1 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions performs analyses on basic blocks, and instructions 10 // contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/CFG.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/IR/Dominators.h" 19 20 using namespace llvm; 21 22 /// FindFunctionBackedges - Analyze the specified function to find all of the 23 /// loop backedges in the function and return them. This is a relatively cheap 24 /// (compared to computing dominators and loop info) analysis. 25 /// 26 /// The output is added to Result, as pairs of <from,to> edge info. 27 void llvm::FindFunctionBackedges(const Function &F, 28 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { 29 const BasicBlock *BB = &F.getEntryBlock(); 30 if (succ_empty(BB)) 31 return; 32 33 SmallPtrSet<const BasicBlock*, 8> Visited; 34 SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack; 35 SmallPtrSet<const BasicBlock*, 8> InStack; 36 37 Visited.insert(BB); 38 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 39 InStack.insert(BB); 40 do { 41 std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back(); 42 const BasicBlock *ParentBB = Top.first; 43 succ_const_iterator &I = Top.second; 44 45 bool FoundNew = false; 46 while (I != succ_end(ParentBB)) { 47 BB = *I++; 48 if (Visited.insert(BB).second) { 49 FoundNew = true; 50 break; 51 } 52 // Successor is in VisitStack, it's a back edge. 53 if (InStack.count(BB)) 54 Result.push_back(std::make_pair(ParentBB, BB)); 55 } 56 57 if (FoundNew) { 58 // Go down one level if there is a unvisited successor. 59 InStack.insert(BB); 60 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 61 } else { 62 // Go up one level. 63 InStack.erase(VisitStack.pop_back_val().first); 64 } 65 } while (!VisitStack.empty()); 66 } 67 68 /// GetSuccessorNumber - Search for the specified successor of basic block BB 69 /// and return its position in the terminator instruction's list of 70 /// successors. It is an error to call this with a block that is not a 71 /// successor. 72 unsigned llvm::GetSuccessorNumber(const BasicBlock *BB, 73 const BasicBlock *Succ) { 74 const Instruction *Term = BB->getTerminator(); 75 #ifndef NDEBUG 76 unsigned e = Term->getNumSuccessors(); 77 #endif 78 for (unsigned i = 0; ; ++i) { 79 assert(i != e && "Didn't find edge?"); 80 if (Term->getSuccessor(i) == Succ) 81 return i; 82 } 83 } 84 85 /// isCriticalEdge - Return true if the specified edge is a critical edge. 86 /// Critical edges are edges from a block with multiple successors to a block 87 /// with multiple predecessors. 88 bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum, 89 bool AllowIdenticalEdges) { 90 assert(TI->isTerminator() && "Must be a terminator to have successors!"); 91 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!"); 92 if (TI->getNumSuccessors() == 1) return false; 93 94 const BasicBlock *Dest = TI->getSuccessor(SuccNum); 95 const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest); 96 97 // If there is more than one predecessor, this is a critical edge... 98 assert(I != E && "No preds, but we have an edge to the block?"); 99 const BasicBlock *FirstPred = *I; 100 ++I; // Skip one edge due to the incoming arc from TI. 101 if (!AllowIdenticalEdges) 102 return I != E; 103 104 // If AllowIdenticalEdges is true, then we allow this edge to be considered 105 // non-critical iff all preds come from TI's block. 106 for (; I != E; ++I) 107 if (*I != FirstPred) 108 return true; 109 return false; 110 } 111 112 // LoopInfo contains a mapping from basic block to the innermost loop. Find 113 // the outermost loop in the loop nest that contains BB. 114 static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) { 115 const Loop *L = LI->getLoopFor(BB); 116 if (L) { 117 while (const Loop *Parent = L->getParentLoop()) 118 L = Parent; 119 } 120 return L; 121 } 122 123 bool llvm::isPotentiallyReachableFromMany( 124 SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB, 125 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT, 126 const LoopInfo *LI) { 127 // When the stop block is unreachable, it's dominated from everywhere, 128 // regardless of whether there's a path between the two blocks. 129 if (DT && !DT->isReachableFromEntry(StopBB)) 130 DT = nullptr; 131 132 // We can't skip directly from a block that dominates the stop block if the 133 // exclusion block is potentially in between. 134 if (ExclusionSet && !ExclusionSet->empty()) 135 DT = nullptr; 136 137 // Normally any block in a loop is reachable from any other block in a loop, 138 // however excluded blocks might partition the body of a loop to make that 139 // untrue. 140 SmallPtrSet<const Loop *, 8> LoopsWithHoles; 141 if (LI && ExclusionSet) { 142 for (auto BB : *ExclusionSet) { 143 if (const Loop *L = getOutermostLoop(LI, BB)) 144 LoopsWithHoles.insert(L); 145 } 146 } 147 148 const Loop *StopLoop = LI ? getOutermostLoop(LI, StopBB) : nullptr; 149 150 // Limit the number of blocks we visit. The goal is to avoid run-away compile 151 // times on large CFGs without hampering sensible code. Arbitrarily chosen. 152 unsigned Limit = 32; 153 SmallPtrSet<const BasicBlock*, 32> Visited; 154 do { 155 BasicBlock *BB = Worklist.pop_back_val(); 156 if (!Visited.insert(BB).second) 157 continue; 158 if (BB == StopBB) 159 return true; 160 if (ExclusionSet && ExclusionSet->count(BB)) 161 continue; 162 if (DT && DT->dominates(BB, StopBB)) 163 return true; 164 165 const Loop *Outer = nullptr; 166 if (LI) { 167 Outer = getOutermostLoop(LI, BB); 168 // If we're in a loop with a hole, not all blocks in the loop are 169 // reachable from all other blocks. That implies we can't simply jump to 170 // the loop's exit blocks, as that exit might need to pass through an 171 // excluded block. Clear Outer so we process BB's successors. 172 if (LoopsWithHoles.count(Outer)) 173 Outer = nullptr; 174 if (StopLoop && Outer == StopLoop) 175 return true; 176 } 177 178 if (!--Limit) { 179 // We haven't been able to prove it one way or the other. Conservatively 180 // answer true -- that there is potentially a path. 181 return true; 182 } 183 184 if (Outer) { 185 // All blocks in a single loop are reachable from all other blocks. From 186 // any of these blocks, we can skip directly to the exits of the loop, 187 // ignoring any other blocks inside the loop body. 188 Outer->getExitBlocks(Worklist); 189 } else { 190 Worklist.append(succ_begin(BB), succ_end(BB)); 191 } 192 } while (!Worklist.empty()); 193 194 // We have exhausted all possible paths and are certain that 'To' can not be 195 // reached from 'From'. 196 return false; 197 } 198 199 bool llvm::isPotentiallyReachable(const BasicBlock *A, const BasicBlock *B, 200 const DominatorTree *DT, const LoopInfo *LI) { 201 assert(A->getParent() == B->getParent() && 202 "This analysis is function-local!"); 203 204 SmallVector<BasicBlock*, 32> Worklist; 205 Worklist.push_back(const_cast<BasicBlock*>(A)); 206 207 return isPotentiallyReachableFromMany(Worklist, const_cast<BasicBlock *>(B), 208 nullptr, DT, LI); 209 } 210 211 bool llvm::isPotentiallyReachable( 212 const Instruction *A, const Instruction *B, 213 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT, 214 const LoopInfo *LI) { 215 assert(A->getParent()->getParent() == B->getParent()->getParent() && 216 "This analysis is function-local!"); 217 218 SmallVector<BasicBlock*, 32> Worklist; 219 220 if (A->getParent() == B->getParent()) { 221 // The same block case is special because it's the only time we're looking 222 // within a single block to see which instruction comes first. Once we 223 // start looking at multiple blocks, the first instruction of the block is 224 // reachable, so we only need to determine reachability between whole 225 // blocks. 226 BasicBlock *BB = const_cast<BasicBlock *>(A->getParent()); 227 228 // If the block is in a loop then we can reach any instruction in the block 229 // from any other instruction in the block by going around a backedge. 230 if (LI && LI->getLoopFor(BB) != nullptr) 231 return true; 232 233 // Linear scan, start at 'A', see whether we hit 'B' or the end first. 234 for (BasicBlock::const_iterator I = A->getIterator(), E = BB->end(); I != E; 235 ++I) { 236 if (&*I == B) 237 return true; 238 } 239 240 // Can't be in a loop if it's the entry block -- the entry block may not 241 // have predecessors. 242 if (BB == &BB->getParent()->getEntryBlock()) 243 return false; 244 245 // Otherwise, continue doing the normal per-BB CFG walk. 246 Worklist.append(succ_begin(BB), succ_end(BB)); 247 248 if (Worklist.empty()) { 249 // We've proven that there's no path! 250 return false; 251 } 252 } else { 253 Worklist.push_back(const_cast<BasicBlock*>(A->getParent())); 254 } 255 256 if (DT) { 257 if (DT->isReachableFromEntry(A->getParent()) && 258 !DT->isReachableFromEntry(B->getParent())) 259 return false; 260 if (!ExclusionSet || ExclusionSet->empty()) { 261 if (A->getParent() == &A->getParent()->getParent()->getEntryBlock() && 262 DT->isReachableFromEntry(B->getParent())) 263 return true; 264 if (B->getParent() == &A->getParent()->getParent()->getEntryBlock() && 265 DT->isReachableFromEntry(A->getParent())) 266 return false; 267 } 268 } 269 270 return isPotentiallyReachableFromMany( 271 Worklist, const_cast<BasicBlock *>(B->getParent()), ExclusionSet, DT, LI); 272 } 273