xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/CFGPrinter.cpp (revision bc5304a006238115291e7568583632889dffbab9)
1 //===- CFGPrinter.cpp - DOT printer for the control flow graph ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a `-dot-cfg` analysis pass, which emits the
10 // `<prefix>.<fnname>.dot` file for each function in the program, with a graph
11 // of the CFG for that function. The default value for `<prefix>` is `cfg` but
12 // can be customized as needed.
13 //
14 // The other main feature of this file is that it implements the
15 // Function::viewCFG method, which is useful for debugging passes which operate
16 // on the CFG.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Analysis/CFGPrinter.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/FileSystem.h"
26 #include <algorithm>
27 
28 using namespace llvm;
29 
30 static cl::opt<std::string>
31     CFGFuncName("cfg-func-name", cl::Hidden,
32                 cl::desc("The name of a function (or its substring)"
33                          " whose CFG is viewed/printed."));
34 
35 static cl::opt<std::string> CFGDotFilenamePrefix(
36     "cfg-dot-filename-prefix", cl::Hidden,
37     cl::desc("The prefix used for the CFG dot file names."));
38 
39 static cl::opt<bool> HideUnreachablePaths("cfg-hide-unreachable-paths",
40                                           cl::init(false));
41 
42 static cl::opt<bool> HideDeoptimizePaths("cfg-hide-deoptimize-paths",
43                                          cl::init(false));
44 
45 static cl::opt<bool> ShowHeatColors("cfg-heat-colors", cl::init(true),
46                                     cl::Hidden,
47                                     cl::desc("Show heat colors in CFG"));
48 
49 static cl::opt<bool> UseRawEdgeWeight("cfg-raw-weights", cl::init(false),
50                                       cl::Hidden,
51                                       cl::desc("Use raw weights for labels. "
52                                                "Use percentages as default."));
53 
54 static cl::opt<bool>
55     ShowEdgeWeight("cfg-weights", cl::init(false), cl::Hidden,
56                    cl::desc("Show edges labeled with weights"));
57 
58 static void writeCFGToDotFile(Function &F, BlockFrequencyInfo *BFI,
59                               BranchProbabilityInfo *BPI, uint64_t MaxFreq,
60                               bool CFGOnly = false) {
61   std::string Filename =
62       (CFGDotFilenamePrefix + "." + F.getName() + ".dot").str();
63   errs() << "Writing '" << Filename << "'...";
64 
65   std::error_code EC;
66   raw_fd_ostream File(Filename, EC, sys::fs::F_Text);
67 
68   DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq);
69   CFGInfo.setHeatColors(ShowHeatColors);
70   CFGInfo.setEdgeWeights(ShowEdgeWeight);
71   CFGInfo.setRawEdgeWeights(UseRawEdgeWeight);
72 
73   if (!EC)
74     WriteGraph(File, &CFGInfo, CFGOnly);
75   else
76     errs() << "  error opening file for writing!";
77   errs() << "\n";
78 }
79 
80 static void viewCFG(Function &F, const BlockFrequencyInfo *BFI,
81                     const BranchProbabilityInfo *BPI, uint64_t MaxFreq,
82                     bool CFGOnly = false) {
83   DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq);
84   CFGInfo.setHeatColors(ShowHeatColors);
85   CFGInfo.setEdgeWeights(ShowEdgeWeight);
86   CFGInfo.setRawEdgeWeights(UseRawEdgeWeight);
87 
88   ViewGraph(&CFGInfo, "cfg." + F.getName(), CFGOnly);
89 }
90 
91 namespace {
92 struct CFGViewerLegacyPass : public FunctionPass {
93   static char ID; // Pass identifcation, replacement for typeid
94   CFGViewerLegacyPass() : FunctionPass(ID) {
95     initializeCFGViewerLegacyPassPass(*PassRegistry::getPassRegistry());
96   }
97 
98   bool runOnFunction(Function &F) override {
99     auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
100     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
101     viewCFG(F, BFI, BPI, getMaxFreq(F, BFI));
102     return false;
103   }
104 
105   void print(raw_ostream &OS, const Module * = nullptr) const override {}
106 
107   void getAnalysisUsage(AnalysisUsage &AU) const override {
108     FunctionPass::getAnalysisUsage(AU);
109     AU.addRequired<BlockFrequencyInfoWrapperPass>();
110     AU.addRequired<BranchProbabilityInfoWrapperPass>();
111     AU.setPreservesAll();
112   }
113 };
114 }
115 
116 char CFGViewerLegacyPass::ID = 0;
117 INITIALIZE_PASS(CFGViewerLegacyPass, "view-cfg", "View CFG of function", false,
118                 true)
119 
120 PreservedAnalyses CFGViewerPass::run(Function &F, FunctionAnalysisManager &AM) {
121   auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
122   auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
123   viewCFG(F, BFI, BPI, getMaxFreq(F, BFI));
124   return PreservedAnalyses::all();
125 }
126 
127 namespace {
128 struct CFGOnlyViewerLegacyPass : public FunctionPass {
129   static char ID; // Pass identifcation, replacement for typeid
130   CFGOnlyViewerLegacyPass() : FunctionPass(ID) {
131     initializeCFGOnlyViewerLegacyPassPass(*PassRegistry::getPassRegistry());
132   }
133 
134   bool runOnFunction(Function &F) override {
135     auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
136     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
137     viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
138     return false;
139   }
140 
141   void print(raw_ostream &OS, const Module * = nullptr) const override {}
142 
143   void getAnalysisUsage(AnalysisUsage &AU) const override {
144     FunctionPass::getAnalysisUsage(AU);
145     AU.addRequired<BlockFrequencyInfoWrapperPass>();
146     AU.addRequired<BranchProbabilityInfoWrapperPass>();
147     AU.setPreservesAll();
148   }
149 };
150 }
151 
152 char CFGOnlyViewerLegacyPass::ID = 0;
153 INITIALIZE_PASS(CFGOnlyViewerLegacyPass, "view-cfg-only",
154                 "View CFG of function (with no function bodies)", false, true)
155 
156 PreservedAnalyses CFGOnlyViewerPass::run(Function &F,
157                                          FunctionAnalysisManager &AM) {
158   auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
159   auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
160   viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
161   return PreservedAnalyses::all();
162 }
163 
164 namespace {
165 struct CFGPrinterLegacyPass : public FunctionPass {
166   static char ID; // Pass identification, replacement for typeid
167   CFGPrinterLegacyPass() : FunctionPass(ID) {
168     initializeCFGPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
169   }
170 
171   bool runOnFunction(Function &F) override {
172     auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
173     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
174     writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI));
175     return false;
176   }
177 
178   void print(raw_ostream &OS, const Module * = nullptr) const override {}
179 
180   void getAnalysisUsage(AnalysisUsage &AU) const override {
181     FunctionPass::getAnalysisUsage(AU);
182     AU.addRequired<BlockFrequencyInfoWrapperPass>();
183     AU.addRequired<BranchProbabilityInfoWrapperPass>();
184     AU.setPreservesAll();
185   }
186 };
187 }
188 
189 char CFGPrinterLegacyPass::ID = 0;
190 INITIALIZE_PASS(CFGPrinterLegacyPass, "dot-cfg",
191                 "Print CFG of function to 'dot' file", false, true)
192 
193 PreservedAnalyses CFGPrinterPass::run(Function &F,
194                                       FunctionAnalysisManager &AM) {
195   auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
196   auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
197   writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI));
198   return PreservedAnalyses::all();
199 }
200 
201 namespace {
202 struct CFGOnlyPrinterLegacyPass : public FunctionPass {
203   static char ID; // Pass identification, replacement for typeid
204   CFGOnlyPrinterLegacyPass() : FunctionPass(ID) {
205     initializeCFGOnlyPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
206   }
207 
208   bool runOnFunction(Function &F) override {
209     auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
210     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
211     writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
212     return false;
213   }
214   void print(raw_ostream &OS, const Module * = nullptr) const override {}
215 
216   void getAnalysisUsage(AnalysisUsage &AU) const override {
217     FunctionPass::getAnalysisUsage(AU);
218     AU.addRequired<BlockFrequencyInfoWrapperPass>();
219     AU.addRequired<BranchProbabilityInfoWrapperPass>();
220     AU.setPreservesAll();
221   }
222 };
223 }
224 
225 char CFGOnlyPrinterLegacyPass::ID = 0;
226 INITIALIZE_PASS(CFGOnlyPrinterLegacyPass, "dot-cfg-only",
227                 "Print CFG of function to 'dot' file (with no function bodies)",
228                 false, true)
229 
230 PreservedAnalyses CFGOnlyPrinterPass::run(Function &F,
231                                           FunctionAnalysisManager &AM) {
232   auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
233   auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
234   writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
235   return PreservedAnalyses::all();
236 }
237 
238 /// viewCFG - This function is meant for use from the debugger.  You can just
239 /// say 'call F->viewCFG()' and a ghostview window should pop up from the
240 /// program, displaying the CFG of the current function.  This depends on there
241 /// being a 'dot' and 'gv' program in your path.
242 ///
243 void Function::viewCFG() const { viewCFG(false, nullptr, nullptr); }
244 
245 void Function::viewCFG(bool ViewCFGOnly, const BlockFrequencyInfo *BFI,
246                        const BranchProbabilityInfo *BPI) const {
247   if (!CFGFuncName.empty() && !getName().contains(CFGFuncName))
248     return;
249   DOTFuncInfo CFGInfo(this, BFI, BPI, BFI ? getMaxFreq(*this, BFI) : 0);
250   ViewGraph(&CFGInfo, "cfg" + getName(), ViewCFGOnly);
251 }
252 
253 /// viewCFGOnly - This function is meant for use from the debugger.  It works
254 /// just like viewCFG, but it does not include the contents of basic blocks
255 /// into the nodes, just the label.  If you are only interested in the CFG
256 /// this can make the graph smaller.
257 ///
258 void Function::viewCFGOnly() const { viewCFGOnly(nullptr, nullptr); }
259 
260 void Function::viewCFGOnly(const BlockFrequencyInfo *BFI,
261                            const BranchProbabilityInfo *BPI) const {
262   viewCFG(true, BFI, BPI);
263 }
264 
265 FunctionPass *llvm::createCFGPrinterLegacyPassPass() {
266   return new CFGPrinterLegacyPass();
267 }
268 
269 FunctionPass *llvm::createCFGOnlyPrinterLegacyPassPass() {
270   return new CFGOnlyPrinterLegacyPass();
271 }
272 
273 void DOTGraphTraits<DOTFuncInfo *>::computeHiddenNodes(const Function *F) {
274   auto evaluateBB = [&](const BasicBlock *Node) {
275     if (succ_empty(Node)) {
276       const Instruction *TI = Node->getTerminator();
277       isHiddenBasicBlock[Node] =
278           (HideUnreachablePaths && isa<UnreachableInst>(TI)) ||
279           (HideDeoptimizePaths && Node->getTerminatingDeoptimizeCall());
280       return;
281     }
282     isHiddenBasicBlock[Node] =
283         llvm::all_of(successors(Node), [this](const BasicBlock *BB) {
284           return isHiddenBasicBlock[BB];
285         });
286   };
287   /// The post order traversal iteration is done to know the status of
288   /// isHiddenBasicBlock for all the successors on the current BB.
289   for_each(po_begin(&F->getEntryBlock()), po_end(&F->getEntryBlock()),
290            evaluateBB);
291 }
292 
293 bool DOTGraphTraits<DOTFuncInfo *>::isNodeHidden(const BasicBlock *Node,
294                                                  const DOTFuncInfo *CFGInfo) {
295   // If both restricting flags are false, all nodes are displayed.
296   if (!HideUnreachablePaths && !HideDeoptimizePaths)
297     return false;
298   if (isHiddenBasicBlock.find(Node) == isHiddenBasicBlock.end())
299     computeHiddenNodes(Node->getParent());
300   return isHiddenBasicBlock[Node];
301 }
302