1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/CGSCCPassManager.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/Optional.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/Analysis/LazyCallGraph.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/InstIterator.h" 20 #include "llvm/IR/Instruction.h" 21 #include "llvm/IR/PassManager.h" 22 #include "llvm/IR/PassManagerImpl.h" 23 #include "llvm/IR/ValueHandle.h" 24 #include "llvm/Support/Casting.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/TimeProfiler.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <iterator> 33 34 #define DEBUG_TYPE "cgscc" 35 36 using namespace llvm; 37 38 // Explicit template instantiations and specialization definitions for core 39 // template typedefs. 40 namespace llvm { 41 42 static cl::opt<bool> AbortOnMaxDevirtIterationsReached( 43 "abort-on-max-devirt-iterations-reached", 44 cl::desc("Abort when the max iterations for devirtualization CGSCC repeat " 45 "pass is reached")); 46 47 // Explicit instantiations for the core proxy templates. 48 template class AllAnalysesOn<LazyCallGraph::SCC>; 49 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 50 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 51 LazyCallGraph &, CGSCCUpdateResult &>; 52 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 53 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 54 LazyCallGraph::SCC, LazyCallGraph &>; 55 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 56 57 /// Explicitly specialize the pass manager run method to handle call graph 58 /// updates. 59 template <> 60 PreservedAnalyses 61 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 62 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 63 CGSCCAnalysisManager &AM, 64 LazyCallGraph &G, CGSCCUpdateResult &UR) { 65 // Request PassInstrumentation from analysis manager, will use it to run 66 // instrumenting callbacks for the passes later. 67 PassInstrumentation PI = 68 AM.getResult<PassInstrumentationAnalysis>(InitialC, G); 69 70 PreservedAnalyses PA = PreservedAnalyses::all(); 71 72 if (DebugLogging) 73 dbgs() << "Starting CGSCC pass manager run.\n"; 74 75 // The SCC may be refined while we are running passes over it, so set up 76 // a pointer that we can update. 77 LazyCallGraph::SCC *C = &InitialC; 78 79 // Get Function analysis manager from its proxy. 80 FunctionAnalysisManager &FAM = 81 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager(); 82 83 for (auto &Pass : Passes) { 84 // Check the PassInstrumentation's BeforePass callbacks before running the 85 // pass, skip its execution completely if asked to (callback returns false). 86 if (!PI.runBeforePass(*Pass, *C)) 87 continue; 88 89 PreservedAnalyses PassPA; 90 { 91 TimeTraceScope TimeScope(Pass->name()); 92 PassPA = Pass->run(*C, AM, G, UR); 93 } 94 95 if (UR.InvalidatedSCCs.count(C)) 96 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 97 else 98 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 99 100 // Update the SCC if necessary. 101 C = UR.UpdatedC ? UR.UpdatedC : C; 102 if (UR.UpdatedC) { 103 // If C is updated, also create a proxy and update FAM inside the result. 104 auto *ResultFAMCP = 105 &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); 106 ResultFAMCP->updateFAM(FAM); 107 } 108 109 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 110 // current SCC may simply need to be skipped if invalid. 111 if (UR.InvalidatedSCCs.count(C)) { 112 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 113 break; 114 } 115 // Check that we didn't miss any update scenario. 116 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 117 118 // Update the analysis manager as each pass runs and potentially 119 // invalidates analyses. 120 AM.invalidate(*C, PassPA); 121 122 // Finally, we intersect the final preserved analyses to compute the 123 // aggregate preserved set for this pass manager. 124 PA.intersect(std::move(PassPA)); 125 126 // FIXME: Historically, the pass managers all called the LLVM context's 127 // yield function here. We don't have a generic way to acquire the 128 // context and it isn't yet clear what the right pattern is for yielding 129 // in the new pass manager so it is currently omitted. 130 // ...getContext().yield(); 131 } 132 133 // Before we mark all of *this* SCC's analyses as preserved below, intersect 134 // this with the cross-SCC preserved analysis set. This is used to allow 135 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation 136 // for them. 137 UR.CrossSCCPA.intersect(PA); 138 139 // Invalidation was handled after each pass in the above loop for the current 140 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 141 // preserved. We mark this with a set so that we don't need to inspect each 142 // one individually. 143 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 144 145 if (DebugLogging) 146 dbgs() << "Finished CGSCC pass manager run.\n"; 147 148 return PA; 149 } 150 151 PreservedAnalyses 152 ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) { 153 // Setup the CGSCC analysis manager from its proxy. 154 CGSCCAnalysisManager &CGAM = 155 AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager(); 156 157 // Get the call graph for this module. 158 LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M); 159 160 // Get Function analysis manager from its proxy. 161 FunctionAnalysisManager &FAM = 162 AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager(); 163 164 // We keep worklists to allow us to push more work onto the pass manager as 165 // the passes are run. 166 SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist; 167 SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist; 168 169 // Keep sets for invalidated SCCs and RefSCCs that should be skipped when 170 // iterating off the worklists. 171 SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet; 172 SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet; 173 174 SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4> 175 InlinedInternalEdges; 176 177 CGSCCUpdateResult UR = { 178 RCWorklist, CWorklist, InvalidRefSCCSet, InvalidSCCSet, 179 nullptr, nullptr, PreservedAnalyses::all(), InlinedInternalEdges, 180 {}}; 181 182 // Request PassInstrumentation from analysis manager, will use it to run 183 // instrumenting callbacks for the passes later. 184 PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M); 185 186 PreservedAnalyses PA = PreservedAnalyses::all(); 187 CG.buildRefSCCs(); 188 for (auto RCI = CG.postorder_ref_scc_begin(), 189 RCE = CG.postorder_ref_scc_end(); 190 RCI != RCE;) { 191 assert(RCWorklist.empty() && 192 "Should always start with an empty RefSCC worklist"); 193 // The postorder_ref_sccs range we are walking is lazily constructed, so 194 // we only push the first one onto the worklist. The worklist allows us 195 // to capture *new* RefSCCs created during transformations. 196 // 197 // We really want to form RefSCCs lazily because that makes them cheaper 198 // to update as the program is simplified and allows us to have greater 199 // cache locality as forming a RefSCC touches all the parts of all the 200 // functions within that RefSCC. 201 // 202 // We also eagerly increment the iterator to the next position because 203 // the CGSCC passes below may delete the current RefSCC. 204 RCWorklist.insert(&*RCI++); 205 206 do { 207 LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val(); 208 if (InvalidRefSCCSet.count(RC)) { 209 LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n"); 210 continue; 211 } 212 213 assert(CWorklist.empty() && 214 "Should always start with an empty SCC worklist"); 215 216 LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC 217 << "\n"); 218 219 // The top of the worklist may *also* be the same SCC we just ran over 220 // (and invalidated for). Keep track of that last SCC we processed due 221 // to SCC update to avoid redundant processing when an SCC is both just 222 // updated itself and at the top of the worklist. 223 LazyCallGraph::SCC *LastUpdatedC = nullptr; 224 225 // Push the initial SCCs in reverse post-order as we'll pop off the 226 // back and so see this in post-order. 227 for (LazyCallGraph::SCC &C : llvm::reverse(*RC)) 228 CWorklist.insert(&C); 229 230 do { 231 LazyCallGraph::SCC *C = CWorklist.pop_back_val(); 232 // Due to call graph mutations, we may have invalid SCCs or SCCs from 233 // other RefSCCs in the worklist. The invalid ones are dead and the 234 // other RefSCCs should be queued above, so we just need to skip both 235 // scenarios here. 236 if (InvalidSCCSet.count(C)) { 237 LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n"); 238 continue; 239 } 240 if (LastUpdatedC == C) { 241 LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n"); 242 continue; 243 } 244 if (&C->getOuterRefSCC() != RC) { 245 LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other " 246 "RefSCC...\n"); 247 continue; 248 } 249 250 // Ensure we can proxy analysis updates from the CGSCC analysis manager 251 // into the the Function analysis manager by getting a proxy here. 252 // This also needs to update the FunctionAnalysisManager, as this may be 253 // the first time we see this SCC. 254 CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM( 255 FAM); 256 257 // Each time we visit a new SCC pulled off the worklist, 258 // a transformation of a child SCC may have also modified this parent 259 // and invalidated analyses. So we invalidate using the update record's 260 // cross-SCC preserved set. This preserved set is intersected by any 261 // CGSCC pass that handles invalidation (primarily pass managers) prior 262 // to marking its SCC as preserved. That lets us track everything that 263 // might need invalidation across SCCs without excessive invalidations 264 // on a single SCC. 265 // 266 // This essentially allows SCC passes to freely invalidate analyses 267 // of any ancestor SCC. If this becomes detrimental to successfully 268 // caching analyses, we could force each SCC pass to manually 269 // invalidate the analyses for any SCCs other than themselves which 270 // are mutated. However, that seems to lose the robustness of the 271 // pass-manager driven invalidation scheme. 272 CGAM.invalidate(*C, UR.CrossSCCPA); 273 274 do { 275 // Check that we didn't miss any update scenario. 276 assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!"); 277 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 278 assert(&C->getOuterRefSCC() == RC && 279 "Processing an SCC in a different RefSCC!"); 280 281 LastUpdatedC = UR.UpdatedC; 282 UR.UpdatedRC = nullptr; 283 UR.UpdatedC = nullptr; 284 285 // Check the PassInstrumentation's BeforePass callbacks before 286 // running the pass, skip its execution completely if asked to 287 // (callback returns false). 288 if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C)) 289 continue; 290 291 PreservedAnalyses PassPA; 292 { 293 TimeTraceScope TimeScope(Pass->name()); 294 PassPA = Pass->run(*C, CGAM, CG, UR); 295 } 296 297 if (UR.InvalidatedSCCs.count(C)) 298 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 299 else 300 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 301 302 // Update the SCC and RefSCC if necessary. 303 C = UR.UpdatedC ? UR.UpdatedC : C; 304 RC = UR.UpdatedRC ? UR.UpdatedRC : RC; 305 306 if (UR.UpdatedC) { 307 // If we're updating the SCC, also update the FAM inside the proxy's 308 // result. 309 CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM( 310 FAM); 311 } 312 313 // If the CGSCC pass wasn't able to provide a valid updated SCC, 314 // the current SCC may simply need to be skipped if invalid. 315 if (UR.InvalidatedSCCs.count(C)) { 316 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 317 break; 318 } 319 // Check that we didn't miss any update scenario. 320 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 321 322 // We handle invalidating the CGSCC analysis manager's information 323 // for the (potentially updated) SCC here. Note that any other SCCs 324 // whose structure has changed should have been invalidated by 325 // whatever was updating the call graph. This SCC gets invalidated 326 // late as it contains the nodes that were actively being 327 // processed. 328 CGAM.invalidate(*C, PassPA); 329 330 // Then intersect the preserved set so that invalidation of module 331 // analyses will eventually occur when the module pass completes. 332 // Also intersect with the cross-SCC preserved set to capture any 333 // cross-SCC invalidation. 334 UR.CrossSCCPA.intersect(PassPA); 335 PA.intersect(std::move(PassPA)); 336 337 // The pass may have restructured the call graph and refined the 338 // current SCC and/or RefSCC. We need to update our current SCC and 339 // RefSCC pointers to follow these. Also, when the current SCC is 340 // refined, re-run the SCC pass over the newly refined SCC in order 341 // to observe the most precise SCC model available. This inherently 342 // cannot cycle excessively as it only happens when we split SCCs 343 // apart, at most converging on a DAG of single nodes. 344 // FIXME: If we ever start having RefSCC passes, we'll want to 345 // iterate there too. 346 if (UR.UpdatedC) 347 LLVM_DEBUG(dbgs() 348 << "Re-running SCC passes after a refinement of the " 349 "current SCC: " 350 << *UR.UpdatedC << "\n"); 351 352 // Note that both `C` and `RC` may at this point refer to deleted, 353 // invalid SCC and RefSCCs respectively. But we will short circuit 354 // the processing when we check them in the loop above. 355 } while (UR.UpdatedC); 356 } while (!CWorklist.empty()); 357 358 // We only need to keep internal inlined edge information within 359 // a RefSCC, clear it to save on space and let the next time we visit 360 // any of these functions have a fresh start. 361 InlinedInternalEdges.clear(); 362 } while (!RCWorklist.empty()); 363 } 364 365 // By definition we preserve the call garph, all SCC analyses, and the 366 // analysis proxies by handling them above and in any nested pass managers. 367 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 368 PA.preserve<LazyCallGraphAnalysis>(); 369 PA.preserve<CGSCCAnalysisManagerModuleProxy>(); 370 PA.preserve<FunctionAnalysisManagerModuleProxy>(); 371 return PA; 372 } 373 374 PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC, 375 CGSCCAnalysisManager &AM, 376 LazyCallGraph &CG, 377 CGSCCUpdateResult &UR) { 378 PreservedAnalyses PA = PreservedAnalyses::all(); 379 PassInstrumentation PI = 380 AM.getResult<PassInstrumentationAnalysis>(InitialC, CG); 381 382 // The SCC may be refined while we are running passes over it, so set up 383 // a pointer that we can update. 384 LazyCallGraph::SCC *C = &InitialC; 385 386 // Struct to track the counts of direct and indirect calls in each function 387 // of the SCC. 388 struct CallCount { 389 int Direct; 390 int Indirect; 391 }; 392 393 // Put value handles on all of the indirect calls and return the number of 394 // direct calls for each function in the SCC. 395 auto ScanSCC = [](LazyCallGraph::SCC &C, 396 SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) { 397 assert(CallHandles.empty() && "Must start with a clear set of handles."); 398 399 SmallDenseMap<Function *, CallCount> CallCounts; 400 CallCount CountLocal = {0, 0}; 401 for (LazyCallGraph::Node &N : C) { 402 CallCount &Count = 403 CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal)) 404 .first->second; 405 for (Instruction &I : instructions(N.getFunction())) 406 if (auto *CB = dyn_cast<CallBase>(&I)) { 407 if (CB->getCalledFunction()) { 408 ++Count.Direct; 409 } else { 410 ++Count.Indirect; 411 CallHandles.insert({CB, WeakTrackingVH(CB)}); 412 } 413 } 414 } 415 416 return CallCounts; 417 }; 418 419 UR.IndirectVHs.clear(); 420 // Populate the initial call handles and get the initial call counts. 421 auto CallCounts = ScanSCC(*C, UR.IndirectVHs); 422 423 for (int Iteration = 0;; ++Iteration) { 424 if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C)) 425 continue; 426 427 PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR); 428 429 if (UR.InvalidatedSCCs.count(C)) 430 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 431 else 432 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 433 434 // If the SCC structure has changed, bail immediately and let the outer 435 // CGSCC layer handle any iteration to reflect the refined structure. 436 if (UR.UpdatedC && UR.UpdatedC != C) { 437 PA.intersect(std::move(PassPA)); 438 break; 439 } 440 441 // Check that we didn't miss any update scenario. 442 assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!"); 443 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 444 445 // Check whether any of the handles were devirtualized. 446 bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool { 447 if (P.second) { 448 if (CallBase *CB = dyn_cast<CallBase>(P.second)) { 449 if (CB->getCalledFunction()) { 450 LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n"); 451 return true; 452 } 453 } 454 } 455 return false; 456 }); 457 458 // Rescan to build up a new set of handles and count how many direct 459 // calls remain. If we decide to iterate, this also sets up the input to 460 // the next iteration. 461 UR.IndirectVHs.clear(); 462 auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs); 463 464 // If we haven't found an explicit devirtualization already see if we 465 // have decreased the number of indirect calls and increased the number 466 // of direct calls for any function in the SCC. This can be fooled by all 467 // manner of transformations such as DCE and other things, but seems to 468 // work well in practice. 469 if (!Devirt) 470 // Iterate over the keys in NewCallCounts, if Function also exists in 471 // CallCounts, make the check below. 472 for (auto &Pair : NewCallCounts) { 473 auto &CallCountNew = Pair.second; 474 auto CountIt = CallCounts.find(Pair.first); 475 if (CountIt != CallCounts.end()) { 476 const auto &CallCountOld = CountIt->second; 477 if (CallCountOld.Indirect > CallCountNew.Indirect && 478 CallCountOld.Direct < CallCountNew.Direct) { 479 Devirt = true; 480 break; 481 } 482 } 483 } 484 485 if (!Devirt) { 486 PA.intersect(std::move(PassPA)); 487 break; 488 } 489 490 // Otherwise, if we've already hit our max, we're done. 491 if (Iteration >= MaxIterations) { 492 if (AbortOnMaxDevirtIterationsReached) 493 report_fatal_error("Max devirtualization iterations reached"); 494 LLVM_DEBUG( 495 dbgs() << "Found another devirtualization after hitting the max " 496 "number of repetitions (" 497 << MaxIterations << ") on SCC: " << *C << "\n"); 498 PA.intersect(std::move(PassPA)); 499 break; 500 } 501 502 LLVM_DEBUG( 503 dbgs() << "Repeating an SCC pass after finding a devirtualization in: " 504 << *C << "\n"); 505 506 // Move over the new call counts in preparation for iterating. 507 CallCounts = std::move(NewCallCounts); 508 509 // Update the analysis manager with each run and intersect the total set 510 // of preserved analyses so we're ready to iterate. 511 AM.invalidate(*C, PassPA); 512 513 PA.intersect(std::move(PassPA)); 514 } 515 516 // Note that we don't add any preserved entries here unlike a more normal 517 // "pass manager" because we only handle invalidation *between* iterations, 518 // not after the last iteration. 519 return PA; 520 } 521 522 PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C, 523 CGSCCAnalysisManager &AM, 524 LazyCallGraph &CG, 525 CGSCCUpdateResult &UR) { 526 // Setup the function analysis manager from its proxy. 527 FunctionAnalysisManager &FAM = 528 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 529 530 SmallVector<LazyCallGraph::Node *, 4> Nodes; 531 for (LazyCallGraph::Node &N : C) 532 Nodes.push_back(&N); 533 534 // The SCC may get split while we are optimizing functions due to deleting 535 // edges. If this happens, the current SCC can shift, so keep track of 536 // a pointer we can overwrite. 537 LazyCallGraph::SCC *CurrentC = &C; 538 539 LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n"); 540 541 PreservedAnalyses PA = PreservedAnalyses::all(); 542 for (LazyCallGraph::Node *N : Nodes) { 543 // Skip nodes from other SCCs. These may have been split out during 544 // processing. We'll eventually visit those SCCs and pick up the nodes 545 // there. 546 if (CG.lookupSCC(*N) != CurrentC) 547 continue; 548 549 Function &F = N->getFunction(); 550 551 PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F); 552 if (!PI.runBeforePass<Function>(*Pass, F)) 553 continue; 554 555 PreservedAnalyses PassPA; 556 { 557 TimeTraceScope TimeScope(Pass->name()); 558 PassPA = Pass->run(F, FAM); 559 } 560 561 PI.runAfterPass<Function>(*Pass, F, PassPA); 562 563 // We know that the function pass couldn't have invalidated any other 564 // function's analyses (that's the contract of a function pass), so 565 // directly handle the function analysis manager's invalidation here. 566 FAM.invalidate(F, PassPA); 567 568 // Then intersect the preserved set so that invalidation of module 569 // analyses will eventually occur when the module pass completes. 570 PA.intersect(std::move(PassPA)); 571 572 // If the call graph hasn't been preserved, update it based on this 573 // function pass. This may also update the current SCC to point to 574 // a smaller, more refined SCC. 575 auto PAC = PA.getChecker<LazyCallGraphAnalysis>(); 576 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) { 577 CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N, 578 AM, UR, FAM); 579 assert(CG.lookupSCC(*N) == CurrentC && 580 "Current SCC not updated to the SCC containing the current node!"); 581 } 582 } 583 584 // By definition we preserve the proxy. And we preserve all analyses on 585 // Functions. This precludes *any* invalidation of function analyses by the 586 // proxy, but that's OK because we've taken care to invalidate analyses in 587 // the function analysis manager incrementally above. 588 PA.preserveSet<AllAnalysesOn<Function>>(); 589 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 590 591 // We've also ensured that we updated the call graph along the way. 592 PA.preserve<LazyCallGraphAnalysis>(); 593 594 return PA; 595 } 596 597 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 598 Module &M, const PreservedAnalyses &PA, 599 ModuleAnalysisManager::Invalidator &Inv) { 600 // If literally everything is preserved, we're done. 601 if (PA.areAllPreserved()) 602 return false; // This is still a valid proxy. 603 604 // If this proxy or the call graph is going to be invalidated, we also need 605 // to clear all the keys coming from that analysis. 606 // 607 // We also directly invalidate the FAM's module proxy if necessary, and if 608 // that proxy isn't preserved we can't preserve this proxy either. We rely on 609 // it to handle module -> function analysis invalidation in the face of 610 // structural changes and so if it's unavailable we conservatively clear the 611 // entire SCC layer as well rather than trying to do invalidation ourselves. 612 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 613 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 614 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 615 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 616 InnerAM->clear(); 617 618 // And the proxy itself should be marked as invalid so that we can observe 619 // the new call graph. This isn't strictly necessary because we cheat 620 // above, but is still useful. 621 return true; 622 } 623 624 // Directly check if the relevant set is preserved so we can short circuit 625 // invalidating SCCs below. 626 bool AreSCCAnalysesPreserved = 627 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 628 629 // Ok, we have a graph, so we can propagate the invalidation down into it. 630 G->buildRefSCCs(); 631 for (auto &RC : G->postorder_ref_sccs()) 632 for (auto &C : RC) { 633 Optional<PreservedAnalyses> InnerPA; 634 635 // Check to see whether the preserved set needs to be adjusted based on 636 // module-level analysis invalidation triggering deferred invalidation 637 // for this SCC. 638 if (auto *OuterProxy = 639 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 640 for (const auto &OuterInvalidationPair : 641 OuterProxy->getOuterInvalidations()) { 642 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 643 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 644 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 645 if (!InnerPA) 646 InnerPA = PA; 647 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 648 InnerPA->abandon(InnerAnalysisID); 649 } 650 } 651 652 // Check if we needed a custom PA set. If so we'll need to run the inner 653 // invalidation. 654 if (InnerPA) { 655 InnerAM->invalidate(C, *InnerPA); 656 continue; 657 } 658 659 // Otherwise we only need to do invalidation if the original PA set didn't 660 // preserve all SCC analyses. 661 if (!AreSCCAnalysesPreserved) 662 InnerAM->invalidate(C, PA); 663 } 664 665 // Return false to indicate that this result is still a valid proxy. 666 return false; 667 } 668 669 template <> 670 CGSCCAnalysisManagerModuleProxy::Result 671 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 672 // Force the Function analysis manager to also be available so that it can 673 // be accessed in an SCC analysis and proxied onward to function passes. 674 // FIXME: It is pretty awkward to just drop the result here and assert that 675 // we can find it again later. 676 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 677 678 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 679 } 680 681 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 682 683 FunctionAnalysisManagerCGSCCProxy::Result 684 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 685 CGSCCAnalysisManager &AM, 686 LazyCallGraph &CG) { 687 // Note: unconditionally getting checking that the proxy exists may get it at 688 // this point. There are cases when this is being run unnecessarily, but 689 // it is cheap and having the assertion in place is more valuable. 690 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG); 691 Module &M = *C.begin()->getFunction().getParent(); 692 bool ProxyExists = 693 MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M); 694 assert(ProxyExists && 695 "The CGSCC pass manager requires that the FAM module proxy is run " 696 "on the module prior to entering the CGSCC walk"); 697 (void)ProxyExists; 698 699 // We just return an empty result. The caller will use the updateFAM interface 700 // to correctly register the relevant FunctionAnalysisManager based on the 701 // context in which this proxy is run. 702 return Result(); 703 } 704 705 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 706 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 707 CGSCCAnalysisManager::Invalidator &Inv) { 708 // If literally everything is preserved, we're done. 709 if (PA.areAllPreserved()) 710 return false; // This is still a valid proxy. 711 712 // All updates to preserve valid results are done below, so we don't need to 713 // invalidate this proxy. 714 // 715 // Note that in order to preserve this proxy, a module pass must ensure that 716 // the FAM has been completely updated to handle the deletion of functions. 717 // Specifically, any FAM-cached results for those functions need to have been 718 // forcibly cleared. When preserved, this proxy will only invalidate results 719 // cached on functions *still in the module* at the end of the module pass. 720 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); 721 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { 722 for (LazyCallGraph::Node &N : C) 723 FAM->clear(N.getFunction(), N.getFunction().getName()); 724 725 return false; 726 } 727 728 // Directly check if the relevant set is preserved. 729 bool AreFunctionAnalysesPreserved = 730 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); 731 732 // Now walk all the functions to see if any inner analysis invalidation is 733 // necessary. 734 for (LazyCallGraph::Node &N : C) { 735 Function &F = N.getFunction(); 736 Optional<PreservedAnalyses> FunctionPA; 737 738 // Check to see whether the preserved set needs to be pruned based on 739 // SCC-level analysis invalidation that triggers deferred invalidation 740 // registered with the outer analysis manager proxy for this function. 741 if (auto *OuterProxy = 742 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) 743 for (const auto &OuterInvalidationPair : 744 OuterProxy->getOuterInvalidations()) { 745 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 746 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 747 if (Inv.invalidate(OuterAnalysisID, C, PA)) { 748 if (!FunctionPA) 749 FunctionPA = PA; 750 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 751 FunctionPA->abandon(InnerAnalysisID); 752 } 753 } 754 755 // Check if we needed a custom PA set, and if so we'll need to run the 756 // inner invalidation. 757 if (FunctionPA) { 758 FAM->invalidate(F, *FunctionPA); 759 continue; 760 } 761 762 // Otherwise we only need to do invalidation if the original PA set didn't 763 // preserve all function analyses. 764 if (!AreFunctionAnalysesPreserved) 765 FAM->invalidate(F, PA); 766 } 767 768 // Return false to indicate that this result is still a valid proxy. 769 return false; 770 } 771 772 } // end namespace llvm 773 774 /// When a new SCC is created for the graph we first update the 775 /// FunctionAnalysisManager in the Proxy's result. 776 /// As there might be function analysis results cached for the functions now in 777 /// that SCC, two forms of updates are required. 778 /// 779 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be 780 /// created so that any subsequent invalidation events to the SCC are 781 /// propagated to the function analysis results cached for functions within it. 782 /// 783 /// Second, if any of the functions within the SCC have analysis results with 784 /// outer analysis dependencies, then those dependencies would point to the 785 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary 786 /// function analyses so that they don't retain stale handles. 787 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, 788 LazyCallGraph &G, 789 CGSCCAnalysisManager &AM, 790 FunctionAnalysisManager &FAM) { 791 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM); 792 793 // Now walk the functions in this SCC and invalidate any function analysis 794 // results that might have outer dependencies on an SCC analysis. 795 for (LazyCallGraph::Node &N : C) { 796 Function &F = N.getFunction(); 797 798 auto *OuterProxy = 799 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); 800 if (!OuterProxy) 801 // No outer analyses were queried, nothing to do. 802 continue; 803 804 // Forcibly abandon all the inner analyses with dependencies, but 805 // invalidate nothing else. 806 auto PA = PreservedAnalyses::all(); 807 for (const auto &OuterInvalidationPair : 808 OuterProxy->getOuterInvalidations()) { 809 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 810 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 811 PA.abandon(InnerAnalysisID); 812 } 813 814 // Now invalidate anything we found. 815 FAM.invalidate(F, PA); 816 } 817 } 818 819 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 820 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 821 /// added SCCs. 822 /// 823 /// The range of new SCCs must be in postorder already. The SCC they were split 824 /// out of must be provided as \p C. The current node being mutated and 825 /// triggering updates must be passed as \p N. 826 /// 827 /// This function returns the SCC containing \p N. This will be either \p C if 828 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 829 template <typename SCCRangeT> 830 static LazyCallGraph::SCC * 831 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 832 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 833 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 834 using SCC = LazyCallGraph::SCC; 835 836 if (NewSCCRange.empty()) 837 return C; 838 839 // Add the current SCC to the worklist as its shape has changed. 840 UR.CWorklist.insert(C); 841 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C 842 << "\n"); 843 844 SCC *OldC = C; 845 846 // Update the current SCC. Note that if we have new SCCs, this must actually 847 // change the SCC. 848 assert(C != &*NewSCCRange.begin() && 849 "Cannot insert new SCCs without changing current SCC!"); 850 C = &*NewSCCRange.begin(); 851 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 852 853 // If we had a cached FAM proxy originally, we will want to create more of 854 // them for each SCC that was split off. 855 FunctionAnalysisManager *FAM = nullptr; 856 if (auto *FAMProxy = 857 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC)) 858 FAM = &FAMProxy->getManager(); 859 860 // We need to propagate an invalidation call to all but the newly current SCC 861 // because the outer pass manager won't do that for us after splitting them. 862 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if 863 // there are preserved analysis we can avoid invalidating them here for 864 // split-off SCCs. 865 // We know however that this will preserve any FAM proxy so go ahead and mark 866 // that. 867 PreservedAnalyses PA; 868 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 869 AM.invalidate(*OldC, PA); 870 871 // Ensure the now-current SCC's function analyses are updated. 872 if (FAM) 873 updateNewSCCFunctionAnalyses(*C, G, AM, *FAM); 874 875 for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()), 876 NewSCCRange.end()))) { 877 assert(C != &NewC && "No need to re-visit the current SCC!"); 878 assert(OldC != &NewC && "Already handled the original SCC!"); 879 UR.CWorklist.insert(&NewC); 880 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); 881 882 // Ensure new SCCs' function analyses are updated. 883 if (FAM) 884 updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM); 885 886 // Also propagate a normal invalidation to the new SCC as only the current 887 // will get one from the pass manager infrastructure. 888 AM.invalidate(NewC, PA); 889 } 890 return C; 891 } 892 893 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass( 894 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 895 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 896 FunctionAnalysisManager &FAM, bool FunctionPass) { 897 using Node = LazyCallGraph::Node; 898 using Edge = LazyCallGraph::Edge; 899 using SCC = LazyCallGraph::SCC; 900 using RefSCC = LazyCallGraph::RefSCC; 901 902 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 903 SCC *C = &InitialC; 904 RefSCC *RC = &InitialRC; 905 Function &F = N.getFunction(); 906 907 // Walk the function body and build up the set of retained, promoted, and 908 // demoted edges. 909 SmallVector<Constant *, 16> Worklist; 910 SmallPtrSet<Constant *, 16> Visited; 911 SmallPtrSet<Node *, 16> RetainedEdges; 912 SmallSetVector<Node *, 4> PromotedRefTargets; 913 SmallSetVector<Node *, 4> DemotedCallTargets; 914 SmallSetVector<Node *, 4> NewCallEdges; 915 SmallSetVector<Node *, 4> NewRefEdges; 916 917 // First walk the function and handle all called functions. We do this first 918 // because if there is a single call edge, whether there are ref edges is 919 // irrelevant. 920 for (Instruction &I : instructions(F)) { 921 if (auto *CB = dyn_cast<CallBase>(&I)) { 922 if (Function *Callee = CB->getCalledFunction()) { 923 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 924 Node *CalleeN = G.lookup(*Callee); 925 assert(CalleeN && 926 "Visited function should already have an associated node"); 927 Edge *E = N->lookup(*CalleeN); 928 assert((E || !FunctionPass) && 929 "No function transformations should introduce *new* " 930 "call edges! Any new calls should be modeled as " 931 "promoted existing ref edges!"); 932 bool Inserted = RetainedEdges.insert(CalleeN).second; 933 (void)Inserted; 934 assert(Inserted && "We should never visit a function twice."); 935 if (!E) 936 NewCallEdges.insert(CalleeN); 937 else if (!E->isCall()) 938 PromotedRefTargets.insert(CalleeN); 939 } 940 } else { 941 // We can miss devirtualization if an indirect call is created then 942 // promoted before updateCGAndAnalysisManagerForPass runs. 943 auto *Entry = UR.IndirectVHs.find(CB); 944 if (Entry == UR.IndirectVHs.end()) 945 UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)}); 946 else if (!Entry->second) 947 Entry->second = WeakTrackingVH(CB); 948 } 949 } 950 } 951 952 // Now walk all references. 953 for (Instruction &I : instructions(F)) 954 for (Value *Op : I.operand_values()) 955 if (auto *OpC = dyn_cast<Constant>(Op)) 956 if (Visited.insert(OpC).second) 957 Worklist.push_back(OpC); 958 959 auto VisitRef = [&](Function &Referee) { 960 Node *RefereeN = G.lookup(Referee); 961 assert(RefereeN && 962 "Visited function should already have an associated node"); 963 Edge *E = N->lookup(*RefereeN); 964 assert((E || !FunctionPass) && 965 "No function transformations should introduce *new* ref " 966 "edges! Any new ref edges would require IPO which " 967 "function passes aren't allowed to do!"); 968 bool Inserted = RetainedEdges.insert(RefereeN).second; 969 (void)Inserted; 970 assert(Inserted && "We should never visit a function twice."); 971 if (!E) 972 NewRefEdges.insert(RefereeN); 973 else if (E->isCall()) 974 DemotedCallTargets.insert(RefereeN); 975 }; 976 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); 977 978 // Handle new ref edges. 979 for (Node *RefTarget : NewRefEdges) { 980 SCC &TargetC = *G.lookupSCC(*RefTarget); 981 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 982 (void)TargetRC; 983 // TODO: This only allows trivial edges to be added for now. 984 assert((RC == &TargetRC || 985 RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!"); 986 RC->insertTrivialRefEdge(N, *RefTarget); 987 } 988 989 // Handle new call edges. 990 for (Node *CallTarget : NewCallEdges) { 991 SCC &TargetC = *G.lookupSCC(*CallTarget); 992 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 993 (void)TargetRC; 994 // TODO: This only allows trivial edges to be added for now. 995 assert((RC == &TargetRC || 996 RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!"); 997 // Add a trivial ref edge to be promoted later on alongside 998 // PromotedRefTargets. 999 RC->insertTrivialRefEdge(N, *CallTarget); 1000 } 1001 1002 // Include synthetic reference edges to known, defined lib functions. 1003 for (auto *LibFn : G.getLibFunctions()) 1004 // While the list of lib functions doesn't have repeats, don't re-visit 1005 // anything handled above. 1006 if (!Visited.count(LibFn)) 1007 VisitRef(*LibFn); 1008 1009 // First remove all of the edges that are no longer present in this function. 1010 // The first step makes these edges uniformly ref edges and accumulates them 1011 // into a separate data structure so removal doesn't invalidate anything. 1012 SmallVector<Node *, 4> DeadTargets; 1013 for (Edge &E : *N) { 1014 if (RetainedEdges.count(&E.getNode())) 1015 continue; 1016 1017 SCC &TargetC = *G.lookupSCC(E.getNode()); 1018 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1019 if (&TargetRC == RC && E.isCall()) { 1020 if (C != &TargetC) { 1021 // For separate SCCs this is trivial. 1022 RC->switchTrivialInternalEdgeToRef(N, E.getNode()); 1023 } else { 1024 // Now update the call graph. 1025 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), 1026 G, N, C, AM, UR); 1027 } 1028 } 1029 1030 // Now that this is ready for actual removal, put it into our list. 1031 DeadTargets.push_back(&E.getNode()); 1032 } 1033 // Remove the easy cases quickly and actually pull them out of our list. 1034 llvm::erase_if(DeadTargets, [&](Node *TargetN) { 1035 SCC &TargetC = *G.lookupSCC(*TargetN); 1036 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1037 1038 // We can't trivially remove internal targets, so skip 1039 // those. 1040 if (&TargetRC == RC) 1041 return false; 1042 1043 RC->removeOutgoingEdge(N, *TargetN); 1044 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '" 1045 << TargetN << "'\n"); 1046 return true; 1047 }); 1048 1049 // Now do a batch removal of the internal ref edges left. 1050 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); 1051 if (!NewRefSCCs.empty()) { 1052 // The old RefSCC is dead, mark it as such. 1053 UR.InvalidatedRefSCCs.insert(RC); 1054 1055 // Note that we don't bother to invalidate analyses as ref-edge 1056 // connectivity is not really observable in any way and is intended 1057 // exclusively to be used for ordering of transforms rather than for 1058 // analysis conclusions. 1059 1060 // Update RC to the "bottom". 1061 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 1062 RC = &C->getOuterRefSCC(); 1063 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 1064 1065 // The RC worklist is in reverse postorder, so we enqueue the new ones in 1066 // RPO except for the one which contains the source node as that is the 1067 // "bottom" we will continue processing in the bottom-up walk. 1068 assert(NewRefSCCs.front() == RC && 1069 "New current RefSCC not first in the returned list!"); 1070 for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()), 1071 NewRefSCCs.end()))) { 1072 assert(NewRC != RC && "Should not encounter the current RefSCC further " 1073 "in the postorder list of new RefSCCs."); 1074 UR.RCWorklist.insert(NewRC); 1075 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " 1076 << *NewRC << "\n"); 1077 } 1078 } 1079 1080 // Next demote all the call edges that are now ref edges. This helps make 1081 // the SCCs small which should minimize the work below as we don't want to 1082 // form cycles that this would break. 1083 for (Node *RefTarget : DemotedCallTargets) { 1084 SCC &TargetC = *G.lookupSCC(*RefTarget); 1085 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1086 1087 // The easy case is when the target RefSCC is not this RefSCC. This is 1088 // only supported when the target RefSCC is a child of this RefSCC. 1089 if (&TargetRC != RC) { 1090 assert(RC->isAncestorOf(TargetRC) && 1091 "Cannot potentially form RefSCC cycles here!"); 1092 RC->switchOutgoingEdgeToRef(N, *RefTarget); 1093 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N 1094 << "' to '" << *RefTarget << "'\n"); 1095 continue; 1096 } 1097 1098 // We are switching an internal call edge to a ref edge. This may split up 1099 // some SCCs. 1100 if (C != &TargetC) { 1101 // For separate SCCs this is trivial. 1102 RC->switchTrivialInternalEdgeToRef(N, *RefTarget); 1103 continue; 1104 } 1105 1106 // Now update the call graph. 1107 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, 1108 C, AM, UR); 1109 } 1110 1111 // We added a ref edge earlier for new call edges, promote those to call edges 1112 // alongside PromotedRefTargets. 1113 for (Node *E : NewCallEdges) 1114 PromotedRefTargets.insert(E); 1115 1116 // Now promote ref edges into call edges. 1117 for (Node *CallTarget : PromotedRefTargets) { 1118 SCC &TargetC = *G.lookupSCC(*CallTarget); 1119 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1120 1121 // The easy case is when the target RefSCC is not this RefSCC. This is 1122 // only supported when the target RefSCC is a child of this RefSCC. 1123 if (&TargetRC != RC) { 1124 assert(RC->isAncestorOf(TargetRC) && 1125 "Cannot potentially form RefSCC cycles here!"); 1126 RC->switchOutgoingEdgeToCall(N, *CallTarget); 1127 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N 1128 << "' to '" << *CallTarget << "'\n"); 1129 continue; 1130 } 1131 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" 1132 << N << "' to '" << *CallTarget << "'\n"); 1133 1134 // Otherwise we are switching an internal ref edge to a call edge. This 1135 // may merge away some SCCs, and we add those to the UpdateResult. We also 1136 // need to make sure to update the worklist in the event SCCs have moved 1137 // before the current one in the post-order sequence 1138 bool HasFunctionAnalysisProxy = false; 1139 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 1140 bool FormedCycle = RC->switchInternalEdgeToCall( 1141 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { 1142 for (SCC *MergedC : MergedSCCs) { 1143 assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); 1144 1145 HasFunctionAnalysisProxy |= 1146 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( 1147 *MergedC) != nullptr; 1148 1149 // Mark that this SCC will no longer be valid. 1150 UR.InvalidatedSCCs.insert(MergedC); 1151 1152 // FIXME: We should really do a 'clear' here to forcibly release 1153 // memory, but we don't have a good way of doing that and 1154 // preserving the function analyses. 1155 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 1156 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1157 AM.invalidate(*MergedC, PA); 1158 } 1159 }); 1160 1161 // If we formed a cycle by creating this call, we need to update more data 1162 // structures. 1163 if (FormedCycle) { 1164 C = &TargetC; 1165 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 1166 1167 // If one of the invalidated SCCs had a cached proxy to a function 1168 // analysis manager, we need to create a proxy in the new current SCC as 1169 // the invalidated SCCs had their functions moved. 1170 if (HasFunctionAnalysisProxy) 1171 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM); 1172 1173 // Any analyses cached for this SCC are no longer precise as the shape 1174 // has changed by introducing this cycle. However, we have taken care to 1175 // update the proxies so it remains valide. 1176 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 1177 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1178 AM.invalidate(*C, PA); 1179 } 1180 auto NewSCCIndex = RC->find(*C) - RC->begin(); 1181 // If we have actually moved an SCC to be topologically "below" the current 1182 // one due to merging, we will need to revisit the current SCC after 1183 // visiting those moved SCCs. 1184 // 1185 // It is critical that we *do not* revisit the current SCC unless we 1186 // actually move SCCs in the process of merging because otherwise we may 1187 // form a cycle where an SCC is split apart, merged, split, merged and so 1188 // on infinitely. 1189 if (InitialSCCIndex < NewSCCIndex) { 1190 // Put our current SCC back onto the worklist as we'll visit other SCCs 1191 // that are now definitively ordered prior to the current one in the 1192 // post-order sequence, and may end up observing more precise context to 1193 // optimize the current SCC. 1194 UR.CWorklist.insert(C); 1195 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C 1196 << "\n"); 1197 // Enqueue in reverse order as we pop off the back of the worklist. 1198 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, 1199 RC->begin() + NewSCCIndex))) { 1200 UR.CWorklist.insert(&MovedC); 1201 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " 1202 << MovedC << "\n"); 1203 } 1204 } 1205 } 1206 1207 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 1208 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 1209 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 1210 1211 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 1212 // manager now that all the updates have been applied. 1213 if (RC != &InitialRC) 1214 UR.UpdatedRC = RC; 1215 if (C != &InitialC) 1216 UR.UpdatedC = C; 1217 1218 return *C; 1219 } 1220 1221 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 1222 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 1223 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 1224 FunctionAnalysisManager &FAM) { 1225 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 1226 /* FunctionPass */ true); 1227 } 1228 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass( 1229 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 1230 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 1231 FunctionAnalysisManager &FAM) { 1232 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 1233 /* FunctionPass */ false); 1234 } 1235