1 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions performs analyses on basic blocks, and instructions 10 // contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/CFG.h" 15 #include "llvm/Analysis/LoopInfo.h" 16 #include "llvm/IR/Dominators.h" 17 #include "llvm/Support/CommandLine.h" 18 19 using namespace llvm; 20 21 // The max number of basic blocks explored during reachability analysis between 22 // two basic blocks. This is kept reasonably small to limit compile time when 23 // repeatedly used by clients of this analysis (such as captureTracking). 24 static cl::opt<unsigned> DefaultMaxBBsToExplore( 25 "dom-tree-reachability-max-bbs-to-explore", cl::Hidden, 26 cl::desc("Max number of BBs to explore for reachability analysis"), 27 cl::init(32)); 28 29 /// FindFunctionBackedges - Analyze the specified function to find all of the 30 /// loop backedges in the function and return them. This is a relatively cheap 31 /// (compared to computing dominators and loop info) analysis. 32 /// 33 /// The output is added to Result, as pairs of <from,to> edge info. 34 void llvm::FindFunctionBackedges(const Function &F, 35 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { 36 const BasicBlock *BB = &F.getEntryBlock(); 37 if (succ_empty(BB)) 38 return; 39 40 SmallPtrSet<const BasicBlock*, 8> Visited; 41 SmallVector<std::pair<const BasicBlock *, const_succ_iterator>, 8> VisitStack; 42 SmallPtrSet<const BasicBlock*, 8> InStack; 43 44 Visited.insert(BB); 45 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 46 InStack.insert(BB); 47 do { 48 std::pair<const BasicBlock *, const_succ_iterator> &Top = VisitStack.back(); 49 const BasicBlock *ParentBB = Top.first; 50 const_succ_iterator &I = Top.second; 51 52 bool FoundNew = false; 53 while (I != succ_end(ParentBB)) { 54 BB = *I++; 55 if (Visited.insert(BB).second) { 56 FoundNew = true; 57 break; 58 } 59 // Successor is in VisitStack, it's a back edge. 60 if (InStack.count(BB)) 61 Result.push_back(std::make_pair(ParentBB, BB)); 62 } 63 64 if (FoundNew) { 65 // Go down one level if there is a unvisited successor. 66 InStack.insert(BB); 67 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 68 } else { 69 // Go up one level. 70 InStack.erase(VisitStack.pop_back_val().first); 71 } 72 } while (!VisitStack.empty()); 73 } 74 75 /// GetSuccessorNumber - Search for the specified successor of basic block BB 76 /// and return its position in the terminator instruction's list of 77 /// successors. It is an error to call this with a block that is not a 78 /// successor. 79 unsigned llvm::GetSuccessorNumber(const BasicBlock *BB, 80 const BasicBlock *Succ) { 81 const Instruction *Term = BB->getTerminator(); 82 #ifndef NDEBUG 83 unsigned e = Term->getNumSuccessors(); 84 #endif 85 for (unsigned i = 0; ; ++i) { 86 assert(i != e && "Didn't find edge?"); 87 if (Term->getSuccessor(i) == Succ) 88 return i; 89 } 90 } 91 92 /// isCriticalEdge - Return true if the specified edge is a critical edge. 93 /// Critical edges are edges from a block with multiple successors to a block 94 /// with multiple predecessors. 95 bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum, 96 bool AllowIdenticalEdges) { 97 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!"); 98 return isCriticalEdge(TI, TI->getSuccessor(SuccNum), AllowIdenticalEdges); 99 } 100 101 bool llvm::isCriticalEdge(const Instruction *TI, const BasicBlock *Dest, 102 bool AllowIdenticalEdges) { 103 assert(TI->isTerminator() && "Must be a terminator to have successors!"); 104 if (TI->getNumSuccessors() == 1) return false; 105 106 assert(is_contained(predecessors(Dest), TI->getParent()) && 107 "No edge between TI's block and Dest."); 108 109 const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest); 110 111 // If there is more than one predecessor, this is a critical edge... 112 assert(I != E && "No preds, but we have an edge to the block?"); 113 const BasicBlock *FirstPred = *I; 114 ++I; // Skip one edge due to the incoming arc from TI. 115 if (!AllowIdenticalEdges) 116 return I != E; 117 118 // If AllowIdenticalEdges is true, then we allow this edge to be considered 119 // non-critical iff all preds come from TI's block. 120 for (; I != E; ++I) 121 if (*I != FirstPred) 122 return true; 123 return false; 124 } 125 126 // LoopInfo contains a mapping from basic block to the innermost loop. Find 127 // the outermost loop in the loop nest that contains BB. 128 static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) { 129 const Loop *L = LI->getLoopFor(BB); 130 return L ? L->getOutermostLoop() : nullptr; 131 } 132 133 template <class StopSetT> 134 static bool isReachableImpl(SmallVectorImpl<BasicBlock *> &Worklist, 135 const StopSetT &StopSet, 136 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, 137 const DominatorTree *DT, const LoopInfo *LI) { 138 // When a stop block is unreachable, it's dominated from everywhere, 139 // regardless of whether there's a path between the two blocks. 140 if (DT) { 141 for (auto *BB : StopSet) { 142 if (!DT->isReachableFromEntry(BB)) { 143 DT = nullptr; 144 break; 145 } 146 } 147 } 148 149 // We can't skip directly from a block that dominates the stop block if the 150 // exclusion block is potentially in between. 151 if (ExclusionSet && !ExclusionSet->empty()) 152 DT = nullptr; 153 154 // Normally any block in a loop is reachable from any other block in a loop, 155 // however excluded blocks might partition the body of a loop to make that 156 // untrue. 157 SmallPtrSet<const Loop *, 8> LoopsWithHoles; 158 if (LI && ExclusionSet) { 159 for (auto *BB : *ExclusionSet) { 160 if (const Loop *L = getOutermostLoop(LI, BB)) 161 LoopsWithHoles.insert(L); 162 } 163 } 164 165 SmallPtrSet<const Loop *, 2> StopLoops; 166 if (LI) { 167 for (auto *StopSetBB : StopSet) { 168 if (const Loop *L = getOutermostLoop(LI, StopSetBB)) 169 StopLoops.insert(L); 170 } 171 } 172 173 unsigned Limit = DefaultMaxBBsToExplore; 174 SmallPtrSet<const BasicBlock*, 32> Visited; 175 do { 176 BasicBlock *BB = Worklist.pop_back_val(); 177 if (!Visited.insert(BB).second) 178 continue; 179 if (StopSet.contains(BB)) 180 return true; 181 if (ExclusionSet && ExclusionSet->count(BB)) 182 continue; 183 if (DT) { 184 if (llvm::any_of(StopSet, [&](const BasicBlock *StopBB) { 185 return DT->dominates(BB, StopBB); 186 })) 187 return true; 188 } 189 190 const Loop *Outer = nullptr; 191 if (LI) { 192 Outer = getOutermostLoop(LI, BB); 193 // If we're in a loop with a hole, not all blocks in the loop are 194 // reachable from all other blocks. That implies we can't simply jump to 195 // the loop's exit blocks, as that exit might need to pass through an 196 // excluded block. Clear Outer so we process BB's successors. 197 if (LoopsWithHoles.count(Outer)) 198 Outer = nullptr; 199 if (StopLoops.contains(Outer)) 200 return true; 201 } 202 203 if (!--Limit) { 204 // We haven't been able to prove it one way or the other. Conservatively 205 // answer true -- that there is potentially a path. 206 return true; 207 } 208 209 if (Outer) { 210 // All blocks in a single loop are reachable from all other blocks. From 211 // any of these blocks, we can skip directly to the exits of the loop, 212 // ignoring any other blocks inside the loop body. 213 Outer->getExitBlocks(Worklist); 214 } else { 215 Worklist.append(succ_begin(BB), succ_end(BB)); 216 } 217 } while (!Worklist.empty()); 218 219 // We have exhausted all possible paths and are certain that 'To' can not be 220 // reached from 'From'. 221 return false; 222 } 223 224 template <class T> class SingleEntrySet { 225 public: 226 using const_iterator = const T *; 227 228 SingleEntrySet(T Elem) : Elem(Elem) {} 229 230 bool contains(T Other) const { return Elem == Other; } 231 232 const_iterator begin() const { return &Elem; } 233 const_iterator end() const { return &Elem + 1; } 234 235 private: 236 T Elem; 237 }; 238 239 bool llvm::isPotentiallyReachableFromMany( 240 SmallVectorImpl<BasicBlock *> &Worklist, const BasicBlock *StopBB, 241 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT, 242 const LoopInfo *LI) { 243 return isReachableImpl<SingleEntrySet<const BasicBlock *>>( 244 Worklist, SingleEntrySet<const BasicBlock *>(StopBB), ExclusionSet, DT, 245 LI); 246 } 247 248 bool llvm::isManyPotentiallyReachableFromMany( 249 SmallVectorImpl<BasicBlock *> &Worklist, 250 const SmallPtrSetImpl<const BasicBlock *> &StopSet, 251 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT, 252 const LoopInfo *LI) { 253 return isReachableImpl<SmallPtrSetImpl<const BasicBlock *>>( 254 Worklist, StopSet, ExclusionSet, DT, LI); 255 } 256 257 bool llvm::isPotentiallyReachable( 258 const BasicBlock *A, const BasicBlock *B, 259 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT, 260 const LoopInfo *LI) { 261 assert(A->getParent() == B->getParent() && 262 "This analysis is function-local!"); 263 264 if (DT) { 265 if (DT->isReachableFromEntry(A) && !DT->isReachableFromEntry(B)) 266 return false; 267 if (!ExclusionSet || ExclusionSet->empty()) { 268 if (A->isEntryBlock() && DT->isReachableFromEntry(B)) 269 return true; 270 if (B->isEntryBlock() && DT->isReachableFromEntry(A)) 271 return false; 272 } 273 } 274 275 SmallVector<BasicBlock*, 32> Worklist; 276 Worklist.push_back(const_cast<BasicBlock*>(A)); 277 278 return isPotentiallyReachableFromMany(Worklist, B, ExclusionSet, DT, LI); 279 } 280 281 bool llvm::isPotentiallyReachable( 282 const Instruction *A, const Instruction *B, 283 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT, 284 const LoopInfo *LI) { 285 assert(A->getParent()->getParent() == B->getParent()->getParent() && 286 "This analysis is function-local!"); 287 288 if (A->getParent() == B->getParent()) { 289 // The same block case is special because it's the only time we're looking 290 // within a single block to see which instruction comes first. Once we 291 // start looking at multiple blocks, the first instruction of the block is 292 // reachable, so we only need to determine reachability between whole 293 // blocks. 294 BasicBlock *BB = const_cast<BasicBlock *>(A->getParent()); 295 296 // If the block is in a loop then we can reach any instruction in the block 297 // from any other instruction in the block by going around a backedge. 298 if (LI && LI->getLoopFor(BB) != nullptr) 299 return true; 300 301 // If A comes before B, then B is definitively reachable from A. 302 if (A == B || A->comesBefore(B)) 303 return true; 304 305 // Can't be in a loop if it's the entry block -- the entry block may not 306 // have predecessors. 307 if (BB->isEntryBlock()) 308 return false; 309 310 // Otherwise, continue doing the normal per-BB CFG walk. 311 SmallVector<BasicBlock*, 32> Worklist; 312 Worklist.append(succ_begin(BB), succ_end(BB)); 313 if (Worklist.empty()) { 314 // We've proven that there's no path! 315 return false; 316 } 317 318 return isPotentiallyReachableFromMany(Worklist, B->getParent(), 319 ExclusionSet, DT, LI); 320 } 321 322 return isPotentiallyReachable( 323 A->getParent(), B->getParent(), ExclusionSet, DT, LI); 324 } 325