xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/CFG.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions performs analyses on basic blocks, and instructions
10 // contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/CFG.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/IR/Dominators.h"
17 #include "llvm/Support/CommandLine.h"
18 
19 using namespace llvm;
20 
21 // The max number of basic blocks explored during reachability analysis between
22 // two basic blocks. This is kept reasonably small to limit compile time when
23 // repeatedly used by clients of this analysis (such as captureTracking).
24 static cl::opt<unsigned> DefaultMaxBBsToExplore(
25     "dom-tree-reachability-max-bbs-to-explore", cl::Hidden,
26     cl::desc("Max number of BBs to explore for reachability analysis"),
27     cl::init(32));
28 
29 /// FindFunctionBackedges - Analyze the specified function to find all of the
30 /// loop backedges in the function and return them.  This is a relatively cheap
31 /// (compared to computing dominators and loop info) analysis.
32 ///
33 /// The output is added to Result, as pairs of <from,to> edge info.
34 void llvm::FindFunctionBackedges(const Function &F,
35      SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
36   const BasicBlock *BB = &F.getEntryBlock();
37   if (succ_empty(BB))
38     return;
39 
40   SmallPtrSet<const BasicBlock*, 8> Visited;
41   SmallVector<std::pair<const BasicBlock *, const_succ_iterator>, 8> VisitStack;
42   SmallPtrSet<const BasicBlock*, 8> InStack;
43 
44   Visited.insert(BB);
45   VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
46   InStack.insert(BB);
47   do {
48     std::pair<const BasicBlock *, const_succ_iterator> &Top = VisitStack.back();
49     const BasicBlock *ParentBB = Top.first;
50     const_succ_iterator &I = Top.second;
51 
52     bool FoundNew = false;
53     while (I != succ_end(ParentBB)) {
54       BB = *I++;
55       if (Visited.insert(BB).second) {
56         FoundNew = true;
57         break;
58       }
59       // Successor is in VisitStack, it's a back edge.
60       if (InStack.count(BB))
61         Result.push_back(std::make_pair(ParentBB, BB));
62     }
63 
64     if (FoundNew) {
65       // Go down one level if there is a unvisited successor.
66       InStack.insert(BB);
67       VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
68     } else {
69       // Go up one level.
70       InStack.erase(VisitStack.pop_back_val().first);
71     }
72   } while (!VisitStack.empty());
73 }
74 
75 /// GetSuccessorNumber - Search for the specified successor of basic block BB
76 /// and return its position in the terminator instruction's list of
77 /// successors.  It is an error to call this with a block that is not a
78 /// successor.
79 unsigned llvm::GetSuccessorNumber(const BasicBlock *BB,
80     const BasicBlock *Succ) {
81   const Instruction *Term = BB->getTerminator();
82 #ifndef NDEBUG
83   unsigned e = Term->getNumSuccessors();
84 #endif
85   for (unsigned i = 0; ; ++i) {
86     assert(i != e && "Didn't find edge?");
87     if (Term->getSuccessor(i) == Succ)
88       return i;
89   }
90 }
91 
92 /// isCriticalEdge - Return true if the specified edge is a critical edge.
93 /// Critical edges are edges from a block with multiple successors to a block
94 /// with multiple predecessors.
95 bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum,
96                           bool AllowIdenticalEdges) {
97   assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
98   return isCriticalEdge(TI, TI->getSuccessor(SuccNum), AllowIdenticalEdges);
99 }
100 
101 bool llvm::isCriticalEdge(const Instruction *TI, const BasicBlock *Dest,
102                           bool AllowIdenticalEdges) {
103   assert(TI->isTerminator() && "Must be a terminator to have successors!");
104   if (TI->getNumSuccessors() == 1) return false;
105 
106   assert(is_contained(predecessors(Dest), TI->getParent()) &&
107          "No edge between TI's block and Dest.");
108 
109   const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
110 
111   // If there is more than one predecessor, this is a critical edge...
112   assert(I != E && "No preds, but we have an edge to the block?");
113   const BasicBlock *FirstPred = *I;
114   ++I;        // Skip one edge due to the incoming arc from TI.
115   if (!AllowIdenticalEdges)
116     return I != E;
117 
118   // If AllowIdenticalEdges is true, then we allow this edge to be considered
119   // non-critical iff all preds come from TI's block.
120   for (; I != E; ++I)
121     if (*I != FirstPred)
122       return true;
123   return false;
124 }
125 
126 // LoopInfo contains a mapping from basic block to the innermost loop. Find
127 // the outermost loop in the loop nest that contains BB.
128 static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
129   const Loop *L = LI->getLoopFor(BB);
130   return L ? L->getOutermostLoop() : nullptr;
131 }
132 
133 template <class StopSetT>
134 static bool isReachableImpl(SmallVectorImpl<BasicBlock *> &Worklist,
135                             const StopSetT &StopSet,
136                             const SmallPtrSetImpl<BasicBlock *> *ExclusionSet,
137                             const DominatorTree *DT, const LoopInfo *LI) {
138   // When a stop block is unreachable, it's dominated from everywhere,
139   // regardless of whether there's a path between the two blocks.
140   if (DT) {
141     for (auto *BB : StopSet) {
142       if (!DT->isReachableFromEntry(BB)) {
143         DT = nullptr;
144         break;
145       }
146     }
147   }
148 
149   // We can't skip directly from a block that dominates the stop block if the
150   // exclusion block is potentially in between.
151   if (ExclusionSet && !ExclusionSet->empty())
152     DT = nullptr;
153 
154   // Normally any block in a loop is reachable from any other block in a loop,
155   // however excluded blocks might partition the body of a loop to make that
156   // untrue.
157   SmallPtrSet<const Loop *, 8> LoopsWithHoles;
158   if (LI && ExclusionSet) {
159     for (auto *BB : *ExclusionSet) {
160       if (const Loop *L = getOutermostLoop(LI, BB))
161         LoopsWithHoles.insert(L);
162     }
163   }
164 
165   SmallPtrSet<const Loop *, 2> StopLoops;
166   if (LI) {
167     for (auto *StopSetBB : StopSet) {
168       if (const Loop *L = getOutermostLoop(LI, StopSetBB))
169         StopLoops.insert(L);
170     }
171   }
172 
173   unsigned Limit = DefaultMaxBBsToExplore;
174   SmallPtrSet<const BasicBlock*, 32> Visited;
175   do {
176     BasicBlock *BB = Worklist.pop_back_val();
177     if (!Visited.insert(BB).second)
178       continue;
179     if (StopSet.contains(BB))
180       return true;
181     if (ExclusionSet && ExclusionSet->count(BB))
182       continue;
183     if (DT) {
184       if (llvm::any_of(StopSet, [&](const BasicBlock *StopBB) {
185             return DT->dominates(BB, StopBB);
186           }))
187         return true;
188     }
189 
190     const Loop *Outer = nullptr;
191     if (LI) {
192       Outer = getOutermostLoop(LI, BB);
193       // If we're in a loop with a hole, not all blocks in the loop are
194       // reachable from all other blocks. That implies we can't simply jump to
195       // the loop's exit blocks, as that exit might need to pass through an
196       // excluded block. Clear Outer so we process BB's successors.
197       if (LoopsWithHoles.count(Outer))
198         Outer = nullptr;
199       if (StopLoops.contains(Outer))
200         return true;
201     }
202 
203     if (!--Limit) {
204       // We haven't been able to prove it one way or the other. Conservatively
205       // answer true -- that there is potentially a path.
206       return true;
207     }
208 
209     if (Outer) {
210       // All blocks in a single loop are reachable from all other blocks. From
211       // any of these blocks, we can skip directly to the exits of the loop,
212       // ignoring any other blocks inside the loop body.
213       Outer->getExitBlocks(Worklist);
214     } else {
215       Worklist.append(succ_begin(BB), succ_end(BB));
216     }
217   } while (!Worklist.empty());
218 
219   // We have exhausted all possible paths and are certain that 'To' can not be
220   // reached from 'From'.
221   return false;
222 }
223 
224 template <class T> class SingleEntrySet {
225 public:
226   using const_iterator = const T *;
227 
228   SingleEntrySet(T Elem) : Elem(Elem) {}
229 
230   bool contains(T Other) const { return Elem == Other; }
231 
232   const_iterator begin() const { return &Elem; }
233   const_iterator end() const { return &Elem + 1; }
234 
235 private:
236   T Elem;
237 };
238 
239 bool llvm::isPotentiallyReachableFromMany(
240     SmallVectorImpl<BasicBlock *> &Worklist, const BasicBlock *StopBB,
241     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
242     const LoopInfo *LI) {
243   return isReachableImpl<SingleEntrySet<const BasicBlock *>>(
244       Worklist, SingleEntrySet<const BasicBlock *>(StopBB), ExclusionSet, DT,
245       LI);
246 }
247 
248 bool llvm::isManyPotentiallyReachableFromMany(
249     SmallVectorImpl<BasicBlock *> &Worklist,
250     const SmallPtrSetImpl<const BasicBlock *> &StopSet,
251     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
252     const LoopInfo *LI) {
253   return isReachableImpl<SmallPtrSetImpl<const BasicBlock *>>(
254       Worklist, StopSet, ExclusionSet, DT, LI);
255 }
256 
257 bool llvm::isPotentiallyReachable(
258     const BasicBlock *A, const BasicBlock *B,
259     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
260     const LoopInfo *LI) {
261   assert(A->getParent() == B->getParent() &&
262          "This analysis is function-local!");
263 
264   if (DT) {
265     if (DT->isReachableFromEntry(A) && !DT->isReachableFromEntry(B))
266       return false;
267     if (!ExclusionSet || ExclusionSet->empty()) {
268       if (A->isEntryBlock() && DT->isReachableFromEntry(B))
269         return true;
270       if (B->isEntryBlock() && DT->isReachableFromEntry(A))
271         return false;
272     }
273   }
274 
275   SmallVector<BasicBlock*, 32> Worklist;
276   Worklist.push_back(const_cast<BasicBlock*>(A));
277 
278   return isPotentiallyReachableFromMany(Worklist, B, ExclusionSet, DT, LI);
279 }
280 
281 bool llvm::isPotentiallyReachable(
282     const Instruction *A, const Instruction *B,
283     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
284     const LoopInfo *LI) {
285   assert(A->getParent()->getParent() == B->getParent()->getParent() &&
286          "This analysis is function-local!");
287 
288   if (A->getParent() == B->getParent()) {
289     // The same block case is special because it's the only time we're looking
290     // within a single block to see which instruction comes first. Once we
291     // start looking at multiple blocks, the first instruction of the block is
292     // reachable, so we only need to determine reachability between whole
293     // blocks.
294     BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
295 
296     // If the block is in a loop then we can reach any instruction in the block
297     // from any other instruction in the block by going around a backedge.
298     if (LI && LI->getLoopFor(BB) != nullptr)
299       return true;
300 
301     // If A comes before B, then B is definitively reachable from A.
302     if (A == B || A->comesBefore(B))
303       return true;
304 
305     // Can't be in a loop if it's the entry block -- the entry block may not
306     // have predecessors.
307     if (BB->isEntryBlock())
308       return false;
309 
310     // Otherwise, continue doing the normal per-BB CFG walk.
311     SmallVector<BasicBlock*, 32> Worklist;
312     Worklist.append(succ_begin(BB), succ_end(BB));
313     if (Worklist.empty()) {
314       // We've proven that there's no path!
315       return false;
316     }
317 
318     return isPotentiallyReachableFromMany(Worklist, B->getParent(),
319                                           ExclusionSet, DT, LI);
320   }
321 
322   return isPotentiallyReachable(
323       A->getParent(), B->getParent(), ExclusionSet, DT, LI);
324 }
325