1 //===- CFGPrinter.cpp - DOT printer for the control flow graph ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a `-dot-cfg` analysis pass, which emits the 10 // `<prefix>.<fnname>.dot` file for each function in the program, with a graph 11 // of the CFG for that function. The default value for `<prefix>` is `cfg` but 12 // can be customized as needed. 13 // 14 // The other main feature of this file is that it implements the 15 // Function::viewCFG method, which is useful for debugging passes which operate 16 // on the CFG. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/CFGPrinter.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/InitializePasses.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/FileSystem.h" 26 #include <algorithm> 27 28 using namespace llvm; 29 30 static cl::opt<std::string> 31 CFGFuncName("cfg-func-name", cl::Hidden, 32 cl::desc("The name of a function (or its substring)" 33 " whose CFG is viewed/printed.")); 34 35 static cl::opt<std::string> CFGDotFilenamePrefix( 36 "cfg-dot-filename-prefix", cl::Hidden, 37 cl::desc("The prefix used for the CFG dot file names.")); 38 39 static cl::opt<bool> HideUnreachablePaths("cfg-hide-unreachable-paths", 40 cl::init(false)); 41 42 static cl::opt<bool> HideDeoptimizePaths("cfg-hide-deoptimize-paths", 43 cl::init(false)); 44 45 static cl::opt<bool> ShowHeatColors("cfg-heat-colors", cl::init(true), 46 cl::Hidden, 47 cl::desc("Show heat colors in CFG")); 48 49 static cl::opt<bool> UseRawEdgeWeight("cfg-raw-weights", cl::init(false), 50 cl::Hidden, 51 cl::desc("Use raw weights for labels. " 52 "Use percentages as default.")); 53 54 static cl::opt<bool> 55 ShowEdgeWeight("cfg-weights", cl::init(false), cl::Hidden, 56 cl::desc("Show edges labeled with weights")); 57 58 static void writeCFGToDotFile(Function &F, BlockFrequencyInfo *BFI, 59 BranchProbabilityInfo *BPI, uint64_t MaxFreq, 60 bool CFGOnly = false) { 61 std::string Filename = 62 (CFGDotFilenamePrefix + "." + F.getName() + ".dot").str(); 63 errs() << "Writing '" << Filename << "'..."; 64 65 std::error_code EC; 66 raw_fd_ostream File(Filename, EC, sys::fs::F_Text); 67 68 DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq); 69 CFGInfo.setHeatColors(ShowHeatColors); 70 CFGInfo.setEdgeWeights(ShowEdgeWeight); 71 CFGInfo.setRawEdgeWeights(UseRawEdgeWeight); 72 73 if (!EC) 74 WriteGraph(File, &CFGInfo, CFGOnly); 75 else 76 errs() << " error opening file for writing!"; 77 errs() << "\n"; 78 } 79 80 static void viewCFG(Function &F, const BlockFrequencyInfo *BFI, 81 const BranchProbabilityInfo *BPI, uint64_t MaxFreq, 82 bool CFGOnly = false) { 83 DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq); 84 CFGInfo.setHeatColors(ShowHeatColors); 85 CFGInfo.setEdgeWeights(ShowEdgeWeight); 86 CFGInfo.setRawEdgeWeights(UseRawEdgeWeight); 87 88 ViewGraph(&CFGInfo, "cfg." + F.getName(), CFGOnly); 89 } 90 91 namespace { 92 struct CFGViewerLegacyPass : public FunctionPass { 93 static char ID; // Pass identifcation, replacement for typeid 94 CFGViewerLegacyPass() : FunctionPass(ID) { 95 initializeCFGViewerLegacyPassPass(*PassRegistry::getPassRegistry()); 96 } 97 98 bool runOnFunction(Function &F) override { 99 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 100 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 101 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI)); 102 return false; 103 } 104 105 void print(raw_ostream &OS, const Module * = nullptr) const override {} 106 107 void getAnalysisUsage(AnalysisUsage &AU) const override { 108 FunctionPass::getAnalysisUsage(AU); 109 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 110 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 111 AU.setPreservesAll(); 112 } 113 }; 114 } 115 116 char CFGViewerLegacyPass::ID = 0; 117 INITIALIZE_PASS(CFGViewerLegacyPass, "view-cfg", "View CFG of function", false, 118 true) 119 120 PreservedAnalyses CFGViewerPass::run(Function &F, FunctionAnalysisManager &AM) { 121 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F); 122 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F); 123 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI)); 124 return PreservedAnalyses::all(); 125 } 126 127 namespace { 128 struct CFGOnlyViewerLegacyPass : public FunctionPass { 129 static char ID; // Pass identifcation, replacement for typeid 130 CFGOnlyViewerLegacyPass() : FunctionPass(ID) { 131 initializeCFGOnlyViewerLegacyPassPass(*PassRegistry::getPassRegistry()); 132 } 133 134 bool runOnFunction(Function &F) override { 135 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 136 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 137 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); 138 return false; 139 } 140 141 void print(raw_ostream &OS, const Module * = nullptr) const override {} 142 143 void getAnalysisUsage(AnalysisUsage &AU) const override { 144 FunctionPass::getAnalysisUsage(AU); 145 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 146 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 147 AU.setPreservesAll(); 148 } 149 }; 150 } 151 152 char CFGOnlyViewerLegacyPass::ID = 0; 153 INITIALIZE_PASS(CFGOnlyViewerLegacyPass, "view-cfg-only", 154 "View CFG of function (with no function bodies)", false, true) 155 156 PreservedAnalyses CFGOnlyViewerPass::run(Function &F, 157 FunctionAnalysisManager &AM) { 158 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F); 159 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F); 160 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); 161 return PreservedAnalyses::all(); 162 } 163 164 namespace { 165 struct CFGPrinterLegacyPass : public FunctionPass { 166 static char ID; // Pass identification, replacement for typeid 167 CFGPrinterLegacyPass() : FunctionPass(ID) { 168 initializeCFGPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 169 } 170 171 bool runOnFunction(Function &F) override { 172 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 173 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 174 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI)); 175 return false; 176 } 177 178 void print(raw_ostream &OS, const Module * = nullptr) const override {} 179 180 void getAnalysisUsage(AnalysisUsage &AU) const override { 181 FunctionPass::getAnalysisUsage(AU); 182 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 183 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 184 AU.setPreservesAll(); 185 } 186 }; 187 } 188 189 char CFGPrinterLegacyPass::ID = 0; 190 INITIALIZE_PASS(CFGPrinterLegacyPass, "dot-cfg", 191 "Print CFG of function to 'dot' file", false, true) 192 193 PreservedAnalyses CFGPrinterPass::run(Function &F, 194 FunctionAnalysisManager &AM) { 195 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F); 196 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F); 197 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI)); 198 return PreservedAnalyses::all(); 199 } 200 201 namespace { 202 struct CFGOnlyPrinterLegacyPass : public FunctionPass { 203 static char ID; // Pass identification, replacement for typeid 204 CFGOnlyPrinterLegacyPass() : FunctionPass(ID) { 205 initializeCFGOnlyPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 206 } 207 208 bool runOnFunction(Function &F) override { 209 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 210 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 211 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); 212 return false; 213 } 214 void print(raw_ostream &OS, const Module * = nullptr) const override {} 215 216 void getAnalysisUsage(AnalysisUsage &AU) const override { 217 FunctionPass::getAnalysisUsage(AU); 218 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 219 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 220 AU.setPreservesAll(); 221 } 222 }; 223 } 224 225 char CFGOnlyPrinterLegacyPass::ID = 0; 226 INITIALIZE_PASS(CFGOnlyPrinterLegacyPass, "dot-cfg-only", 227 "Print CFG of function to 'dot' file (with no function bodies)", 228 false, true) 229 230 PreservedAnalyses CFGOnlyPrinterPass::run(Function &F, 231 FunctionAnalysisManager &AM) { 232 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F); 233 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F); 234 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); 235 return PreservedAnalyses::all(); 236 } 237 238 /// viewCFG - This function is meant for use from the debugger. You can just 239 /// say 'call F->viewCFG()' and a ghostview window should pop up from the 240 /// program, displaying the CFG of the current function. This depends on there 241 /// being a 'dot' and 'gv' program in your path. 242 /// 243 void Function::viewCFG() const { viewCFG(false, nullptr, nullptr); } 244 245 void Function::viewCFG(bool ViewCFGOnly, const BlockFrequencyInfo *BFI, 246 const BranchProbabilityInfo *BPI) const { 247 if (!CFGFuncName.empty() && !getName().contains(CFGFuncName)) 248 return; 249 DOTFuncInfo CFGInfo(this, BFI, BPI, BFI ? getMaxFreq(*this, BFI) : 0); 250 ViewGraph(&CFGInfo, "cfg" + getName(), ViewCFGOnly); 251 } 252 253 /// viewCFGOnly - This function is meant for use from the debugger. It works 254 /// just like viewCFG, but it does not include the contents of basic blocks 255 /// into the nodes, just the label. If you are only interested in the CFG 256 /// this can make the graph smaller. 257 /// 258 void Function::viewCFGOnly() const { viewCFGOnly(nullptr, nullptr); } 259 260 void Function::viewCFGOnly(const BlockFrequencyInfo *BFI, 261 const BranchProbabilityInfo *BPI) const { 262 viewCFG(true, BFI, BPI); 263 } 264 265 FunctionPass *llvm::createCFGPrinterLegacyPassPass() { 266 return new CFGPrinterLegacyPass(); 267 } 268 269 FunctionPass *llvm::createCFGOnlyPrinterLegacyPassPass() { 270 return new CFGOnlyPrinterLegacyPass(); 271 } 272 273 void DOTGraphTraits<DOTFuncInfo *>::computeHiddenNodes(const Function *F) { 274 auto evaluateBB = [&](const BasicBlock *Node) { 275 if (succ_empty(Node)) { 276 const Instruction *TI = Node->getTerminator(); 277 isHiddenBasicBlock[Node] = 278 (HideUnreachablePaths && isa<UnreachableInst>(TI)) || 279 (HideDeoptimizePaths && Node->getTerminatingDeoptimizeCall()); 280 return; 281 } 282 isHiddenBasicBlock[Node] = 283 llvm::all_of(successors(Node), [this](const BasicBlock *BB) { 284 return isHiddenBasicBlock[BB]; 285 }); 286 }; 287 /// The post order traversal iteration is done to know the status of 288 /// isHiddenBasicBlock for all the successors on the current BB. 289 for_each(po_begin(&F->getEntryBlock()), po_end(&F->getEntryBlock()), 290 evaluateBB); 291 } 292 293 bool DOTGraphTraits<DOTFuncInfo *>::isNodeHidden(const BasicBlock *Node, 294 const DOTFuncInfo *CFGInfo) { 295 // If both restricting flags are false, all nodes are displayed. 296 if (!HideUnreachablePaths && !HideDeoptimizePaths) 297 return false; 298 if (isHiddenBasicBlock.find(Node) == isHiddenBasicBlock.end()) 299 computeHiddenNodes(Node->getParent()); 300 return isHiddenBasicBlock[Node]; 301 } 302