xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp (revision f126d349810fdb512c0b01e101342d430b947488)
1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/PostDominators.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PassManager.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/BranchProbability.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <map>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "branch-prob"
51 
52 static cl::opt<bool> PrintBranchProb(
53     "print-bpi", cl::init(false), cl::Hidden,
54     cl::desc("Print the branch probability info."));
55 
56 cl::opt<std::string> PrintBranchProbFuncName(
57     "print-bpi-func-name", cl::Hidden,
58     cl::desc("The option to specify the name of the function "
59              "whose branch probability info is printed."));
60 
61 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
62                       "Branch Probability Analysis", false, true)
63 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
64 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
66 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
67 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
68                     "Branch Probability Analysis", false, true)
69 
70 BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
71     : FunctionPass(ID) {
72   initializeBranchProbabilityInfoWrapperPassPass(
73       *PassRegistry::getPassRegistry());
74 }
75 
76 char BranchProbabilityInfoWrapperPass::ID = 0;
77 
78 // Weights are for internal use only. They are used by heuristics to help to
79 // estimate edges' probability. Example:
80 //
81 // Using "Loop Branch Heuristics" we predict weights of edges for the
82 // block BB2.
83 //         ...
84 //          |
85 //          V
86 //         BB1<-+
87 //          |   |
88 //          |   | (Weight = 124)
89 //          V   |
90 //         BB2--+
91 //          |
92 //          | (Weight = 4)
93 //          V
94 //         BB3
95 //
96 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
97 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
98 static const uint32_t LBH_TAKEN_WEIGHT = 124;
99 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
100 
101 /// Unreachable-terminating branch taken probability.
102 ///
103 /// This is the probability for a branch being taken to a block that terminates
104 /// (eventually) in unreachable. These are predicted as unlikely as possible.
105 /// All reachable probability will proportionally share the remaining part.
106 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
107 
108 /// Heuristics and lookup tables for non-loop branches:
109 /// Pointer Heuristics (PH)
110 static const uint32_t PH_TAKEN_WEIGHT = 20;
111 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
112 static const BranchProbability
113     PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
114 static const BranchProbability
115     PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
116 
117 using ProbabilityList = SmallVector<BranchProbability>;
118 using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>;
119 
120 /// Pointer comparisons:
121 static const ProbabilityTable PointerTable{
122     {ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely
123     {ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely
124 };
125 
126 /// Zero Heuristics (ZH)
127 static const uint32_t ZH_TAKEN_WEIGHT = 20;
128 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
129 static const BranchProbability
130     ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
131 static const BranchProbability
132     ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
133 
134 /// Integer compares with 0:
135 static const ProbabilityTable ICmpWithZeroTable{
136     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == 0 -> Unlikely
137     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != 0 -> Likely
138     {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0  -> Unlikely
139     {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0  -> Likely
140 };
141 
142 /// Integer compares with -1:
143 static const ProbabilityTable ICmpWithMinusOneTable{
144     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == -1 -> Unlikely
145     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != -1 -> Likely
146     // InstCombine canonicalizes X >= 0 into X > -1
147     {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0  -> Likely
148 };
149 
150 /// Integer compares with 1:
151 static const ProbabilityTable ICmpWithOneTable{
152     // InstCombine canonicalizes X <= 0 into X < 1
153     {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely
154 };
155 
156 /// strcmp and similar functions return zero, negative, or positive, if the
157 /// first string is equal, less, or greater than the second. We consider it
158 /// likely that the strings are not equal, so a comparison with zero is
159 /// probably false, but also a comparison with any other number is also
160 /// probably false given that what exactly is returned for nonzero values is
161 /// not specified. Any kind of comparison other than equality we know
162 /// nothing about.
163 static const ProbabilityTable ICmpWithLibCallTable{
164     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},
165     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},
166 };
167 
168 // Floating-Point Heuristics (FPH)
169 static const uint32_t FPH_TAKEN_WEIGHT = 20;
170 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
171 
172 /// This is the probability for an ordered floating point comparison.
173 static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
174 /// This is the probability for an unordered floating point comparison, it means
175 /// one or two of the operands are NaN. Usually it is used to test for an
176 /// exceptional case, so the result is unlikely.
177 static const uint32_t FPH_UNO_WEIGHT = 1;
178 
179 static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT,
180                                               FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
181 static const BranchProbability
182     FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
183 static const BranchProbability
184     FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
185 static const BranchProbability
186     FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
187 
188 /// Floating-Point compares:
189 static const ProbabilityTable FCmpTable{
190     {FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely
191     {FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely
192 };
193 
194 /// Set of dedicated "absolute" execution weights for a block. These weights are
195 /// meaningful relative to each other and their derivatives only.
196 enum class BlockExecWeight : std::uint32_t {
197   /// Special weight used for cases with exact zero probability.
198   ZERO = 0x0,
199   /// Minimal possible non zero weight.
200   LOWEST_NON_ZERO = 0x1,
201   /// Weight to an 'unreachable' block.
202   UNREACHABLE = ZERO,
203   /// Weight to a block containing non returning call.
204   NORETURN = LOWEST_NON_ZERO,
205   /// Weight to 'unwind' block of an invoke instruction.
206   UNWIND = LOWEST_NON_ZERO,
207   /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked
208   /// with attribute 'cold'.
209   COLD = 0xffff,
210   /// Default weight is used in cases when there is no dedicated execution
211   /// weight set. It is not propagated through the domination line either.
212   DEFAULT = 0xfffff
213 };
214 
215 BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
216   // Record SCC numbers of blocks in the CFG to identify irreducible loops.
217   // FIXME: We could only calculate this if the CFG is known to be irreducible
218   // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
219   int SccNum = 0;
220   for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
221        ++It, ++SccNum) {
222     // Ignore single-block SCCs since they either aren't loops or LoopInfo will
223     // catch them.
224     const std::vector<const BasicBlock *> &Scc = *It;
225     if (Scc.size() == 1)
226       continue;
227 
228     LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
229     for (const auto *BB : Scc) {
230       LLVM_DEBUG(dbgs() << " " << BB->getName());
231       SccNums[BB] = SccNum;
232       calculateSccBlockType(BB, SccNum);
233     }
234     LLVM_DEBUG(dbgs() << "\n");
235   }
236 }
237 
238 int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
239   auto SccIt = SccNums.find(BB);
240   if (SccIt == SccNums.end())
241     return -1;
242   return SccIt->second;
243 }
244 
245 void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
246     int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {
247 
248   for (auto MapIt : SccBlocks[SccNum]) {
249     const auto *BB = MapIt.first;
250     if (isSCCHeader(BB, SccNum))
251       for (const auto *Pred : predecessors(BB))
252         if (getSCCNum(Pred) != SccNum)
253           Enters.push_back(const_cast<BasicBlock *>(BB));
254   }
255 }
256 
257 void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
258     int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
259   for (auto MapIt : SccBlocks[SccNum]) {
260     const auto *BB = MapIt.first;
261     if (isSCCExitingBlock(BB, SccNum))
262       for (const auto *Succ : successors(BB))
263         if (getSCCNum(Succ) != SccNum)
264           Exits.push_back(const_cast<BasicBlock *>(Succ));
265   }
266 }
267 
268 uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
269                                                          int SccNum) const {
270   assert(getSCCNum(BB) == SccNum);
271 
272   assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
273   const auto &SccBlockTypes = SccBlocks[SccNum];
274 
275   auto It = SccBlockTypes.find(BB);
276   if (It != SccBlockTypes.end()) {
277     return It->second;
278   }
279   return Inner;
280 }
281 
282 void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
283                                                            int SccNum) {
284   assert(getSCCNum(BB) == SccNum);
285   uint32_t BlockType = Inner;
286 
287   if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) {
288         // Consider any block that is an entry point to the SCC as
289         // a header.
290         return getSCCNum(Pred) != SccNum;
291       }))
292     BlockType |= Header;
293 
294   if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) {
295         return getSCCNum(Succ) != SccNum;
296       }))
297     BlockType |= Exiting;
298 
299   // Lazily compute the set of headers for a given SCC and cache the results
300   // in the SccHeaderMap.
301   if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
302     SccBlocks.resize(SccNum + 1);
303   auto &SccBlockTypes = SccBlocks[SccNum];
304 
305   if (BlockType != Inner) {
306     bool IsInserted;
307     std::tie(std::ignore, IsInserted) =
308         SccBlockTypes.insert(std::make_pair(BB, BlockType));
309     assert(IsInserted && "Duplicated block in SCC");
310   }
311 }
312 
313 BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
314                                             const LoopInfo &LI,
315                                             const SccInfo &SccI)
316     : BB(BB) {
317   LD.first = LI.getLoopFor(BB);
318   if (!LD.first) {
319     LD.second = SccI.getSCCNum(BB);
320   }
321 }
322 
323 bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
324   const auto &SrcBlock = Edge.first;
325   const auto &DstBlock = Edge.second;
326   return (DstBlock.getLoop() &&
327           !DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
328          // Assume that SCCs can't be nested.
329          (DstBlock.getSccNum() != -1 &&
330           SrcBlock.getSccNum() != DstBlock.getSccNum());
331 }
332 
333 bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
334   return isLoopEnteringEdge({Edge.second, Edge.first});
335 }
336 
337 bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
338     const LoopEdge &Edge) const {
339   return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
340 }
341 
342 bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
343   const auto &SrcBlock = Edge.first;
344   const auto &DstBlock = Edge.second;
345   return SrcBlock.belongsToSameLoop(DstBlock) &&
346          ((DstBlock.getLoop() &&
347            DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
348           (DstBlock.getSccNum() != -1 &&
349            SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
350 }
351 
352 void BranchProbabilityInfo::getLoopEnterBlocks(
353     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
354   if (LB.getLoop()) {
355     auto *Header = LB.getLoop()->getHeader();
356     Enters.append(pred_begin(Header), pred_end(Header));
357   } else {
358     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
359     SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
360   }
361 }
362 
363 void BranchProbabilityInfo::getLoopExitBlocks(
364     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
365   if (LB.getLoop()) {
366     LB.getLoop()->getExitBlocks(Exits);
367   } else {
368     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
369     SccI->getSccExitBlocks(LB.getSccNum(), Exits);
370   }
371 }
372 
373 // Propagate existing explicit probabilities from either profile data or
374 // 'expect' intrinsic processing. Examine metadata against unreachable
375 // heuristic. The probability of the edge coming to unreachable block is
376 // set to min of metadata and unreachable heuristic.
377 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
378   const Instruction *TI = BB->getTerminator();
379   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
380   if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
381         isa<InvokeInst>(TI)))
382     return false;
383 
384   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
385   if (!WeightsNode)
386     return false;
387 
388   // Check that the number of successors is manageable.
389   assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
390 
391   // Ensure there are weights for all of the successors. Note that the first
392   // operand to the metadata node is a name, not a weight.
393   if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
394     return false;
395 
396   // Build up the final weights that will be used in a temporary buffer.
397   // Compute the sum of all weights to later decide whether they need to
398   // be scaled to fit in 32 bits.
399   uint64_t WeightSum = 0;
400   SmallVector<uint32_t, 2> Weights;
401   SmallVector<unsigned, 2> UnreachableIdxs;
402   SmallVector<unsigned, 2> ReachableIdxs;
403   Weights.reserve(TI->getNumSuccessors());
404   for (unsigned I = 1, E = WeightsNode->getNumOperands(); I != E; ++I) {
405     ConstantInt *Weight =
406         mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(I));
407     if (!Weight)
408       return false;
409     assert(Weight->getValue().getActiveBits() <= 32 &&
410            "Too many bits for uint32_t");
411     Weights.push_back(Weight->getZExtValue());
412     WeightSum += Weights.back();
413     const LoopBlock SrcLoopBB = getLoopBlock(BB);
414     const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I - 1));
415     auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
416     if (EstimatedWeight &&
417         EstimatedWeight.getValue() <=
418             static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
419       UnreachableIdxs.push_back(I - 1);
420     else
421       ReachableIdxs.push_back(I - 1);
422   }
423   assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
424 
425   // If the sum of weights does not fit in 32 bits, scale every weight down
426   // accordingly.
427   uint64_t ScalingFactor =
428       (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
429 
430   if (ScalingFactor > 1) {
431     WeightSum = 0;
432     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
433       Weights[I] /= ScalingFactor;
434       WeightSum += Weights[I];
435     }
436   }
437   assert(WeightSum <= UINT32_MAX &&
438          "Expected weights to scale down to 32 bits");
439 
440   if (WeightSum == 0 || ReachableIdxs.size() == 0) {
441     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
442       Weights[I] = 1;
443     WeightSum = TI->getNumSuccessors();
444   }
445 
446   // Set the probability.
447   SmallVector<BranchProbability, 2> BP;
448   for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
449     BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });
450 
451   // Examine the metadata against unreachable heuristic.
452   // If the unreachable heuristic is more strong then we use it for this edge.
453   if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
454     setEdgeProbability(BB, BP);
455     return true;
456   }
457 
458   auto UnreachableProb = UR_TAKEN_PROB;
459   for (auto I : UnreachableIdxs)
460     if (UnreachableProb < BP[I]) {
461       BP[I] = UnreachableProb;
462     }
463 
464   // Sum of all edge probabilities must be 1.0. If we modified the probability
465   // of some edges then we must distribute the introduced difference over the
466   // reachable blocks.
467   //
468   // Proportional distribution: the relation between probabilities of the
469   // reachable edges is kept unchanged. That is for any reachable edges i and j:
470   //   newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
471   //   newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
472   // Where K is independent of i,j.
473   //   newBP[i] == oldBP[i] * K
474   // We need to find K.
475   // Make sum of all reachables of the left and right parts:
476   //   sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
477   // Sum of newBP must be equal to 1.0:
478   //   sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
479   //   sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
480   // Where sum_of_unreachable(newBP) is what has been just changed.
481   // Finally:
482   //   K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
483   //   K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
484   BranchProbability NewUnreachableSum = BranchProbability::getZero();
485   for (auto I : UnreachableIdxs)
486     NewUnreachableSum += BP[I];
487 
488   BranchProbability NewReachableSum =
489       BranchProbability::getOne() - NewUnreachableSum;
490 
491   BranchProbability OldReachableSum = BranchProbability::getZero();
492   for (auto I : ReachableIdxs)
493     OldReachableSum += BP[I];
494 
495   if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
496     if (OldReachableSum.isZero()) {
497       // If all oldBP[i] are zeroes then the proportional distribution results
498       // in all zero probabilities and the error stays big. In this case we
499       // evenly spread NewReachableSum over the reachable edges.
500       BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
501       for (auto I : ReachableIdxs)
502         BP[I] = PerEdge;
503     } else {
504       for (auto I : ReachableIdxs) {
505         // We use uint64_t to avoid double rounding error of the following
506         // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
507         // The formula is taken from the private constructor
508         // BranchProbability(uint32_t Numerator, uint32_t Denominator)
509         uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
510                        BP[I].getNumerator();
511         uint32_t Div = static_cast<uint32_t>(
512             divideNearest(Mul, OldReachableSum.getNumerator()));
513         BP[I] = BranchProbability::getRaw(Div);
514       }
515     }
516   }
517 
518   setEdgeProbability(BB, BP);
519 
520   return true;
521 }
522 
523 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
524 // between two pointer or pointer and NULL will fail.
525 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
526   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
527   if (!BI || !BI->isConditional())
528     return false;
529 
530   Value *Cond = BI->getCondition();
531   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
532   if (!CI || !CI->isEquality())
533     return false;
534 
535   Value *LHS = CI->getOperand(0);
536 
537   if (!LHS->getType()->isPointerTy())
538     return false;
539 
540   assert(CI->getOperand(1)->getType()->isPointerTy());
541 
542   auto Search = PointerTable.find(CI->getPredicate());
543   if (Search == PointerTable.end())
544     return false;
545   setEdgeProbability(BB, Search->second);
546   return true;
547 }
548 
549 // Compute the unlikely successors to the block BB in the loop L, specifically
550 // those that are unlikely because this is a loop, and add them to the
551 // UnlikelyBlocks set.
552 static void
553 computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
554                           SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
555   // Sometimes in a loop we have a branch whose condition is made false by
556   // taking it. This is typically something like
557   //  int n = 0;
558   //  while (...) {
559   //    if (++n >= MAX) {
560   //      n = 0;
561   //    }
562   //  }
563   // In this sort of situation taking the branch means that at the very least it
564   // won't be taken again in the next iteration of the loop, so we should
565   // consider it less likely than a typical branch.
566   //
567   // We detect this by looking back through the graph of PHI nodes that sets the
568   // value that the condition depends on, and seeing if we can reach a successor
569   // block which can be determined to make the condition false.
570   //
571   // FIXME: We currently consider unlikely blocks to be half as likely as other
572   // blocks, but if we consider the example above the likelyhood is actually
573   // 1/MAX. We could therefore be more precise in how unlikely we consider
574   // blocks to be, but it would require more careful examination of the form
575   // of the comparison expression.
576   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
577   if (!BI || !BI->isConditional())
578     return;
579 
580   // Check if the branch is based on an instruction compared with a constant
581   CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
582   if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
583       !isa<Constant>(CI->getOperand(1)))
584     return;
585 
586   // Either the instruction must be a PHI, or a chain of operations involving
587   // constants that ends in a PHI which we can then collapse into a single value
588   // if the PHI value is known.
589   Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
590   PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
591   Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
592   // Collect the instructions until we hit a PHI
593   SmallVector<BinaryOperator *, 1> InstChain;
594   while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
595          isa<Constant>(CmpLHS->getOperand(1))) {
596     // Stop if the chain extends outside of the loop
597     if (!L->contains(CmpLHS))
598       return;
599     InstChain.push_back(cast<BinaryOperator>(CmpLHS));
600     CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
601     if (CmpLHS)
602       CmpPHI = dyn_cast<PHINode>(CmpLHS);
603   }
604   if (!CmpPHI || !L->contains(CmpPHI))
605     return;
606 
607   // Trace the phi node to find all values that come from successors of BB
608   SmallPtrSet<PHINode*, 8> VisitedInsts;
609   SmallVector<PHINode*, 8> WorkList;
610   WorkList.push_back(CmpPHI);
611   VisitedInsts.insert(CmpPHI);
612   while (!WorkList.empty()) {
613     PHINode *P = WorkList.pop_back_val();
614     for (BasicBlock *B : P->blocks()) {
615       // Skip blocks that aren't part of the loop
616       if (!L->contains(B))
617         continue;
618       Value *V = P->getIncomingValueForBlock(B);
619       // If the source is a PHI add it to the work list if we haven't
620       // already visited it.
621       if (PHINode *PN = dyn_cast<PHINode>(V)) {
622         if (VisitedInsts.insert(PN).second)
623           WorkList.push_back(PN);
624         continue;
625       }
626       // If this incoming value is a constant and B is a successor of BB, then
627       // we can constant-evaluate the compare to see if it makes the branch be
628       // taken or not.
629       Constant *CmpLHSConst = dyn_cast<Constant>(V);
630       if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
631         continue;
632       // First collapse InstChain
633       for (Instruction *I : llvm::reverse(InstChain)) {
634         CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst,
635                                         cast<Constant>(I->getOperand(1)), true);
636         if (!CmpLHSConst)
637           break;
638       }
639       if (!CmpLHSConst)
640         continue;
641       // Now constant-evaluate the compare
642       Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
643                                                   CmpLHSConst, CmpConst, true);
644       // If the result means we don't branch to the block then that block is
645       // unlikely.
646       if (Result &&
647           ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
648            (Result->isOneValue() && B == BI->getSuccessor(1))))
649         UnlikelyBlocks.insert(B);
650     }
651   }
652 }
653 
654 Optional<uint32_t>
655 BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const {
656   auto WeightIt = EstimatedBlockWeight.find(BB);
657   if (WeightIt == EstimatedBlockWeight.end())
658     return None;
659   return WeightIt->second;
660 }
661 
662 Optional<uint32_t>
663 BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const {
664   auto WeightIt = EstimatedLoopWeight.find(L);
665   if (WeightIt == EstimatedLoopWeight.end())
666     return None;
667   return WeightIt->second;
668 }
669 
670 Optional<uint32_t>
671 BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const {
672   // For edges entering a loop take weight of a loop rather than an individual
673   // block in the loop.
674   return isLoopEnteringEdge(Edge)
675              ? getEstimatedLoopWeight(Edge.second.getLoopData())
676              : getEstimatedBlockWeight(Edge.second.getBlock());
677 }
678 
679 template <class IterT>
680 Optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight(
681     const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const {
682   SmallVector<uint32_t, 4> Weights;
683   Optional<uint32_t> MaxWeight;
684   for (const BasicBlock *DstBB : Successors) {
685     const LoopBlock DstLoopBB = getLoopBlock(DstBB);
686     auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
687 
688     if (!Weight)
689       return None;
690 
691     if (!MaxWeight || MaxWeight.getValue() < Weight.getValue())
692       MaxWeight = Weight;
693   }
694 
695   return MaxWeight;
696 }
697 
698 // Updates \p LoopBB's weight and returns true. If \p LoopBB has already
699 // an associated weight it is unchanged and false is returned.
700 //
701 // Please note by the algorithm the weight is not expected to change once set
702 // thus 'false' status is used to track visited blocks.
703 bool BranchProbabilityInfo::updateEstimatedBlockWeight(
704     LoopBlock &LoopBB, uint32_t BBWeight,
705     SmallVectorImpl<BasicBlock *> &BlockWorkList,
706     SmallVectorImpl<LoopBlock> &LoopWorkList) {
707   BasicBlock *BB = LoopBB.getBlock();
708 
709   // In general, weight is assigned to a block when it has final value and
710   // can't/shouldn't be changed.  However, there are cases when a block
711   // inherently has several (possibly "contradicting") weights. For example,
712   // "unwind" block may also contain "cold" call. In that case the first
713   // set weight is favored and all consequent weights are ignored.
714   if (!EstimatedBlockWeight.insert({BB, BBWeight}).second)
715     return false;
716 
717   for (BasicBlock *PredBlock : predecessors(BB)) {
718     LoopBlock PredLoop = getLoopBlock(PredBlock);
719     // Add affected block/loop to a working list.
720     if (isLoopExitingEdge({PredLoop, LoopBB})) {
721       if (!EstimatedLoopWeight.count(PredLoop.getLoopData()))
722         LoopWorkList.push_back(PredLoop);
723     } else if (!EstimatedBlockWeight.count(PredBlock))
724       BlockWorkList.push_back(PredBlock);
725   }
726   return true;
727 }
728 
729 // Starting from \p BB traverse through dominator blocks and assign \p BBWeight
730 // to all such blocks that are post dominated by \BB. In other words to all
731 // blocks that the one is executed if and only if another one is executed.
732 // Importantly, we skip loops here for two reasons. First weights of blocks in
733 // a loop should be scaled by trip count (yet possibly unknown). Second there is
734 // no any value in doing that because that doesn't give any additional
735 // information regarding distribution of probabilities inside the loop.
736 // Exception is loop 'enter' and 'exit' edges that are handled in a special way
737 // at calcEstimatedHeuristics.
738 //
739 // In addition, \p WorkList is populated with basic blocks if at leas one
740 // successor has updated estimated weight.
741 void BranchProbabilityInfo::propagateEstimatedBlockWeight(
742     const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT,
743     uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList,
744     SmallVectorImpl<LoopBlock> &LoopWorkList) {
745   const BasicBlock *BB = LoopBB.getBlock();
746   const auto *DTStartNode = DT->getNode(BB);
747   const auto *PDTStartNode = PDT->getNode(BB);
748 
749   // TODO: Consider propagating weight down the domination line as well.
750   for (const auto *DTNode = DTStartNode; DTNode != nullptr;
751        DTNode = DTNode->getIDom()) {
752     auto *DomBB = DTNode->getBlock();
753     // Consider blocks which lie on one 'line'.
754     if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB)))
755       // If BB doesn't post dominate DomBB it will not post dominate dominators
756       // of DomBB as well.
757       break;
758 
759     LoopBlock DomLoopBB = getLoopBlock(DomBB);
760     const LoopEdge Edge{DomLoopBB, LoopBB};
761     // Don't propagate weight to blocks belonging to different loops.
762     if (!isLoopEnteringExitingEdge(Edge)) {
763       if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList,
764                                       LoopWorkList))
765         // If DomBB has weight set then all it's predecessors are already
766         // processed (since we propagate weight up to the top of IR each time).
767         break;
768     } else if (isLoopExitingEdge(Edge)) {
769       LoopWorkList.push_back(DomLoopBB);
770     }
771   }
772 }
773 
774 Optional<uint32_t> BranchProbabilityInfo::getInitialEstimatedBlockWeight(
775     const BasicBlock *BB) {
776   // Returns true if \p BB has call marked with "NoReturn" attribute.
777   auto hasNoReturn = [&](const BasicBlock *BB) {
778     for (const auto &I : reverse(*BB))
779       if (const CallInst *CI = dyn_cast<CallInst>(&I))
780         if (CI->hasFnAttr(Attribute::NoReturn))
781           return true;
782 
783     return false;
784   };
785 
786   // Important note regarding the order of checks. They are ordered by weight
787   // from lowest to highest. Doing that allows to avoid "unstable" results
788   // when several conditions heuristics can be applied simultaneously.
789   if (isa<UnreachableInst>(BB->getTerminator()) ||
790       // If this block is terminated by a call to
791       // @llvm.experimental.deoptimize then treat it like an unreachable
792       // since it is expected to practically never execute.
793       // TODO: Should we actually treat as never returning call?
794       BB->getTerminatingDeoptimizeCall())
795     return hasNoReturn(BB)
796                ? static_cast<uint32_t>(BlockExecWeight::NORETURN)
797                : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE);
798 
799   // Check if the block is 'unwind' handler of  some invoke instruction.
800   for (const auto *Pred : predecessors(BB))
801     if (Pred)
802       if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
803         if (II->getUnwindDest() == BB)
804           return static_cast<uint32_t>(BlockExecWeight::UNWIND);
805 
806   // Check if the block contains 'cold' call.
807   for (const auto &I : *BB)
808     if (const CallInst *CI = dyn_cast<CallInst>(&I))
809       if (CI->hasFnAttr(Attribute::Cold))
810         return static_cast<uint32_t>(BlockExecWeight::COLD);
811 
812   return None;
813 }
814 
815 // Does RPO traversal over all blocks in \p F and assigns weights to
816 // 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its
817 // best to propagate the weight to up/down the IR.
818 void BranchProbabilityInfo::computeEestimateBlockWeight(
819     const Function &F, DominatorTree *DT, PostDominatorTree *PDT) {
820   SmallVector<BasicBlock *, 8> BlockWorkList;
821   SmallVector<LoopBlock, 8> LoopWorkList;
822 
823   // By doing RPO we make sure that all predecessors already have weights
824   // calculated before visiting theirs successors.
825   ReversePostOrderTraversal<const Function *> RPOT(&F);
826   for (const auto *BB : RPOT)
827     if (auto BBWeight = getInitialEstimatedBlockWeight(BB))
828       // If we were able to find estimated weight for the block set it to this
829       // block and propagate up the IR.
830       propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT,
831                                     BBWeight.getValue(), BlockWorkList,
832                                     LoopWorkList);
833 
834   // BlockWorklist/LoopWorkList contains blocks/loops with at least one
835   // successor/exit having estimated weight. Try to propagate weight to such
836   // blocks/loops from successors/exits.
837   // Process loops and blocks. Order is not important.
838   do {
839     while (!LoopWorkList.empty()) {
840       const LoopBlock LoopBB = LoopWorkList.pop_back_val();
841 
842       if (EstimatedLoopWeight.count(LoopBB.getLoopData()))
843         continue;
844 
845       SmallVector<BasicBlock *, 4> Exits;
846       getLoopExitBlocks(LoopBB, Exits);
847       auto LoopWeight = getMaxEstimatedEdgeWeight(
848           LoopBB, make_range(Exits.begin(), Exits.end()));
849 
850       if (LoopWeight) {
851         // If we never exit the loop then we can enter it once at maximum.
852         if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
853           LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
854 
855         EstimatedLoopWeight.insert(
856             {LoopBB.getLoopData(), LoopWeight.getValue()});
857         // Add all blocks entering the loop into working list.
858         getLoopEnterBlocks(LoopBB, BlockWorkList);
859       }
860     }
861 
862     while (!BlockWorkList.empty()) {
863       // We can reach here only if BlockWorkList is not empty.
864       const BasicBlock *BB = BlockWorkList.pop_back_val();
865       if (EstimatedBlockWeight.count(BB))
866         continue;
867 
868       // We take maximum over all weights of successors. In other words we take
869       // weight of "hot" path. In theory we can probably find a better function
870       // which gives higher accuracy results (comparing to "maximum") but I
871       // can't
872       // think of any right now. And I doubt it will make any difference in
873       // practice.
874       const LoopBlock LoopBB = getLoopBlock(BB);
875       auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB));
876 
877       if (MaxWeight)
878         propagateEstimatedBlockWeight(LoopBB, DT, PDT, MaxWeight.getValue(),
879                                       BlockWorkList, LoopWorkList);
880     }
881   } while (!BlockWorkList.empty() || !LoopWorkList.empty());
882 }
883 
884 // Calculate edge probabilities based on block's estimated weight.
885 // Note that gathered weights were not scaled for loops. Thus edges entering
886 // and exiting loops requires special processing.
887 bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) {
888   assert(BB->getTerminator()->getNumSuccessors() > 1 &&
889          "expected more than one successor!");
890 
891   const LoopBlock LoopBB = getLoopBlock(BB);
892 
893   SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks;
894   uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT;
895   if (LoopBB.getLoop())
896     computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks);
897 
898   // Changed to 'true' if at least one successor has estimated weight.
899   bool FoundEstimatedWeight = false;
900   SmallVector<uint32_t, 4> SuccWeights;
901   uint64_t TotalWeight = 0;
902   // Go over all successors of BB and put their weights into SuccWeights.
903   for (const BasicBlock *SuccBB : successors(BB)) {
904     Optional<uint32_t> Weight;
905     const LoopBlock SuccLoopBB = getLoopBlock(SuccBB);
906     const LoopEdge Edge{LoopBB, SuccLoopBB};
907 
908     Weight = getEstimatedEdgeWeight(Edge);
909 
910     if (isLoopExitingEdge(Edge) &&
911         // Avoid adjustment of ZERO weight since it should remain unchanged.
912         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
913       // Scale down loop exiting weight by trip count.
914       Weight = std::max(
915           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
916           Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
917               TC);
918     }
919     bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB);
920     if (IsUnlikelyEdge &&
921         // Avoid adjustment of ZERO weight since it should remain unchanged.
922         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
923       // 'Unlikely' blocks have twice lower weight.
924       Weight = std::max(
925           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
926           Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
927               2);
928     }
929 
930     if (Weight)
931       FoundEstimatedWeight = true;
932 
933     auto WeightVal =
934         Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT));
935     TotalWeight += WeightVal;
936     SuccWeights.push_back(WeightVal);
937   }
938 
939   // If non of blocks have estimated weight bail out.
940   // If TotalWeight is 0 that means weight of each successor is 0 as well and
941   // equally likely. Bail out early to not deal with devision by zero.
942   if (!FoundEstimatedWeight || TotalWeight == 0)
943     return false;
944 
945   assert(SuccWeights.size() == succ_size(BB) && "Missed successor?");
946   const unsigned SuccCount = SuccWeights.size();
947 
948   // If the sum of weights does not fit in 32 bits, scale every weight down
949   // accordingly.
950   if (TotalWeight > UINT32_MAX) {
951     uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1;
952     TotalWeight = 0;
953     for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
954       SuccWeights[Idx] /= ScalingFactor;
955       if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO))
956         SuccWeights[Idx] =
957             static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
958       TotalWeight += SuccWeights[Idx];
959     }
960     assert(TotalWeight <= UINT32_MAX && "Total weight overflows");
961   }
962 
963   // Finally set probabilities to edges according to estimated block weights.
964   SmallVector<BranchProbability, 4> EdgeProbabilities(
965       SuccCount, BranchProbability::getUnknown());
966 
967   for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
968     EdgeProbabilities[Idx] =
969         BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight);
970   }
971   setEdgeProbability(BB, EdgeProbabilities);
972   return true;
973 }
974 
975 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
976                                                const TargetLibraryInfo *TLI) {
977   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
978   if (!BI || !BI->isConditional())
979     return false;
980 
981   Value *Cond = BI->getCondition();
982   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
983   if (!CI)
984     return false;
985 
986   auto GetConstantInt = [](Value *V) {
987     if (auto *I = dyn_cast<BitCastInst>(V))
988       return dyn_cast<ConstantInt>(I->getOperand(0));
989     return dyn_cast<ConstantInt>(V);
990   };
991 
992   Value *RHS = CI->getOperand(1);
993   ConstantInt *CV = GetConstantInt(RHS);
994   if (!CV)
995     return false;
996 
997   // If the LHS is the result of AND'ing a value with a single bit bitmask,
998   // we don't have information about probabilities.
999   if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
1000     if (LHS->getOpcode() == Instruction::And)
1001       if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1)))
1002         if (AndRHS->getValue().isPowerOf2())
1003           return false;
1004 
1005   // Check if the LHS is the return value of a library function
1006   LibFunc Func = NumLibFuncs;
1007   if (TLI)
1008     if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
1009       if (Function *CalledFn = Call->getCalledFunction())
1010         TLI->getLibFunc(*CalledFn, Func);
1011 
1012   ProbabilityTable::const_iterator Search;
1013   if (Func == LibFunc_strcasecmp ||
1014       Func == LibFunc_strcmp ||
1015       Func == LibFunc_strncasecmp ||
1016       Func == LibFunc_strncmp ||
1017       Func == LibFunc_memcmp ||
1018       Func == LibFunc_bcmp) {
1019     Search = ICmpWithLibCallTable.find(CI->getPredicate());
1020     if (Search == ICmpWithLibCallTable.end())
1021       return false;
1022   } else if (CV->isZero()) {
1023     Search = ICmpWithZeroTable.find(CI->getPredicate());
1024     if (Search == ICmpWithZeroTable.end())
1025       return false;
1026   } else if (CV->isOne()) {
1027     Search = ICmpWithOneTable.find(CI->getPredicate());
1028     if (Search == ICmpWithOneTable.end())
1029       return false;
1030   } else if (CV->isMinusOne()) {
1031     Search = ICmpWithMinusOneTable.find(CI->getPredicate());
1032     if (Search == ICmpWithMinusOneTable.end())
1033       return false;
1034   } else {
1035     return false;
1036   }
1037 
1038   setEdgeProbability(BB, Search->second);
1039   return true;
1040 }
1041 
1042 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
1043   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
1044   if (!BI || !BI->isConditional())
1045     return false;
1046 
1047   Value *Cond = BI->getCondition();
1048   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
1049   if (!FCmp)
1050     return false;
1051 
1052   ProbabilityList ProbList;
1053   if (FCmp->isEquality()) {
1054     ProbList = !FCmp->isTrueWhenEqual() ?
1055       // f1 == f2 -> Unlikely
1056       ProbabilityList({FPTakenProb, FPUntakenProb}) :
1057       // f1 != f2 -> Likely
1058       ProbabilityList({FPUntakenProb, FPTakenProb});
1059   } else {
1060     auto Search = FCmpTable.find(FCmp->getPredicate());
1061     if (Search == FCmpTable.end())
1062       return false;
1063     ProbList = Search->second;
1064   }
1065 
1066   setEdgeProbability(BB, ProbList);
1067   return true;
1068 }
1069 
1070 void BranchProbabilityInfo::releaseMemory() {
1071   Probs.clear();
1072   Handles.clear();
1073 }
1074 
1075 bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
1076                                        FunctionAnalysisManager::Invalidator &) {
1077   // Check whether the analysis, all analyses on functions, or the function's
1078   // CFG have been preserved.
1079   auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
1080   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
1081            PAC.preservedSet<CFGAnalyses>());
1082 }
1083 
1084 void BranchProbabilityInfo::print(raw_ostream &OS) const {
1085   OS << "---- Branch Probabilities ----\n";
1086   // We print the probabilities from the last function the analysis ran over,
1087   // or the function it is currently running over.
1088   assert(LastF && "Cannot print prior to running over a function");
1089   for (const auto &BI : *LastF) {
1090     for (const BasicBlock *Succ : successors(&BI))
1091       printEdgeProbability(OS << "  ", &BI, Succ);
1092   }
1093 }
1094 
1095 bool BranchProbabilityInfo::
1096 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
1097   // Hot probability is at least 4/5 = 80%
1098   // FIXME: Compare against a static "hot" BranchProbability.
1099   return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
1100 }
1101 
1102 /// Get the raw edge probability for the edge. If can't find it, return a
1103 /// default probability 1/N where N is the number of successors. Here an edge is
1104 /// specified using PredBlock and an
1105 /// index to the successors.
1106 BranchProbability
1107 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1108                                           unsigned IndexInSuccessors) const {
1109   auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
1110   assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) ==
1111              (Probs.end() == I) &&
1112          "Probability for I-th successor must always be defined along with the "
1113          "probability for the first successor");
1114 
1115   if (I != Probs.end())
1116     return I->second;
1117 
1118   return {1, static_cast<uint32_t>(succ_size(Src))};
1119 }
1120 
1121 BranchProbability
1122 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1123                                           const_succ_iterator Dst) const {
1124   return getEdgeProbability(Src, Dst.getSuccessorIndex());
1125 }
1126 
1127 /// Get the raw edge probability calculated for the block pair. This returns the
1128 /// sum of all raw edge probabilities from Src to Dst.
1129 BranchProbability
1130 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1131                                           const BasicBlock *Dst) const {
1132   if (!Probs.count(std::make_pair(Src, 0)))
1133     return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src));
1134 
1135   auto Prob = BranchProbability::getZero();
1136   for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
1137     if (*I == Dst)
1138       Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second;
1139 
1140   return Prob;
1141 }
1142 
1143 /// Set the edge probability for all edges at once.
1144 void BranchProbabilityInfo::setEdgeProbability(
1145     const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
1146   assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
1147   eraseBlock(Src); // Erase stale data if any.
1148   if (Probs.size() == 0)
1149     return; // Nothing to set.
1150 
1151   Handles.insert(BasicBlockCallbackVH(Src, this));
1152   uint64_t TotalNumerator = 0;
1153   for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
1154     this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx];
1155     LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx
1156                       << " successor probability to " << Probs[SuccIdx]
1157                       << "\n");
1158     TotalNumerator += Probs[SuccIdx].getNumerator();
1159   }
1160 
1161   // Because of rounding errors the total probability cannot be checked to be
1162   // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
1163   // Instead, every single probability in Probs must be as accurate as possible.
1164   // This results in error 1/denominator at most, thus the total absolute error
1165   // should be within Probs.size / BranchProbability::getDenominator.
1166   assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
1167   assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
1168   (void)TotalNumerator;
1169 }
1170 
1171 void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src,
1172                                                   BasicBlock *Dst) {
1173   eraseBlock(Dst); // Erase stale data if any.
1174   unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors();
1175   assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors());
1176   if (NumSuccessors == 0)
1177     return; // Nothing to set.
1178   if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end())
1179     return; // No probability is set for edges from Src. Keep the same for Dst.
1180 
1181   Handles.insert(BasicBlockCallbackVH(Dst, this));
1182   for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) {
1183     auto Prob = this->Probs[std::make_pair(Src, SuccIdx)];
1184     this->Probs[std::make_pair(Dst, SuccIdx)] = Prob;
1185     LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx
1186                       << " successor probability to " << Prob << "\n");
1187   }
1188 }
1189 
1190 raw_ostream &
1191 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
1192                                             const BasicBlock *Src,
1193                                             const BasicBlock *Dst) const {
1194   const BranchProbability Prob = getEdgeProbability(Src, Dst);
1195   OS << "edge " << Src->getName() << " -> " << Dst->getName()
1196      << " probability is " << Prob
1197      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
1198 
1199   return OS;
1200 }
1201 
1202 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
1203   LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n");
1204 
1205   // Note that we cannot use successors of BB because the terminator of BB may
1206   // have changed when eraseBlock is called as a BasicBlockCallbackVH callback.
1207   // Instead we remove prob data for the block by iterating successors by their
1208   // indices from 0 till the last which exists. There could not be prob data for
1209   // a pair (BB, N) if there is no data for (BB, N-1) because the data is always
1210   // set for all successors from 0 to M at once by the method
1211   // setEdgeProbability().
1212   Handles.erase(BasicBlockCallbackVH(BB, this));
1213   for (unsigned I = 0;; ++I) {
1214     auto MapI = Probs.find(std::make_pair(BB, I));
1215     if (MapI == Probs.end()) {
1216       assert(Probs.count(std::make_pair(BB, I + 1)) == 0 &&
1217              "Must be no more successors");
1218       return;
1219     }
1220     Probs.erase(MapI);
1221   }
1222 }
1223 
1224 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI,
1225                                       const TargetLibraryInfo *TLI,
1226                                       DominatorTree *DT,
1227                                       PostDominatorTree *PDT) {
1228   LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
1229                     << " ----\n\n");
1230   LastF = &F; // Store the last function we ran on for printing.
1231   LI = &LoopI;
1232 
1233   SccI = std::make_unique<SccInfo>(F);
1234 
1235   assert(EstimatedBlockWeight.empty());
1236   assert(EstimatedLoopWeight.empty());
1237 
1238   std::unique_ptr<DominatorTree> DTPtr;
1239   std::unique_ptr<PostDominatorTree> PDTPtr;
1240 
1241   if (!DT) {
1242     DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F));
1243     DT = DTPtr.get();
1244   }
1245 
1246   if (!PDT) {
1247     PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
1248     PDT = PDTPtr.get();
1249   }
1250 
1251   computeEestimateBlockWeight(F, DT, PDT);
1252 
1253   // Walk the basic blocks in post-order so that we can build up state about
1254   // the successors of a block iteratively.
1255   for (auto BB : post_order(&F.getEntryBlock())) {
1256     LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
1257                       << "\n");
1258     // If there is no at least two successors, no sense to set probability.
1259     if (BB->getTerminator()->getNumSuccessors() < 2)
1260       continue;
1261     if (calcMetadataWeights(BB))
1262       continue;
1263     if (calcEstimatedHeuristics(BB))
1264       continue;
1265     if (calcPointerHeuristics(BB))
1266       continue;
1267     if (calcZeroHeuristics(BB, TLI))
1268       continue;
1269     if (calcFloatingPointHeuristics(BB))
1270       continue;
1271   }
1272 
1273   EstimatedLoopWeight.clear();
1274   EstimatedBlockWeight.clear();
1275   SccI.reset();
1276 
1277   if (PrintBranchProb &&
1278       (PrintBranchProbFuncName.empty() ||
1279        F.getName().equals(PrintBranchProbFuncName))) {
1280     print(dbgs());
1281   }
1282 }
1283 
1284 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
1285     AnalysisUsage &AU) const {
1286   // We require DT so it's available when LI is available. The LI updating code
1287   // asserts that DT is also present so if we don't make sure that we have DT
1288   // here, that assert will trigger.
1289   AU.addRequired<DominatorTreeWrapperPass>();
1290   AU.addRequired<LoopInfoWrapperPass>();
1291   AU.addRequired<TargetLibraryInfoWrapperPass>();
1292   AU.addRequired<DominatorTreeWrapperPass>();
1293   AU.addRequired<PostDominatorTreeWrapperPass>();
1294   AU.setPreservesAll();
1295 }
1296 
1297 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
1298   const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1299   const TargetLibraryInfo &TLI =
1300       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1301   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1302   PostDominatorTree &PDT =
1303       getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1304   BPI.calculate(F, LI, &TLI, &DT, &PDT);
1305   return false;
1306 }
1307 
1308 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
1309 
1310 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
1311                                              const Module *) const {
1312   BPI.print(OS);
1313 }
1314 
1315 AnalysisKey BranchProbabilityAnalysis::Key;
1316 BranchProbabilityInfo
1317 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1318   BranchProbabilityInfo BPI;
1319   BPI.calculate(F, AM.getResult<LoopAnalysis>(F),
1320                 &AM.getResult<TargetLibraryAnalysis>(F),
1321                 &AM.getResult<DominatorTreeAnalysis>(F),
1322                 &AM.getResult<PostDominatorTreeAnalysis>(F));
1323   return BPI;
1324 }
1325 
1326 PreservedAnalyses
1327 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
1328   OS << "Printing analysis results of BPI for function "
1329      << "'" << F.getName() << "':"
1330      << "\n";
1331   AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
1332   return PreservedAnalyses::all();
1333 }
1334