrumentation PI =
68       AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
69 
70   PreservedAnalyses PA = PreservedAnalyses::all();
71 
72   // The SCC may be refined while we are running passes over it, so set up
73   // a pointer that we can update.
74   LazyCallGraph::SCC *C = &InitialC;
75 
76   // Get Function analysis manager from its proxy.
77   FunctionAnalysisManager &FAM =
78       AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager();
79 
80   for (auto &Pass : Passes) {
81     // Check the PassInstrumentation's BeforePass callbacks before running the
82     // pass, skip its execution completely if asked to (callback returns false).
83     if (!PI.runBeforePass(*Pass, *C))
84       continue;
85 
86     PreservedAnalyses PassPA;
87     {
88       TimeTraceScope TimeScope(Pass->name());
89       PassPA = Pass->run(*C, AM, G, UR);
90     }
91 
92     if (UR.InvalidatedSCCs.count(C))
93       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
94     else
95       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
96 
97     // Update the SCC if necessary.
98     C = UR.UpdatedC ? UR.UpdatedC : C;
99     if (UR.UpdatedC) {
100       // If C is updated, also create a proxy and update FAM inside the result.
101       auto *ResultFAMCP =
102           &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
103       ResultFAMCP->updateFAM(FAM);
104     }
105 
106     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
107     // current SCC may simply need to be skipped if invalid.
108     if (UR.InvalidatedSCCs.count(C)) {
109       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
110       break;
111     }
112     // Check that we didn't miss any update scenario.
113     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
114 
115     // Update the analysis manager as each pass runs and potentially
116     // invalidates analyses.
117     AM.invalidate(*C, PassPA);
118 
119     // Finally, we intersect the final preserved analyses to compute the
120     // aggregate preserved set for this pass manager.
121     PA.intersect(std::move(PassPA));
122 
123     // FIXME: Historically, the pass managers all called the LLVM context's
124     // yield function here. We don't have a generic way to acquire the
125     // context and it isn't yet clear what the right pattern is for yielding
126     // in the new pass manager so it is currently omitted.
127     // ...getContext().yield();
128   }
129 
130   // Before we mark all of *this* SCC's analyses as preserved below, intersect
131   // this with the cross-SCC preserved analysis set. This is used to allow
132   // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
133   // for them.
134   UR.CrossSCCPA.intersect(PA);
135 
136   // Invalidation was handled after each pass in the above loop for the current
137   // SCC. Therefore, the remaining analysis results in the AnalysisManager are
138   // preserved. We mark this with a set so that we don't need to inspect each
139   // one individually.
140   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
141 
142   return PA;
143 }
144 
145 PreservedAnalyses
146 ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) {
147   // Setup the CGSCC analysis manager from its proxy.
148   CGSCCAnalysisManager &CGAM =
149       AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager();
150 
151   // Get the call graph for this module.
152   LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M);
153 
154   // Get Function analysis manager from its proxy.
155   FunctionAnalysisManager &FAM =
156       AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager();
157 
158   // We keep worklists to allow us to push more work onto the pass manager as
159   // the passes are run.
160   SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist;
161   SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist;
162 
163   // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
164   // iterating off the worklists.
165   SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet;
166   SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet;
167 
168   SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
169       InlinedInternalEdges;
170 
171   CGSCCUpdateResult UR = {
172       RCWorklist, CWorklist, InvalidRefSCCSet,         InvalidSCCSet,
173       nullptr,    nullptr,   PreservedAnalyses::all(), InlinedInternalEdges,
174       {}};
175 
176   // Request PassInstrumentation from analysis manager, will use it to run
177   // instrumenting callbacks for the passes later.
178   PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
179 
180   PreservedAnalyses PA = PreservedAnalyses::all();
181   CG.buildRefSCCs();
182   for (auto RCI = CG.postorder_ref_scc_begin(),
183             RCE = CG.postorder_ref_scc_end();
184        RCI != RCE;) {
185     assert(RCWorklist.empty() &&
186            "Should always start with an empty RefSCC worklist");
187     // The postorder_ref_sccs range we are walking is lazily constructed, so
188     // we only push the first one onto the worklist. The worklist allows us
189     // to capture *new* RefSCCs created during transformations.
190     //
191     // We really want to form RefSCCs lazily because that makes them cheaper
192     // to update as the program is simplified and allows us to have greater
193     // cache locality as forming a RefSCC touches all the parts of all the
194     // functions within that RefSCC.
195     //
196     // We also eagerly increment the iterator to the next position because
197     // the CGSCC passes below may delete the current RefSCC.
198     RCWorklist.insert(&*RCI++);
199 
200     do {
201       LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val();
202       if (InvalidRefSCCSet.count(RC)) {
203         LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
204         continue;
205       }
206 
207       assert(CWorklist.empty() &&
208              "Should always start with an empty SCC worklist");
209 
210       LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
211                         << "\n");
212 
213       // The top of the worklist may *also* be the same SCC we just ran over
214       // (and invalidated for). Keep track of that last SCC we processed due
215       // to SCC update to avoid redundant processing when an SCC is both just
216       // updated itself and at the top of the worklist.
217       LazyCallGraph::SCC *LastUpdatedC = nullptr;
218 
219       // Push the initial SCCs in reverse post-order as we'll pop off the
220       // back and so see this in post-order.
221       for (LazyCallGraph::SCC &C : llvm::reverse(*RC))
222         CWorklist.insert(&C);
223 
224       do {
225         LazyCallGraph::SCC *C = CWorklist.pop_back_val();
226         // Due to call graph mutations, we may have invalid SCCs or SCCs from
227         // other RefSCCs in the worklist. The invalid ones are dead and the
228         // other RefSCCs should be queued above, so we just need to skip both
229         // scenarios here.
230         if (InvalidSCCSet.count(C)) {
231           LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
232           continue;
233         }
234         if (LastUpdatedC == C) {
235           LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n");
236           continue;
237         }
238         if (&C->getOuterRefSCC() != RC) {
239           LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other "
240                                "RefSCC...\n");
241           continue;
242         }
243 
244         // Ensure we can proxy analysis updates from the CGSCC analysis manager
245         // into the the Function analysis manager by getting a proxy here.
246         // This also needs to update the FunctionAnalysisManager, as this may be
247         // the first time we see this SCC.
248         CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
249             FAM);
250 
251         // Each time we visit a new SCC pulled off the worklist,
252         // a transformation of a child SCC may have also modified this parent
253         // and invalidated analyses. So we invalidate using the update record's
254         // cross-SCC preserved set. This preserved set is intersected by any
255         // CGSCC pass that handles invalidation (primarily pass managers) prior
256         // to marking its SCC as preserved. That lets us track everything that
257         // might need invalidation across SCCs without excessive invalidations
258         // on a single SCC.
259         //
260         // This essentially allows SCC passes to freely invalidate analyses
261         // of any ancestor SCC. If this becomes detrimental to successfully
262         // caching analyses, we could force each SCC pass to manually
263         // invalidate the analyses for any SCCs other than themselves which
264         // are mutated. However, that seems to lose the robustness of the
265         // pass-manager driven invalidation scheme.
266         CGAM.invalidate(*C, UR.CrossSCCPA);
267 
268         do {
269           // Check that we didn't miss any update scenario.
270           assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!");
271           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
272           assert(&C->getOuterRefSCC() == RC &&
273                  "Processing an SCC in a different RefSCC!");
274 
275           LastUpdatedC = UR.UpdatedC;
276           UR.UpdatedRC = nullptr;
277           UR.UpdatedC = nullptr;
278 
279           // Check the PassInstrumentation's BeforePass callbacks before
280           // running the pass, skip its execution completely if asked to
281           // (callback returns false).
282           if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
283             continue;
284 
285           PreservedAnalyses PassPA;
286           {
287             TimeTraceScope TimeScope(Pass->name());
288             PassPA = Pass->run(*C, CGAM, CG, UR);
289           }
290 
291           if (UR.InvalidatedSCCs.count(C))
292             PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
293           else
294             PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
295 
296           // Update the SCC and RefSCC if necessary.
297           C = UR.UpdatedC ? UR.UpdatedC : C;
298           RC = UR.UpdatedRC ? UR.UpdatedRC : RC;
299 
300           if (UR.UpdatedC) {
301             // If we're updating the SCC, also update the FAM inside the proxy's
302             // result.
303             CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
304                 FAM);
305           }
306 
307           // If the CGSCC pass wasn't able to provide a valid updated SCC,
308           // the current SCC may simply need to be skipped if invalid.
309           if (UR.InvalidatedSCCs.count(C)) {
310             LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
311             break;
312           }
313           // Check that we didn't miss any update scenario.
314           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
315 
316           // We handle invalidating the CGSCC analysis manager's information
317           // for the (potentially updated) SCC here. Note that any other SCCs
318           // whose structure has changed should have been invalidated by
319           // whatever was updating the call graph. This SCC gets invalidated
320           // late as it contains the nodes that were actively being
321           // processed.
322           CGAM.invalidate(*C, PassPA);
323 
324           // Then intersect the preserved set so that invalidation of module
325           // analyses will eventually occur when the module pass completes.
326           // Also intersect with the cross-SCC preserved set to capture any
327           // cross-SCC invalidation.
328           UR.CrossSCCPA.intersect(PassPA);
329           PA.intersect(std::move(PassPA));
330 
331           // The pass may have restructured the call graph and refined the
332           // current SCC and/or RefSCC. We need to update our current SCC and
333           // RefSCC pointers to follow these. Also, when the current SCC is
334           // refined, re-run the SCC pass over the newly refined SCC in order
335           // to observe the most precise SCC model available. This inherently
336           // cannot cycle excessively as it only happens when we split SCCs
337           // apart, at most converging on a DAG of single nodes.
338           // FIXME: If we ever start having RefSCC passes, we'll want to
339           // iterate there too.
340           if (UR.UpdatedC)
341             LLVM_DEBUG(dbgs()
342                        << "Re-running SCC passes after a refinement of the "
343                           "current SCC: "
344                        << *UR.UpdatedC << "\n");
345 
346           // Note that both `C` and `RC` may at this point refer to deleted,
347           // invalid SCC and RefSCCs respectively. But we will short circuit
348           // the processing when we check them in the loop above.
349         } while (UR.UpdatedC);
350       } while (!CWorklist.empty());
351 
352       // We only need to keep internal inlined edge information within
353       // a RefSCC, clear it to save on space and let the next time we visit
354       // any of these functions have a fresh start.
355       InlinedInternalEdges.clear();
356     } while (!RCWorklist.empty());
357   }
358 
359   // By definition we preserve the call garph, all SCC analyses, and the
360   // analysis proxies by handling them above and in any nested pass managers.
361   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
362   PA.preserve<LazyCallGraphAnalysis>();
363   PA.preserve<CGSCCAnalysisManagerModuleProxy>();
364   PA.preserve<FunctionAnalysisManagerModuleProxy>();
365   return PA;
366 }
367 
368 PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC,
369                                              CGSCCAnalysisManager &AM,
370                                              LazyCallGraph &CG,
371                                              CGSCCUpdateResult &UR) {
372   PreservedAnalyses PA = PreservedAnalyses::all();
373   PassInstrumentation PI =
374       AM.getResult<PassInstrumentationAnalysis>(InitialC, CG);
375 
376   // The SCC may be refined while we are running passes over it, so set up
377   // a pointer that we can update.
378   LazyCallGraph::SCC *C = &InitialC;
379 
380   // Struct to track the counts of direct and indirect calls in each function
381   // of the SCC.
382   struct CallCount {
383     int Direct;
384     int Indirect;
385   };
386 
387   // Put value handles on all of the indirect calls and return the number of
388   // direct calls for each function in the SCC.
389   auto ScanSCC = [](LazyCallGraph::SCC &C,
390                     SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) {
391     assert(CallHandles.empty() && "Must start with a clear set of handles.");
392 
393     SmallDenseMap<Function *, CallCount> CallCounts;
394     CallCount CountLocal = {0, 0};
395     for (LazyCallGraph::Node &N : C) {
396       CallCount &Count =
397           CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal))
398               .first->second;
399       for (Instruction &I : instructions(N.getFunction()))
400         if (auto *CB = dyn_cast<CallBase>(&I)) {
401           if (CB->getCalledFunction()) {
402             ++Count.Direct;
403           } else {
404             ++Count.Indirect;
405             CallHandles.insert({CB, WeakTrackingVH(CB)});
406           }
407         }
408     }
409 
410     return CallCounts;
411   };
412 
413   UR.IndirectVHs.clear();
414   // Populate the initial call handles and get the initial call counts.
415   auto CallCounts = ScanSCC(*C, UR.IndirectVHs);
416 
417   for (int Iteration = 0;; ++Iteration) {
418     if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
419       continue;
420 
421     PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR);
422 
423     if (UR.InvalidatedSCCs.count(C))
424       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
425     else
426       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
427 
428     // If the SCC structure has changed, bail immediately and let the outer
429     // CGSCC layer handle any iteration to reflect the refined structure.
430     if (UR.UpdatedC && UR.UpdatedC != C) {
431       PA.intersect(std::move(PassPA));
432       break;
433     }
434 
435     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
436     // current SCC may simply need to be skipped if invalid.
437     if (UR.InvalidatedSCCs.count(C)) {
438       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
439       break;
440     }
441 
442     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
443 
444     // Check whether any of the handles were devirtualized.
445     bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool {
446       if (P.second) {
447         if (CallBase *CB = dyn_cast<CallBase>(P.second)) {
448           if (CB->getCalledFunction()) {
449             LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n");
450             return true;
451           }
452         }
453       }
454       return false;
455     });
456 
457     // Rescan to build up a new set of handles and count how many direct
458     // calls remain. If we decide to iterate, this also sets up the input to
459     // the next iteration.
460     UR.IndirectVHs.clear();
461     auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs);
462 
463     // If we haven't found an explicit devirtualization already see if we
464     // have decreased the number of indirect calls and increased the number
465     // of direct calls for any function in the SCC. This can be fooled by all
466     // manner of transformations such as DCE and other things, but seems to
467     // work well in practice.
468     if (!Devirt)
469       // Iterate over the keys in NewCallCounts, if Function also exists in
470       // CallCounts, make the check below.
471       for (auto &Pair : NewCallCounts) {
472         auto &CallCountNew = Pair.second;
473         auto CountIt = CallCounts.find(Pair.first);
474         if (CountIt != CallCounts.end()) {
475           const auto &CallCountOld = CountIt->second;
476           if (CallCountOld.Indirect > CallCountNew.Indirect &&
477               CallCountOld.Direct < CallCountNew.Direct) {
478             Devirt = true;
479             break;
480           }
481         }
482       }
483 
484     if (!Devirt) {
485       PA.intersect(std::move(PassPA));
486       break;
487     }
488 
489     // Otherwise, if we've already hit our max, we're done.
490     if (Iteration >= MaxIterations) {
491       if (AbortOnMaxDevirtIterationsReached)
492         report_fatal_error("Max devirtualization iterations reached");
493       LLVM_DEBUG(
494           dbgs() << "Found another devirtualization after hitting the max "
495                     "number of repetitions ("
496                  << MaxIterations << ") on SCC: " << *C << "\n");
497       PA.intersect(std::move(PassPA));
498       break;
499     }
500 
501     LLVM_DEBUG(
502         dbgs() << "Repeating an SCC pass after finding a devirtualization in: "
503                << *C << "\n");
504 
505     // Move over the new call counts in preparation for iterating.
506     CallCounts = std::move(NewCallCounts);
507 
508     // Update the analysis manager with each run and intersect the total set
509     // of preserved analyses so we're ready to iterate.
510     AM.invalidate(*C, PassPA);
511 
512     PA.intersect(std::move(PassPA));
513   }
514 
515   // Note that we don't add any preserved entries here unlike a more normal
516   // "pass manager" because we only handle invalidation *between* iterations,
517   // not after the last iteration.
518   return PA;
519 }
520 
521 PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C,
522                                                   CGSCCAnalysisManager &AM,
523                                                   LazyCallGraph &CG,
524                                                   CGSCCUpdateResult &UR) {
525   // Setup the function analysis manager from its proxy.
526   FunctionAnalysisManager &FAM =
527       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
528 
529   SmallVector<LazyCallGraph::Node *, 4> Nodes;
530   for (LazyCallGraph::Node &N : C)
531     Nodes.push_back(&N);
532 
533   // The SCC may get split while we are optimizing functions due to deleting
534   // edges. If this happens, the current SCC can shift, so keep track of
535   // a pointer we can overwrite.
536   LazyCallGraph::SCC *CurrentC = &C;
537 
538   LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n");
539 
540   PreservedAnalyses PA = PreservedAnalyses::all();
541   for (LazyCallGraph::Node *N : Nodes) {
542     // Skip nodes from other SCCs. These may have been split out during
543     // processing. We'll eventually visit those SCCs and pick up the nodes
544     // there.
545     if (CG.lookupSCC(*N) != CurrentC)
546       continue;
547 
548     Function &F = N->getFunction();
549 
550     PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F);
551     if (!PI.runBeforePass<Function>(*Pass, F))
552       continue;
553 
554     PreservedAnalyses PassPA;
555     {
556       TimeTraceScope TimeScope(Pass->name());
557       PassPA = Pass->run(F, FAM);
558     }
559 
560     PI.runAfterPass<Function>(*Pass, F, PassPA);
561 
562     // We know that the function pass couldn't have invalidated any other
563     // function's analyses (that's the contract of a function pass), so
564     // directly handle the function analysis manager's invalidation here.
565     FAM.invalidate(F, PassPA);
566 
567     // Then intersect the preserved set so that invalidation of module
568     // analyses will eventually occur when the module pass completes.
569     PA.intersect(std::move(PassPA));
570 
571     // If the call graph hasn't been preserved, update it based on this
572     // function pass. This may also update the current SCC to point to
573     // a smaller, more refined SCC.
574     auto PAC = PA.getChecker<LazyCallGraphAnalysis>();
575     if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) {
576       CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N,
577                                                             AM, UR, FAM);
578       assert(CG.lookupSCC(*N) == CurrentC &&
579              "Current SCC not updated to the SCC containing the current node!");
580     }
581   }
582 
583   // By definition we preserve the proxy. And we preserve all analyses on
584   // Functions. This precludes *any* invalidation of function analyses by the
585   // proxy, but that's OK because we've taken care to invalidate analyses in
586   // the function analysis manager incrementally above.
587   PA.preserveSet<AllAnalysesOn<Function>>();
588   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
589 
590   // We've also ensured that we updated the call graph along the way.
591   PA.preserve<LazyCallGraphAnalysis>();
592 
593   return PA;
594 }
595 
596 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
597     Module &M, const PreservedAnalyses &PA,
598     ModuleAnalysisManager::Invalidator &Inv) {
599   // If literally everything is preserved, we're done.
600   if (PA.areAllPreserved())
601     return false; // This is still a valid proxy.
602 
603   // If this proxy or the call graph is going to be invalidated, we also need
604   // to clear all the keys coming from that analysis.
605   //
606   // We also directly invalidate the FAM's module proxy if necessary, and if
607   // that proxy isn't preserved we can't preserve this proxy either. We rely on
608   // it to handle module -> function analysis invalidation in the face of
609   // structural changes and so if it's unavailable we conservatively clear the
610   // entire SCC layer as well rather than trying to do invalidation ourselves.
611   auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
612   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
613       Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
614       Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
615     InnerAM->clear();
616 
617     // And the proxy itself should be marked as invalid so that we can observe
618     // the new call graph. This isn't strictly necessary because we cheat
619     // above, but is still useful.
620     return true;
621   }
622 
623   // Directly check if the relevant set is preserved so we can short circuit
624   // invalidating SCCs below.
625   bool AreSCCAnalysesPreserved =
626       PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
627 
628   // Ok, we have a graph, so we can propagate the invalidation down into it.
629   G->buildRefSCCs();
630   for (auto &RC : G->postorder_ref_sccs())
631     for (auto &C : RC) {
632       Optional<PreservedAnalyses> InnerPA;
633 
634       // Check to see whether the preserved set needs to be adjusted based on
635       // module-level analysis invalidation triggering deferred invalidation
636       // for this SCC.
637       if (auto *OuterProxy =
638               InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
639         for (const auto &OuterInvalidationPair :
640              OuterProxy->getOuterInvalidations()) {
641           AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
642           const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
643           if (Inv.invalidate(OuterAnalysisID, M, PA)) {
644             if (!InnerPA)
645               InnerPA = PA;
646             for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
647               InnerPA->abandon(InnerAnalysisID);
648           }
649         }
650 
651       // Check if we needed a custom PA set. If so we'll need to run the inner
652       // invalidation.
653       if (InnerPA) {
654         InnerAM->invalidate(C, *InnerPA);
655         continue;
656       }
657 
658       // Otherwise we only need to do invalidation if the original PA set didn't
659       // preserve all SCC analyses.
660       if (!AreSCCAnalysesPreserved)
661         InnerAM->invalidate(C, PA);
662     }
663 
664   // Return false to indicate that this result is still a valid proxy.
665   return false;
666 }
667 
668 template <>
669 CGSCCAnalysisManagerModuleProxy::Result
670 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
671   // Force the Function analysis manager to also be available so that it can
672   // be accessed in an SCC analysis and proxied onward to function passes.
673   // FIXME: It is pretty awkward to just drop the result here and assert that
674   // we can find it again later.
675   (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
676 
677   return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
678 }
679 
680 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
681 
682 FunctionAnalysisManagerCGSCCProxy::Result
683 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
684                                        CGSCCAnalysisManager &AM,
685                                        LazyCallGraph &CG) {
686   // Note: unconditionally getting checking that the proxy exists may get it at
687   // this point. There are cases when this is being run unnecessarily, but
688   // it is cheap and having the assertion in place is more valuable.
689   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
690   Module &M = *C.begin()->getFunction().getParent();
691   bool ProxyExists =
692       MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M);
693   assert(ProxyExists &&
694          "The CGSCC pass manager requires that the FAM module proxy is run "
695          "on the module prior to entering the CGSCC walk");
696   (void)ProxyExists;
697 
698   // We just return an empty result. The caller will use the updateFAM interface
699   // to correctly register the relevant FunctionAnalysisManager based on the
700   // context in which this proxy is run.
701   return Result();
702 }
703 
704 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
705     LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
706     CGSCCAnalysisManager::Invalidator &Inv) {
707   // If literally everything is preserved, we're done.
708   if (PA.areAllPreserved())
709     return false; // This is still a valid proxy.
710 
711   // All updates to preserve valid results are done below, so we don't need to
712   // invalidate this proxy.
713   //
714   // Note that in order to preserve this proxy, a module pass must ensure that
715   // the FAM has been completely updated to handle the deletion of functions.
716   // Specifically, any FAM-cached results for those functions need to have been
717   // forcibly cleared. When preserved, this proxy will only invalidate results
718   // cached on functions *still in the module* at the end of the module pass.
719   auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
720   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
721     for (LazyCallGraph::Node &N : C)
722       FAM->invalidate(N.getFunction(), PA);
723 
724     return false;
725   }
726 
727   // Directly check if the relevant set is preserved.
728   bool AreFunctionAnalysesPreserved =
729       PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
730 
731   // Now walk all the functions to see if any inner analysis invalidation is
732   // necessary.
733   for (LazyCallGraph::Node &N : C) {
734     Function &F = N.getFunction();
735     Optional<PreservedAnalyses> FunctionPA;
736 
737     // Check to see whether the preserved set needs to be pruned based on
738     // SCC-level analysis invalidation that triggers deferred invalidation
739     // registered with the outer analysis manager proxy for this function.
740     if (auto *OuterProxy =
741             FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
742       for (const auto &OuterInvalidationPair :
743            OuterProxy->getOuterInvalidations()) {
744         AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
745         const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
746         if (Inv.invalidate(OuterAnalysisID, C, PA)) {
747           if (!FunctionPA)
748             FunctionPA = PA;
749           for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
750             FunctionPA->abandon(InnerAnalysisID);
751         }
752       }
753 
754     // Check if we needed a custom PA set, and if so we'll need to run the
755     // inner invalidation.
756     if (FunctionPA) {
757       FAM->invalidate(F, *FunctionPA);
758       continue;
759     }
760 
761     // Otherwise we only need to do invalidation if the original PA set didn't
762     // preserve all function analyses.
763     if (!AreFunctionAnalysesPreserved)
764       FAM->invalidate(F, PA);
765   }
766 
767   // Return false to indicate that this result is still a valid proxy.
768   return false;
769 }
770 
771 } // end namespace llvm
772 
773 /// When a new SCC is created for the graph we first update the
774 /// FunctionAnalysisManager in the Proxy's result.
775 /// As there might be function analysis results cached for the functions now in
776 /// that SCC, two forms of  updates are required.
777 ///
778 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
779 /// created so that any subsequent invalidation events to the SCC are
780 /// propagated to the function analysis results cached for functions within it.
781 ///
782 /// Second, if any of the functions within the SCC have analysis results with
783 /// outer analysis dependencies, then those dependencies would point to the
784 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
785 /// function analyses so that they don't retain stale handles.
786 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
787                                          LazyCallGraph &G,
788                                          CGSCCAnalysisManager &AM,
789                                          FunctionAnalysisManager &FAM) {
790   AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM);
791 
792   // Now walk the functions in this SCC and invalidate any function analysis
793   // results that might have outer dependencies on an SCC analysis.
794   for (LazyCallGraph::Node &N : C) {
795     Function &F = N.getFunction();
796 
797     auto *OuterProxy =
798         FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
799     if (!OuterProxy)
800       // No outer analyses were queried, nothing to do.
801       continue;
802 
803     // Forcibly abandon all the inner analyses with dependencies, but
804     // invalidate nothing else.
805     auto PA = PreservedAnalyses::all();
806     for (const auto &OuterInvalidationPair :
807          OuterProxy->getOuterInvalidations()) {
808       const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
809       for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
810         PA.abandon(InnerAnalysisID);
811     }
812 
813     // Now invalidate anything we found.
814     FAM.invalidate(F, PA);
815   }
816 }
817 
818 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
819 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
820 /// added SCCs.
821 ///
822 /// The range of new SCCs must be in postorder already. The SCC they were split
823 /// out of must be provided as \p C. The current node being mutated and
824 /// triggering updates must be passed as \p N.
825 ///
826 /// This function returns the SCC containing \p N. This will be either \p C if
827 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
828 template <typename SCCRangeT>
829 static LazyCallGraph::SCC *
830 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
831                        LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
832                        CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
833   using SCC = LazyCallGraph::SCC;
834 
835   if (NewSCCRange.empty())
836     return C;
837 
838   // Add the current SCC to the worklist as its shape has changed.
839   UR.CWorklist.insert(C);
840   LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
841                     << "\n");
842 
843   SCC *OldC = C;
844 
845   // Update the current SCC. Note that if we have new SCCs, this must actually
846   // change the SCC.
847   assert(C != &*NewSCCRange.begin() &&
848          "Cannot insert new SCCs without changing current SCC!");
849   C = &*NewSCCRange.begin();
850   assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
851 
852   // If we had a cached FAM proxy originally, we will want to create more of
853   // them for each SCC that was split off.
854   FunctionAnalysisManager *FAM = nullptr;
855   if (auto *FAMProxy =
856           AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC))
857     FAM = &FAMProxy->getManager();
858 
859   // We need to propagate an invalidation call to all but the newly current SCC
860   // because the outer pass manager won't do that for us after splitting them.
861   // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
862   // there are preserved analysis we can avoid invalidating them here for
863   // split-off SCCs.
864   // We know however that this will preserve any FAM proxy so go ahead and mark
865   // that.
866   PreservedAnalyses PA;
867   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
868   AM.invalidate(*OldC, PA);
869 
870   // Ensure the now-current SCC's function analyses are updated.
871   if (FAM)
872     updateNewSCCFunctionAnalyses(*C, G, AM, *FAM);
873 
874   for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) {
875     assert(C != &NewC && "No need to re-visit the current SCC!");
876     assert(OldC != &NewC && "Already handled the original SCC!");
877     UR.CWorklist.insert(&NewC);
878     LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
879 
880     // Ensure new SCCs' function analyses are updated.
881     if (FAM)
882       updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM);
883 
884     // Also propagate a normal invalidation to the new SCC as only the current
885     // will get one from the pass manager infrastructure.
886     AM.invalidate(NewC, PA);
887   }
888   return C;
889 }
890 
891 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass(
892     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
893     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
894     FunctionAnalysisManager &FAM, bool FunctionPass) {
895   using Node = LazyCallGraph::Node;
896   using Edge = LazyCallGraph::Edge;
897   using SCC = LazyCallGraph::SCC;
898   using RefSCC = LazyCallGraph::RefSCC;
899 
900   RefSCC &InitialRC = InitialC.getOuterRefSCC();
901   SCC *C = &InitialC;
902   RefSCC *RC = &InitialRC;
903   Function &F = N.getFunction();
904 
905   // Walk the function body and build up the set of retained, promoted, and
906   // demoted edges.
907   SmallVector<Constant *, 16> Worklist;
908   SmallPtrSet<Constant *, 16> Visited;
909   SmallPtrSet<Node *, 16> RetainedEdges;
910   SmallSetVector<Node *, 4> PromotedRefTargets;
911   SmallSetVector<Node *, 4> DemotedCallTargets;
912   SmallSetVector<Node *, 4> NewCallEdges;
913   SmallSetVector<Node *, 4> NewRefEdges;
914 
915   // First walk the function and handle all called functions. We do this first
916   // because if there is a single call edge, whether there are ref edges is
917   // irrelevant.
918   for (Instruction &I : instructions(F)) {
919     if (auto *CB = dyn_cast<CallBase>(&I)) {
920       if (Function *Callee = CB->getCalledFunction()) {
921         if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
922           Node *CalleeN = G.lookup(*Callee);
923           assert(CalleeN &&
924                  "Visited function should already have an associated node");
925           Edge *E = N->lookup(*CalleeN);
926           assert((E || !FunctionPass) &&
927                  "No function transformations should introduce *new* "
928                  "call edges! Any new calls should be modeled as "
929                  "promoted existing ref edges!");
930           bool Inserted = RetainedEdges.insert(CalleeN).second;
931           (void)Inserted;
932           assert(Inserted && "We should never visit a function twice.");
933           if (!E)
934             NewCallEdges.insert(CalleeN);
935           else if (!E->isCall())
936             PromotedRefTargets.insert(CalleeN);
937         }
938       } else {
939         // We can miss devirtualization if an indirect call is created then
940         // promoted before updateCGAndAnalysisManagerForPass runs.
941         auto *Entry = UR.IndirectVHs.find(CB);
942         if (Entry == UR.IndirectVHs.end())
943           UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)});
944         else if (!Entry->second)
945           Entry->second = WeakTrackingVH(CB);
946       }
947     }
948   }
949 
950   // Now walk all references.
951   for (Instruction &I : instructions(F))
952     for (Value *Op : I.operand_values())
953       if (auto *OpC = dyn_cast<Constant>(Op))
954         if (Visited.insert(OpC).second)
955           Worklist.push_back(OpC);
956 
957   auto VisitRef = [&](Function &Referee) {
958     Node *RefereeN = G.lookup(Referee);
959     assert(RefereeN &&
960            "Visited function should already have an associated node");
961     Edge *E = N->lookup(*RefereeN);
962     assert((E || !FunctionPass) &&
963            "No function transformations should introduce *new* ref "
964            "edges! Any new ref edges would require IPO which "
965            "function passes aren't allowed to do!");
966     bool Inserted = RetainedEdges.insert(RefereeN).second;
967     (void)Inserted;
968     assert(Inserted && "We should never visit a function twice.");
969     if (!E)
970       NewRefEdges.insert(RefereeN);
971     else if (E->isCall())
972       DemotedCallTargets.insert(RefereeN);
973   };
974   LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
975 
976   // Handle new ref edges.
977   for (Node *RefTarget : NewRefEdges) {
978     SCC &TargetC = *G.lookupSCC(*RefTarget);
979     RefSCC &TargetRC = TargetC.getOuterRefSCC();
980     (void)TargetRC;
981     // TODO: This only allows trivial edges to be added for now.
982 #ifdef EXPENSIVE_CHECKS
983     assert((RC == &TargetRC ||
984            RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!");
985 #endif
986     RC->insertTrivialRefEdge(N, *RefTarget);
987   }
988 
989   // Handle new call edges.
990   for (Node *CallTarget : NewCallEdges) {
991     SCC &TargetC = *G.lookupSCC(*CallTarget);
992     RefSCC &TargetRC = TargetC.getOuterRefSCC();
993     (void)TargetRC;
994     // TODO: This only allows trivial edges to be added for now.
995 #ifdef EXPENSIVE_CHECKS
996     assert((RC == &TargetRC ||
997            RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!");
998 #endif
999     // Add a trivial ref edge to be promoted later on alongside
1000     // PromotedRefTargets.
1001     RC->insertTrivialRefEdge(N, *CallTarget);
1002   }
1003 
1004   // Include synthetic reference edges to known, defined lib functions.
1005   for (auto *LibFn : G.getLibFunctions())
1006     // While the list of lib functions doesn't have repeats, don't re-visit
1007     // anything handled above.
1008     if (!Visited.count(LibFn))
1009       VisitRef(*LibFn);
1010 
1011   // First remove all of the edges that are no longer present in this function.
1012   // The first step makes these edges uniformly ref edges and accumulates them
1013   // into a separate data structure so removal doesn't invalidate anything.
1014   SmallVector<Node *, 4> DeadTargets;
1015   for (Edge &E : *N) {
1016     if (RetainedEdges.count(&E.getNode()))
1017       continue;
1018 
1019     SCC &TargetC = *G.lookupSCC(E.getNode());
1020     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1021     if (&TargetRC == RC && E.isCall()) {
1022       if (C != &TargetC) {
1023         // For separate SCCs this is trivial.
1024         RC->switchTrivialInternalEdgeToRef(N, E.getNode());
1025       } else {
1026         // Now update the call graph.
1027         C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
1028                                    G, N, C, AM, UR);
1029       }
1030     }
1031 
1032     // Now that this is ready for actual removal, put it into our list.
1033     DeadTargets.push_back(&E.getNode());
1034   }
1035   // Remove the easy cases quickly and actually pull them out of our list.
1036   llvm::erase_if(DeadTargets, [&](Node *TargetN) {
1037     SCC &TargetC = *G.lookupSCC(*TargetN);
1038     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1039 
1040     // We can't trivially remove internal targets, so skip
1041     // those.
1042     if (&TargetRC == RC)
1043       return false;
1044 
1045     LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '"
1046                       << *TargetN << "'\n");
1047     RC->removeOutgoingEdge(N, *TargetN);
1048     return true;
1049   });
1050 
1051   // Now do a batch removal of the internal ref edges left.
1052   auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
1053   if (!NewRefSCCs.empty()) {
1054     // The old RefSCC is dead, mark it as such.
1055     UR.InvalidatedRefSCCs.insert(RC);
1056 
1057     // Note that we don't bother to invalidate analyses as ref-edge
1058     // connectivity is not really observable in any way and is intended
1059     // exclusively to be used for ordering of transforms rather than for
1060     // analysis conclusions.
1061 
1062     // Update RC to the "bottom".
1063     assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
1064     RC = &C->getOuterRefSCC();
1065     assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
1066 
1067     // The RC worklist is in reverse postorder, so we enqueue the new ones in
1068     // RPO except for the one which contains the source node as that is the
1069     // "bottom" we will continue processing in the bottom-up walk.
1070     assert(NewRefSCCs.front() == RC &&
1071            "New current RefSCC not first in the returned list!");
1072     for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) {
1073       assert(NewRC != RC && "Should not encounter the current RefSCC further "
1074                             "in the postorder list of new RefSCCs.");
1075       UR.RCWorklist.insert(NewRC);
1076       LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
1077                         << *NewRC << "\n");
1078     }
1079   }
1080 
1081   // Next demote all the call edges that are now ref edges. This helps make
1082   // the SCCs small which should minimize the work below as we don't want to
1083   // form cycles that this would break.
1084   for (Node *RefTarget : DemotedCallTargets) {
1085     SCC &TargetC = *G.lookupSCC(*RefTarget);
1086     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1087 
1088     // The easy case is when the target RefSCC is not this RefSCC. This is
1089     // only supported when the target RefSCC is a child of this RefSCC.
1090     if (&TargetRC != RC) {
1091 #ifdef EXPENSIVE_CHECKS
1092       assert(RC->isAncestorOf(TargetRC) &&
1093              "Cannot potentially form RefSCC cycles here!");
1094 #endif
1095       RC->switchOutgoingEdgeToRef(N, *RefTarget);
1096       LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
1097                         << "' to '" << *RefTarget << "'\n");
1098       continue;
1099     }
1100 
1101     // We are switching an internal call edge to a ref edge. This may split up
1102     // some SCCs.
1103     if (C != &TargetC) {
1104       // For separate SCCs this is trivial.
1105       RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
1106       continue;
1107     }
1108 
1109     // Now update the call graph.
1110     C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
1111                                C, AM, UR);
1112   }
1113 
1114   // We added a ref edge earlier for new call edges, promote those to call edges
1115   // alongside PromotedRefTargets.
1116   for (Node *E : NewCallEdges)
1117     PromotedRefTargets.insert(E);
1118 
1119   // Now promote ref edges into call edges.
1120   for (Node *CallTarget : PromotedRefTargets) {
1121     SCC &TargetC = *G.lookupSCC(*CallTarget);
1122     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1123 
1124     // The easy case is when the target RefSCC is not this RefSCC. This is
1125     // only supported when the target RefSCC is a child of this RefSCC.
1126     if (&TargetRC != RC) {
1127 #ifdef EXPENSIVE_CHECKS
1128       assert(RC->isAncestorOf(TargetRC) &&
1129              "Cannot potentially form RefSCC cycles here!");
1130 #endif
1131       RC->switchOutgoingEdgeToCall(N, *CallTarget);
1132       LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
1133                         << "' to '" << *CallTarget << "'\n");
1134       continue;
1135     }
1136     LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
1137                       << N << "' to '" << *CallTarget << "'\n");
1138 
1139     // Otherwise we are switching an internal ref edge to a call edge. This
1140     // may merge away some SCCs, and we add those to the UpdateResult. We also
1141     // need to make sure to update the worklist in the event SCCs have moved
1142     // before the current one in the post-order sequence
1143     bool HasFunctionAnalysisProxy = false;
1144     auto InitialSCCIndex = RC->find(*C) - RC->begin();
1145     bool FormedCycle = RC->switchInternalEdgeToCall(
1146         N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
1147           for (SCC *MergedC : MergedSCCs) {
1148             assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
1149 
1150             HasFunctionAnalysisProxy |=
1151                 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
1152                     *MergedC) != nullptr;
1153 
1154             // Mark that this SCC will no longer be valid.
1155             UR.InvalidatedSCCs.insert(MergedC);
1156 
1157             // FIXME: We should really do a 'clear' here to forcibly release
1158             // memory, but we don't have a good way of doing that and
1159             // preserving the function analyses.
1160             auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1161             PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1162             AM.invalidate(*MergedC, PA);
1163           }
1164         });
1165 
1166     // If we formed a cycle by creating this call, we need to update more data
1167     // structures.
1168     if (FormedCycle) {
1169       C = &TargetC;
1170       assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
1171 
1172       // If one of the invalidated SCCs had a cached proxy to a function
1173       // analysis manager, we need to create a proxy in the new current SCC as
1174       // the invalidated SCCs had their functions moved.
1175       if (HasFunctionAnalysisProxy)
1176         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM);
1177 
1178       // Any analyses cached for this SCC are no longer precise as the shape
1179       // has changed by introducing this cycle. However, we have taken care to
1180       // update the proxies so it remains valide.
1181       auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1182       PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1183       AM.invalidate(*C, PA);
1184     }
1185     auto NewSCCIndex = RC->find(*C) - RC->begin();
1186     // If we have actually moved an SCC to be topologically "below" the current
1187     // one due to merging, we will need to revisit the current SCC after
1188     // visiting those moved SCCs.
1189     //
1190     // It is critical that we *do not* revisit the current SCC unless we
1191     // actually move SCCs in the process of merging because otherwise we may
1192     // form a cycle where an SCC is split apart, merged, split, merged and so
1193     // on infinitely.
1194     if (InitialSCCIndex < NewSCCIndex) {
1195       // Put our current SCC back onto the worklist as we'll visit other SCCs
1196       // that are now definitively ordered prior to the current one in the
1197       // post-order sequence, and may end up observing more precise context to
1198       // optimize the current SCC.
1199       UR.CWorklist.insert(C);
1200       LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
1201                         << "\n");
1202       // Enqueue in reverse order as we pop off the back of the worklist.
1203       for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
1204                                                   RC->begin() + NewSCCIndex))) {
1205         UR.CWorklist.insert(&MovedC);
1206         LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
1207                           << MovedC << "\n");
1208       }
1209     }
1210   }
1211 
1212   assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
1213   assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
1214   assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
1215 
1216   // Record the current RefSCC and SCC for higher layers of the CGSCC pass
1217   // manager now that all the updates have been applied.
1218   if (RC != &InitialRC)
1219     UR.UpdatedRC = RC;
1220   if (C != &InitialC)
1221     UR.UpdatedC = C;
1222 
1223   return *C;
1224 }
1225 
1226 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
1227     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1228     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1229     FunctionAnalysisManager &FAM) {
1230   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1231                                            /* FunctionPass */ true);
1232 }
1233 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass(
1234     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1235     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1236     FunctionAnalysisManager &FAM) {
1237   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1238                                            /* FunctionPass */ false);
1239 }
1240