1 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions performs analyses on basic blocks, and instructions 10 // contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/CFG.h" 15 #include "llvm/Analysis/LoopInfo.h" 16 #include "llvm/IR/Dominators.h" 17 #include "llvm/Support/CommandLine.h" 18 19 using namespace llvm; 20 21 // The max number of basic blocks explored during reachability analysis between 22 // two basic blocks. This is kept reasonably small to limit compile time when 23 // repeatedly used by clients of this analysis (such as captureTracking). 24 static cl::opt<unsigned> DefaultMaxBBsToExplore( 25 "dom-tree-reachability-max-bbs-to-explore", cl::Hidden, 26 cl::desc("Max number of BBs to explore for reachability analysis"), 27 cl::init(32)); 28 29 /// FindFunctionBackedges - Analyze the specified function to find all of the 30 /// loop backedges in the function and return them. This is a relatively cheap 31 /// (compared to computing dominators and loop info) analysis. 32 /// 33 /// The output is added to Result, as pairs of <from,to> edge info. 34 void llvm::FindFunctionBackedges(const Function &F, 35 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { 36 const BasicBlock *BB = &F.getEntryBlock(); 37 if (succ_empty(BB)) 38 return; 39 40 SmallPtrSet<const BasicBlock*, 8> Visited; 41 SmallVector<std::pair<const BasicBlock *, const_succ_iterator>, 8> VisitStack; 42 SmallPtrSet<const BasicBlock*, 8> InStack; 43 44 Visited.insert(BB); 45 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 46 InStack.insert(BB); 47 do { 48 std::pair<const BasicBlock *, const_succ_iterator> &Top = VisitStack.back(); 49 const BasicBlock *ParentBB = Top.first; 50 const_succ_iterator &I = Top.second; 51 52 bool FoundNew = false; 53 while (I != succ_end(ParentBB)) { 54 BB = *I++; 55 if (Visited.insert(BB).second) { 56 FoundNew = true; 57 break; 58 } 59 // Successor is in VisitStack, it's a back edge. 60 if (InStack.count(BB)) 61 Result.push_back(std::make_pair(ParentBB, BB)); 62 } 63 64 if (FoundNew) { 65 // Go down one level if there is a unvisited successor. 66 InStack.insert(BB); 67 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 68 } else { 69 // Go up one level. 70 InStack.erase(VisitStack.pop_back_val().first); 71 } 72 } while (!VisitStack.empty()); 73 } 74 75 /// GetSuccessorNumber - Search for the specified successor of basic block BB 76 /// and return its position in the terminator instruction's list of 77 /// successors. It is an error to call this with a block that is not a 78 /// successor. 79 unsigned llvm::GetSuccessorNumber(const BasicBlock *BB, 80 const BasicBlock *Succ) { 81 const Instruction *Term = BB->getTerminator(); 82 #ifndef NDEBUG 83 unsigned e = Term->getNumSuccessors(); 84 #endif 85 for (unsigned i = 0; ; ++i) { 86 assert(i != e && "Didn't find edge?"); 87 if (Term->getSuccessor(i) == Succ) 88 return i; 89 } 90 } 91 92 /// isCriticalEdge - Return true if the specified edge is a critical edge. 93 /// Critical edges are edges from a block with multiple successors to a block 94 /// with multiple predecessors. 95 bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum, 96 bool AllowIdenticalEdges) { 97 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!"); 98 return isCriticalEdge(TI, TI->getSuccessor(SuccNum), AllowIdenticalEdges); 99 } 100 101 bool llvm::isCriticalEdge(const Instruction *TI, const BasicBlock *Dest, 102 bool AllowIdenticalEdges) { 103 assert(TI->isTerminator() && "Must be a terminator to have successors!"); 104 if (TI->getNumSuccessors() == 1) return false; 105 106 assert(is_contained(predecessors(Dest), TI->getParent()) && 107 "No edge between TI's block and Dest."); 108 109 const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest); 110 111 // If there is more than one predecessor, this is a critical edge... 112 assert(I != E && "No preds, but we have an edge to the block?"); 113 const BasicBlock *FirstPred = *I; 114 ++I; // Skip one edge due to the incoming arc from TI. 115 if (!AllowIdenticalEdges) 116 return I != E; 117 118 // If AllowIdenticalEdges is true, then we allow this edge to be considered 119 // non-critical iff all preds come from TI's block. 120 for (; I != E; ++I) 121 if (*I != FirstPred) 122 return true; 123 return false; 124 } 125 126 // LoopInfo contains a mapping from basic block to the innermost loop. Find 127 // the outermost loop in the loop nest that contains BB. 128 static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) { 129 const Loop *L = LI->getLoopFor(BB); 130 if (L) { 131 while (const Loop *Parent = L->getParentLoop()) 132 L = Parent; 133 } 134 return L; 135 } 136 137 bool llvm::isPotentiallyReachableFromMany( 138 SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB, 139 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT, 140 const LoopInfo *LI) { 141 // When the stop block is unreachable, it's dominated from everywhere, 142 // regardless of whether there's a path between the two blocks. 143 if (DT && !DT->isReachableFromEntry(StopBB)) 144 DT = nullptr; 145 146 // We can't skip directly from a block that dominates the stop block if the 147 // exclusion block is potentially in between. 148 if (ExclusionSet && !ExclusionSet->empty()) 149 DT = nullptr; 150 151 // Normally any block in a loop is reachable from any other block in a loop, 152 // however excluded blocks might partition the body of a loop to make that 153 // untrue. 154 SmallPtrSet<const Loop *, 8> LoopsWithHoles; 155 if (LI && ExclusionSet) { 156 for (auto BB : *ExclusionSet) { 157 if (const Loop *L = getOutermostLoop(LI, BB)) 158 LoopsWithHoles.insert(L); 159 } 160 } 161 162 const Loop *StopLoop = LI ? getOutermostLoop(LI, StopBB) : nullptr; 163 164 unsigned Limit = DefaultMaxBBsToExplore; 165 SmallPtrSet<const BasicBlock*, 32> Visited; 166 do { 167 BasicBlock *BB = Worklist.pop_back_val(); 168 if (!Visited.insert(BB).second) 169 continue; 170 if (BB == StopBB) 171 return true; 172 if (ExclusionSet && ExclusionSet->count(BB)) 173 continue; 174 if (DT && DT->dominates(BB, StopBB)) 175 return true; 176 177 const Loop *Outer = nullptr; 178 if (LI) { 179 Outer = getOutermostLoop(LI, BB); 180 // If we're in a loop with a hole, not all blocks in the loop are 181 // reachable from all other blocks. That implies we can't simply jump to 182 // the loop's exit blocks, as that exit might need to pass through an 183 // excluded block. Clear Outer so we process BB's successors. 184 if (LoopsWithHoles.count(Outer)) 185 Outer = nullptr; 186 if (StopLoop && Outer == StopLoop) 187 return true; 188 } 189 190 if (!--Limit) { 191 // We haven't been able to prove it one way or the other. Conservatively 192 // answer true -- that there is potentially a path. 193 return true; 194 } 195 196 if (Outer) { 197 // All blocks in a single loop are reachable from all other blocks. From 198 // any of these blocks, we can skip directly to the exits of the loop, 199 // ignoring any other blocks inside the loop body. 200 Outer->getExitBlocks(Worklist); 201 } else { 202 Worklist.append(succ_begin(BB), succ_end(BB)); 203 } 204 } while (!Worklist.empty()); 205 206 // We have exhausted all possible paths and are certain that 'To' can not be 207 // reached from 'From'. 208 return false; 209 } 210 211 bool llvm::isPotentiallyReachable( 212 const BasicBlock *A, const BasicBlock *B, 213 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT, 214 const LoopInfo *LI) { 215 assert(A->getParent() == B->getParent() && 216 "This analysis is function-local!"); 217 218 if (DT) { 219 if (DT->isReachableFromEntry(A) && !DT->isReachableFromEntry(B)) 220 return false; 221 if (!ExclusionSet || ExclusionSet->empty()) { 222 if (A->isEntryBlock() && DT->isReachableFromEntry(B)) 223 return true; 224 if (B->isEntryBlock() && DT->isReachableFromEntry(A)) 225 return false; 226 } 227 } 228 229 SmallVector<BasicBlock*, 32> Worklist; 230 Worklist.push_back(const_cast<BasicBlock*>(A)); 231 232 return isPotentiallyReachableFromMany(Worklist, const_cast<BasicBlock *>(B), 233 ExclusionSet, DT, LI); 234 } 235 236 bool llvm::isPotentiallyReachable( 237 const Instruction *A, const Instruction *B, 238 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT, 239 const LoopInfo *LI) { 240 assert(A->getParent()->getParent() == B->getParent()->getParent() && 241 "This analysis is function-local!"); 242 243 if (A->getParent() == B->getParent()) { 244 // The same block case is special because it's the only time we're looking 245 // within a single block to see which instruction comes first. Once we 246 // start looking at multiple blocks, the first instruction of the block is 247 // reachable, so we only need to determine reachability between whole 248 // blocks. 249 BasicBlock *BB = const_cast<BasicBlock *>(A->getParent()); 250 251 // If the block is in a loop then we can reach any instruction in the block 252 // from any other instruction in the block by going around a backedge. 253 if (LI && LI->getLoopFor(BB) != nullptr) 254 return true; 255 256 // If A comes before B, then B is definitively reachable from A. 257 if (A == B || A->comesBefore(B)) 258 return true; 259 260 // Can't be in a loop if it's the entry block -- the entry block may not 261 // have predecessors. 262 if (BB->isEntryBlock()) 263 return false; 264 265 // Otherwise, continue doing the normal per-BB CFG walk. 266 SmallVector<BasicBlock*, 32> Worklist; 267 Worklist.append(succ_begin(BB), succ_end(BB)); 268 if (Worklist.empty()) { 269 // We've proven that there's no path! 270 return false; 271 } 272 273 return isPotentiallyReachableFromMany( 274 Worklist, const_cast<BasicBlock *>(B->getParent()), ExclusionSet, 275 DT, LI); 276 } 277 278 return isPotentiallyReachable( 279 A->getParent(), B->getParent(), ExclusionSet, DT, LI); 280 } 281