1 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions performs analyses on basic blocks, and instructions
10 // contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/CFG.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/IR/Dominators.h"
17 #include "llvm/Support/CommandLine.h"
18
19 using namespace llvm;
20
21 // The max number of basic blocks explored during reachability analysis between
22 // two basic blocks. This is kept reasonably small to limit compile time when
23 // repeatedly used by clients of this analysis (such as captureTracking).
24 static cl::opt<unsigned> DefaultMaxBBsToExplore(
25 "dom-tree-reachability-max-bbs-to-explore", cl::Hidden,
26 cl::desc("Max number of BBs to explore for reachability analysis"),
27 cl::init(32));
28
29 /// FindFunctionBackedges - Analyze the specified function to find all of the
30 /// loop backedges in the function and return them. This is a relatively cheap
31 /// (compared to computing dominators and loop info) analysis.
32 ///
33 /// The output is added to Result, as pairs of <from,to> edge info.
FindFunctionBackedges(const Function & F,SmallVectorImpl<std::pair<const BasicBlock *,const BasicBlock * >> & Result)34 void llvm::FindFunctionBackedges(const Function &F,
35 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
36 const BasicBlock *BB = &F.getEntryBlock();
37 if (succ_empty(BB))
38 return;
39
40 SmallPtrSet<const BasicBlock*, 8> Visited;
41 SmallVector<std::pair<const BasicBlock *, const_succ_iterator>, 8> VisitStack;
42 SmallPtrSet<const BasicBlock*, 8> InStack;
43
44 Visited.insert(BB);
45 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
46 InStack.insert(BB);
47 do {
48 std::pair<const BasicBlock *, const_succ_iterator> &Top = VisitStack.back();
49 const BasicBlock *ParentBB = Top.first;
50 const_succ_iterator &I = Top.second;
51
52 bool FoundNew = false;
53 while (I != succ_end(ParentBB)) {
54 BB = *I++;
55 if (Visited.insert(BB).second) {
56 FoundNew = true;
57 break;
58 }
59 // Successor is in VisitStack, it's a back edge.
60 if (InStack.count(BB))
61 Result.push_back(std::make_pair(ParentBB, BB));
62 }
63
64 if (FoundNew) {
65 // Go down one level if there is a unvisited successor.
66 InStack.insert(BB);
67 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
68 } else {
69 // Go up one level.
70 InStack.erase(VisitStack.pop_back_val().first);
71 }
72 } while (!VisitStack.empty());
73 }
74
75 /// GetSuccessorNumber - Search for the specified successor of basic block BB
76 /// and return its position in the terminator instruction's list of
77 /// successors. It is an error to call this with a block that is not a
78 /// successor.
GetSuccessorNumber(const BasicBlock * BB,const BasicBlock * Succ)79 unsigned llvm::GetSuccessorNumber(const BasicBlock *BB,
80 const BasicBlock *Succ) {
81 const Instruction *Term = BB->getTerminator();
82 #ifndef NDEBUG
83 unsigned e = Term->getNumSuccessors();
84 #endif
85 for (unsigned i = 0; ; ++i) {
86 assert(i != e && "Didn't find edge?");
87 if (Term->getSuccessor(i) == Succ)
88 return i;
89 }
90 }
91
92 /// isCriticalEdge - Return true if the specified edge is a critical edge.
93 /// Critical edges are edges from a block with multiple successors to a block
94 /// with multiple predecessors.
isCriticalEdge(const Instruction * TI,unsigned SuccNum,bool AllowIdenticalEdges)95 bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum,
96 bool AllowIdenticalEdges) {
97 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
98 return isCriticalEdge(TI, TI->getSuccessor(SuccNum), AllowIdenticalEdges);
99 }
100
isCriticalEdge(const Instruction * TI,const BasicBlock * Dest,bool AllowIdenticalEdges)101 bool llvm::isCriticalEdge(const Instruction *TI, const BasicBlock *Dest,
102 bool AllowIdenticalEdges) {
103 assert(TI->isTerminator() && "Must be a terminator to have successors!");
104 if (TI->getNumSuccessors() == 1) return false;
105
106 assert(is_contained(predecessors(Dest), TI->getParent()) &&
107 "No edge between TI's block and Dest.");
108
109 const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
110
111 // If there is more than one predecessor, this is a critical edge...
112 assert(I != E && "No preds, but we have an edge to the block?");
113 const BasicBlock *FirstPred = *I;
114 ++I; // Skip one edge due to the incoming arc from TI.
115 if (!AllowIdenticalEdges)
116 return I != E;
117
118 // If AllowIdenticalEdges is true, then we allow this edge to be considered
119 // non-critical iff all preds come from TI's block.
120 for (; I != E; ++I)
121 if (*I != FirstPred)
122 return true;
123 return false;
124 }
125
126 // LoopInfo contains a mapping from basic block to the innermost loop. Find
127 // the outermost loop in the loop nest that contains BB.
getOutermostLoop(const LoopInfo * LI,const BasicBlock * BB)128 static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
129 const Loop *L = LI->getLoopFor(BB);
130 return L ? L->getOutermostLoop() : nullptr;
131 }
132
133 template <class StopSetT>
isReachableImpl(SmallVectorImpl<BasicBlock * > & Worklist,const StopSetT & StopSet,const SmallPtrSetImpl<BasicBlock * > * ExclusionSet,const DominatorTree * DT,const LoopInfo * LI)134 static bool isReachableImpl(SmallVectorImpl<BasicBlock *> &Worklist,
135 const StopSetT &StopSet,
136 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet,
137 const DominatorTree *DT, const LoopInfo *LI) {
138 // When a stop block is unreachable, it's dominated from everywhere,
139 // regardless of whether there's a path between the two blocks.
140 if (DT) {
141 for (auto *BB : StopSet) {
142 if (!DT->isReachableFromEntry(BB)) {
143 DT = nullptr;
144 break;
145 }
146 }
147 }
148
149 // We can't skip directly from a block that dominates the stop block if the
150 // exclusion block is potentially in between.
151 if (ExclusionSet && !ExclusionSet->empty())
152 DT = nullptr;
153
154 // Normally any block in a loop is reachable from any other block in a loop,
155 // however excluded blocks might partition the body of a loop to make that
156 // untrue.
157 SmallPtrSet<const Loop *, 8> LoopsWithHoles;
158 if (LI && ExclusionSet) {
159 for (auto *BB : *ExclusionSet) {
160 if (const Loop *L = getOutermostLoop(LI, BB))
161 LoopsWithHoles.insert(L);
162 }
163 }
164
165 SmallPtrSet<const Loop *, 2> StopLoops;
166 if (LI) {
167 for (auto *StopSetBB : StopSet) {
168 if (const Loop *L = getOutermostLoop(LI, StopSetBB))
169 StopLoops.insert(L);
170 }
171 }
172
173 unsigned Limit = DefaultMaxBBsToExplore;
174 SmallPtrSet<const BasicBlock*, 32> Visited;
175 do {
176 BasicBlock *BB = Worklist.pop_back_val();
177 if (!Visited.insert(BB).second)
178 continue;
179 if (StopSet.contains(BB))
180 return true;
181 if (ExclusionSet && ExclusionSet->count(BB))
182 continue;
183 if (DT) {
184 if (llvm::any_of(StopSet, [&](const BasicBlock *StopBB) {
185 return DT->dominates(BB, StopBB);
186 }))
187 return true;
188 }
189
190 const Loop *Outer = nullptr;
191 if (LI) {
192 Outer = getOutermostLoop(LI, BB);
193 // If we're in a loop with a hole, not all blocks in the loop are
194 // reachable from all other blocks. That implies we can't simply jump to
195 // the loop's exit blocks, as that exit might need to pass through an
196 // excluded block. Clear Outer so we process BB's successors.
197 if (LoopsWithHoles.count(Outer))
198 Outer = nullptr;
199 if (StopLoops.contains(Outer))
200 return true;
201 }
202
203 if (!--Limit) {
204 // We haven't been able to prove it one way or the other. Conservatively
205 // answer true -- that there is potentially a path.
206 return true;
207 }
208
209 if (Outer) {
210 // All blocks in a single loop are reachable from all other blocks. From
211 // any of these blocks, we can skip directly to the exits of the loop,
212 // ignoring any other blocks inside the loop body.
213 Outer->getExitBlocks(Worklist);
214 } else {
215 Worklist.append(succ_begin(BB), succ_end(BB));
216 }
217 } while (!Worklist.empty());
218
219 // We have exhausted all possible paths and are certain that 'To' can not be
220 // reached from 'From'.
221 return false;
222 }
223
224 template <class T> class SingleEntrySet {
225 public:
226 using const_iterator = const T *;
227
SingleEntrySet(T Elem)228 SingleEntrySet(T Elem) : Elem(Elem) {}
229
contains(T Other) const230 bool contains(T Other) const { return Elem == Other; }
231
begin() const232 const_iterator begin() const { return &Elem; }
end() const233 const_iterator end() const { return &Elem + 1; }
234
235 private:
236 T Elem;
237 };
238
isPotentiallyReachableFromMany(SmallVectorImpl<BasicBlock * > & Worklist,const BasicBlock * StopBB,const SmallPtrSetImpl<BasicBlock * > * ExclusionSet,const DominatorTree * DT,const LoopInfo * LI)239 bool llvm::isPotentiallyReachableFromMany(
240 SmallVectorImpl<BasicBlock *> &Worklist, const BasicBlock *StopBB,
241 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
242 const LoopInfo *LI) {
243 return isReachableImpl<SingleEntrySet<const BasicBlock *>>(
244 Worklist, SingleEntrySet<const BasicBlock *>(StopBB), ExclusionSet, DT,
245 LI);
246 }
247
isManyPotentiallyReachableFromMany(SmallVectorImpl<BasicBlock * > & Worklist,const SmallPtrSetImpl<const BasicBlock * > & StopSet,const SmallPtrSetImpl<BasicBlock * > * ExclusionSet,const DominatorTree * DT,const LoopInfo * LI)248 bool llvm::isManyPotentiallyReachableFromMany(
249 SmallVectorImpl<BasicBlock *> &Worklist,
250 const SmallPtrSetImpl<const BasicBlock *> &StopSet,
251 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
252 const LoopInfo *LI) {
253 return isReachableImpl<SmallPtrSetImpl<const BasicBlock *>>(
254 Worklist, StopSet, ExclusionSet, DT, LI);
255 }
256
isPotentiallyReachable(const BasicBlock * A,const BasicBlock * B,const SmallPtrSetImpl<BasicBlock * > * ExclusionSet,const DominatorTree * DT,const LoopInfo * LI)257 bool llvm::isPotentiallyReachable(
258 const BasicBlock *A, const BasicBlock *B,
259 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
260 const LoopInfo *LI) {
261 assert(A->getParent() == B->getParent() &&
262 "This analysis is function-local!");
263
264 if (DT) {
265 if (DT->isReachableFromEntry(A) && !DT->isReachableFromEntry(B))
266 return false;
267 if (!ExclusionSet || ExclusionSet->empty()) {
268 if (A->isEntryBlock() && DT->isReachableFromEntry(B))
269 return true;
270 if (B->isEntryBlock() && DT->isReachableFromEntry(A))
271 return false;
272 }
273 }
274
275 SmallVector<BasicBlock*, 32> Worklist;
276 Worklist.push_back(const_cast<BasicBlock*>(A));
277
278 return isPotentiallyReachableFromMany(Worklist, B, ExclusionSet, DT, LI);
279 }
280
isPotentiallyReachable(const Instruction * A,const Instruction * B,const SmallPtrSetImpl<BasicBlock * > * ExclusionSet,const DominatorTree * DT,const LoopInfo * LI)281 bool llvm::isPotentiallyReachable(
282 const Instruction *A, const Instruction *B,
283 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
284 const LoopInfo *LI) {
285 assert(A->getParent()->getParent() == B->getParent()->getParent() &&
286 "This analysis is function-local!");
287
288 if (A->getParent() == B->getParent()) {
289 // The same block case is special because it's the only time we're looking
290 // within a single block to see which instruction comes first. Once we
291 // start looking at multiple blocks, the first instruction of the block is
292 // reachable, so we only need to determine reachability between whole
293 // blocks.
294 BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
295
296 // If the block is in a loop then we can reach any instruction in the block
297 // from any other instruction in the block by going around a backedge.
298 if (LI && LI->getLoopFor(BB) != nullptr)
299 return true;
300
301 // If A comes before B, then B is definitively reachable from A.
302 if (A == B || A->comesBefore(B))
303 return true;
304
305 // Can't be in a loop if it's the entry block -- the entry block may not
306 // have predecessors.
307 if (BB->isEntryBlock())
308 return false;
309
310 // Otherwise, continue doing the normal per-BB CFG walk.
311 SmallVector<BasicBlock*, 32> Worklist;
312 Worklist.append(succ_begin(BB), succ_end(BB));
313 if (Worklist.empty()) {
314 // We've proven that there's no path!
315 return false;
316 }
317
318 return isPotentiallyReachableFromMany(Worklist, B->getParent(),
319 ExclusionSet, DT, LI);
320 }
321
322 return isPotentiallyReachable(
323 A->getParent(), B->getParent(), ExclusionSet, DT, LI);
324 }
325