xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/PostDominators.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PassManager.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/BranchProbability.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "branch-prob"
50 
51 static cl::opt<bool> PrintBranchProb(
52     "print-bpi", cl::init(false), cl::Hidden,
53     cl::desc("Print the branch probability info."));
54 
55 cl::opt<std::string> PrintBranchProbFuncName(
56     "print-bpi-func-name", cl::Hidden,
57     cl::desc("The option to specify the name of the function "
58              "whose branch probability info is printed."));
59 
60 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
61                       "Branch Probability Analysis", false, true)
62 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
63 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
64 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
66 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
67                     "Branch Probability Analysis", false, true)
68 
69 BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
70     : FunctionPass(ID) {
71   initializeBranchProbabilityInfoWrapperPassPass(
72       *PassRegistry::getPassRegistry());
73 }
74 
75 char BranchProbabilityInfoWrapperPass::ID = 0;
76 
77 // Weights are for internal use only. They are used by heuristics to help to
78 // estimate edges' probability. Example:
79 //
80 // Using "Loop Branch Heuristics" we predict weights of edges for the
81 // block BB2.
82 //         ...
83 //          |
84 //          V
85 //         BB1<-+
86 //          |   |
87 //          |   | (Weight = 124)
88 //          V   |
89 //         BB2--+
90 //          |
91 //          | (Weight = 4)
92 //          V
93 //         BB3
94 //
95 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
96 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
97 static const uint32_t LBH_TAKEN_WEIGHT = 124;
98 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
99 
100 /// Unreachable-terminating branch taken probability.
101 ///
102 /// This is the probability for a branch being taken to a block that terminates
103 /// (eventually) in unreachable. These are predicted as unlikely as possible.
104 /// All reachable probability will proportionally share the remaining part.
105 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
106 
107 static const uint32_t PH_TAKEN_WEIGHT = 20;
108 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
109 
110 static const uint32_t ZH_TAKEN_WEIGHT = 20;
111 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
112 
113 static const uint32_t FPH_TAKEN_WEIGHT = 20;
114 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
115 
116 /// This is the probability for an ordered floating point comparison.
117 static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
118 /// This is the probability for an unordered floating point comparison, it means
119 /// one or two of the operands are NaN. Usually it is used to test for an
120 /// exceptional case, so the result is unlikely.
121 static const uint32_t FPH_UNO_WEIGHT = 1;
122 
123 /// Set of dedicated "absolute" execution weights for a block. These weights are
124 /// meaningful relative to each other and their derivatives only.
125 enum class BlockExecWeight : std::uint32_t {
126   /// Special weight used for cases with exact zero probability.
127   ZERO = 0x0,
128   /// Minimal possible non zero weight.
129   LOWEST_NON_ZERO = 0x1,
130   /// Weight to an 'unreachable' block.
131   UNREACHABLE = ZERO,
132   /// Weight to a block containing non returning call.
133   NORETURN = LOWEST_NON_ZERO,
134   /// Weight to 'unwind' block of an invoke instruction.
135   UNWIND = LOWEST_NON_ZERO,
136   /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked
137   /// with attribute 'cold'.
138   COLD = 0xffff,
139   /// Default weight is used in cases when there is no dedicated execution
140   /// weight set. It is not propagated through the domination line either.
141   DEFAULT = 0xfffff
142 };
143 
144 BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
145   // Record SCC numbers of blocks in the CFG to identify irreducible loops.
146   // FIXME: We could only calculate this if the CFG is known to be irreducible
147   // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
148   int SccNum = 0;
149   for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
150        ++It, ++SccNum) {
151     // Ignore single-block SCCs since they either aren't loops or LoopInfo will
152     // catch them.
153     const std::vector<const BasicBlock *> &Scc = *It;
154     if (Scc.size() == 1)
155       continue;
156 
157     LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
158     for (const auto *BB : Scc) {
159       LLVM_DEBUG(dbgs() << " " << BB->getName());
160       SccNums[BB] = SccNum;
161       calculateSccBlockType(BB, SccNum);
162     }
163     LLVM_DEBUG(dbgs() << "\n");
164   }
165 }
166 
167 int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
168   auto SccIt = SccNums.find(BB);
169   if (SccIt == SccNums.end())
170     return -1;
171   return SccIt->second;
172 }
173 
174 void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
175     int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {
176 
177   for (auto MapIt : SccBlocks[SccNum]) {
178     const auto *BB = MapIt.first;
179     if (isSCCHeader(BB, SccNum))
180       for (const auto *Pred : predecessors(BB))
181         if (getSCCNum(Pred) != SccNum)
182           Enters.push_back(const_cast<BasicBlock *>(BB));
183   }
184 }
185 
186 void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
187     int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
188   for (auto MapIt : SccBlocks[SccNum]) {
189     const auto *BB = MapIt.first;
190     if (isSCCExitingBlock(BB, SccNum))
191       for (const auto *Succ : successors(BB))
192         if (getSCCNum(Succ) != SccNum)
193           Exits.push_back(const_cast<BasicBlock *>(BB));
194   }
195 }
196 
197 uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
198                                                          int SccNum) const {
199   assert(getSCCNum(BB) == SccNum);
200 
201   assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
202   const auto &SccBlockTypes = SccBlocks[SccNum];
203 
204   auto It = SccBlockTypes.find(BB);
205   if (It != SccBlockTypes.end()) {
206     return It->second;
207   }
208   return Inner;
209 }
210 
211 void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
212                                                            int SccNum) {
213   assert(getSCCNum(BB) == SccNum);
214   uint32_t BlockType = Inner;
215 
216   if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) {
217         // Consider any block that is an entry point to the SCC as
218         // a header.
219         return getSCCNum(Pred) != SccNum;
220       }))
221     BlockType |= Header;
222 
223   if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) {
224         return getSCCNum(Succ) != SccNum;
225       }))
226     BlockType |= Exiting;
227 
228   // Lazily compute the set of headers for a given SCC and cache the results
229   // in the SccHeaderMap.
230   if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
231     SccBlocks.resize(SccNum + 1);
232   auto &SccBlockTypes = SccBlocks[SccNum];
233 
234   if (BlockType != Inner) {
235     bool IsInserted;
236     std::tie(std::ignore, IsInserted) =
237         SccBlockTypes.insert(std::make_pair(BB, BlockType));
238     assert(IsInserted && "Duplicated block in SCC");
239   }
240 }
241 
242 BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
243                                             const LoopInfo &LI,
244                                             const SccInfo &SccI)
245     : BB(BB) {
246   LD.first = LI.getLoopFor(BB);
247   if (!LD.first) {
248     LD.second = SccI.getSCCNum(BB);
249   }
250 }
251 
252 bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
253   const auto &SrcBlock = Edge.first;
254   const auto &DstBlock = Edge.second;
255   return (DstBlock.getLoop() &&
256           !DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
257          // Assume that SCCs can't be nested.
258          (DstBlock.getSccNum() != -1 &&
259           SrcBlock.getSccNum() != DstBlock.getSccNum());
260 }
261 
262 bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
263   return isLoopEnteringEdge({Edge.second, Edge.first});
264 }
265 
266 bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
267     const LoopEdge &Edge) const {
268   return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
269 }
270 
271 bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
272   const auto &SrcBlock = Edge.first;
273   const auto &DstBlock = Edge.second;
274   return SrcBlock.belongsToSameLoop(DstBlock) &&
275          ((DstBlock.getLoop() &&
276            DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
277           (DstBlock.getSccNum() != -1 &&
278            SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
279 }
280 
281 void BranchProbabilityInfo::getLoopEnterBlocks(
282     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
283   if (LB.getLoop()) {
284     auto *Header = LB.getLoop()->getHeader();
285     Enters.append(pred_begin(Header), pred_end(Header));
286   } else {
287     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
288     SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
289   }
290 }
291 
292 void BranchProbabilityInfo::getLoopExitBlocks(
293     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
294   if (LB.getLoop()) {
295     LB.getLoop()->getExitBlocks(Exits);
296   } else {
297     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
298     SccI->getSccExitBlocks(LB.getSccNum(), Exits);
299   }
300 }
301 
302 // Propagate existing explicit probabilities from either profile data or
303 // 'expect' intrinsic processing. Examine metadata against unreachable
304 // heuristic. The probability of the edge coming to unreachable block is
305 // set to min of metadata and unreachable heuristic.
306 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
307   const Instruction *TI = BB->getTerminator();
308   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
309   if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
310         isa<InvokeInst>(TI)))
311     return false;
312 
313   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
314   if (!WeightsNode)
315     return false;
316 
317   // Check that the number of successors is manageable.
318   assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
319 
320   // Ensure there are weights for all of the successors. Note that the first
321   // operand to the metadata node is a name, not a weight.
322   if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
323     return false;
324 
325   // Build up the final weights that will be used in a temporary buffer.
326   // Compute the sum of all weights to later decide whether they need to
327   // be scaled to fit in 32 bits.
328   uint64_t WeightSum = 0;
329   SmallVector<uint32_t, 2> Weights;
330   SmallVector<unsigned, 2> UnreachableIdxs;
331   SmallVector<unsigned, 2> ReachableIdxs;
332   Weights.reserve(TI->getNumSuccessors());
333   for (unsigned I = 1, E = WeightsNode->getNumOperands(); I != E; ++I) {
334     ConstantInt *Weight =
335         mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(I));
336     if (!Weight)
337       return false;
338     assert(Weight->getValue().getActiveBits() <= 32 &&
339            "Too many bits for uint32_t");
340     Weights.push_back(Weight->getZExtValue());
341     WeightSum += Weights.back();
342     const LoopBlock SrcLoopBB = getLoopBlock(BB);
343     const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I - 1));
344     auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
345     if (EstimatedWeight &&
346         EstimatedWeight.getValue() <=
347             static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
348       UnreachableIdxs.push_back(I - 1);
349     else
350       ReachableIdxs.push_back(I - 1);
351   }
352   assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
353 
354   // If the sum of weights does not fit in 32 bits, scale every weight down
355   // accordingly.
356   uint64_t ScalingFactor =
357       (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
358 
359   if (ScalingFactor > 1) {
360     WeightSum = 0;
361     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
362       Weights[I] /= ScalingFactor;
363       WeightSum += Weights[I];
364     }
365   }
366   assert(WeightSum <= UINT32_MAX &&
367          "Expected weights to scale down to 32 bits");
368 
369   if (WeightSum == 0 || ReachableIdxs.size() == 0) {
370     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
371       Weights[I] = 1;
372     WeightSum = TI->getNumSuccessors();
373   }
374 
375   // Set the probability.
376   SmallVector<BranchProbability, 2> BP;
377   for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
378     BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });
379 
380   // Examine the metadata against unreachable heuristic.
381   // If the unreachable heuristic is more strong then we use it for this edge.
382   if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
383     setEdgeProbability(BB, BP);
384     return true;
385   }
386 
387   auto UnreachableProb = UR_TAKEN_PROB;
388   for (auto I : UnreachableIdxs)
389     if (UnreachableProb < BP[I]) {
390       BP[I] = UnreachableProb;
391     }
392 
393   // Sum of all edge probabilities must be 1.0. If we modified the probability
394   // of some edges then we must distribute the introduced difference over the
395   // reachable blocks.
396   //
397   // Proportional distribution: the relation between probabilities of the
398   // reachable edges is kept unchanged. That is for any reachable edges i and j:
399   //   newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
400   //   newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
401   // Where K is independent of i,j.
402   //   newBP[i] == oldBP[i] * K
403   // We need to find K.
404   // Make sum of all reachables of the left and right parts:
405   //   sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
406   // Sum of newBP must be equal to 1.0:
407   //   sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
408   //   sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
409   // Where sum_of_unreachable(newBP) is what has been just changed.
410   // Finally:
411   //   K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
412   //   K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
413   BranchProbability NewUnreachableSum = BranchProbability::getZero();
414   for (auto I : UnreachableIdxs)
415     NewUnreachableSum += BP[I];
416 
417   BranchProbability NewReachableSum =
418       BranchProbability::getOne() - NewUnreachableSum;
419 
420   BranchProbability OldReachableSum = BranchProbability::getZero();
421   for (auto I : ReachableIdxs)
422     OldReachableSum += BP[I];
423 
424   if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
425     if (OldReachableSum.isZero()) {
426       // If all oldBP[i] are zeroes then the proportional distribution results
427       // in all zero probabilities and the error stays big. In this case we
428       // evenly spread NewReachableSum over the reachable edges.
429       BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
430       for (auto I : ReachableIdxs)
431         BP[I] = PerEdge;
432     } else {
433       for (auto I : ReachableIdxs) {
434         // We use uint64_t to avoid double rounding error of the following
435         // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
436         // The formula is taken from the private constructor
437         // BranchProbability(uint32_t Numerator, uint32_t Denominator)
438         uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
439                        BP[I].getNumerator();
440         uint32_t Div = static_cast<uint32_t>(
441             divideNearest(Mul, OldReachableSum.getNumerator()));
442         BP[I] = BranchProbability::getRaw(Div);
443       }
444     }
445   }
446 
447   setEdgeProbability(BB, BP);
448 
449   return true;
450 }
451 
452 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
453 // between two pointer or pointer and NULL will fail.
454 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
455   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
456   if (!BI || !BI->isConditional())
457     return false;
458 
459   Value *Cond = BI->getCondition();
460   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
461   if (!CI || !CI->isEquality())
462     return false;
463 
464   Value *LHS = CI->getOperand(0);
465 
466   if (!LHS->getType()->isPointerTy())
467     return false;
468 
469   assert(CI->getOperand(1)->getType()->isPointerTy());
470 
471   BranchProbability TakenProb(PH_TAKEN_WEIGHT,
472                               PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
473   BranchProbability UntakenProb(PH_NONTAKEN_WEIGHT,
474                                 PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
475 
476   // p != 0   ->   isProb = true
477   // p == 0   ->   isProb = false
478   // p != q   ->   isProb = true
479   // p == q   ->   isProb = false;
480   bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
481   if (!isProb)
482     std::swap(TakenProb, UntakenProb);
483 
484   setEdgeProbability(
485       BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
486   return true;
487 }
488 
489 // Compute the unlikely successors to the block BB in the loop L, specifically
490 // those that are unlikely because this is a loop, and add them to the
491 // UnlikelyBlocks set.
492 static void
493 computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
494                           SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
495   // Sometimes in a loop we have a branch whose condition is made false by
496   // taking it. This is typically something like
497   //  int n = 0;
498   //  while (...) {
499   //    if (++n >= MAX) {
500   //      n = 0;
501   //    }
502   //  }
503   // In this sort of situation taking the branch means that at the very least it
504   // won't be taken again in the next iteration of the loop, so we should
505   // consider it less likely than a typical branch.
506   //
507   // We detect this by looking back through the graph of PHI nodes that sets the
508   // value that the condition depends on, and seeing if we can reach a successor
509   // block which can be determined to make the condition false.
510   //
511   // FIXME: We currently consider unlikely blocks to be half as likely as other
512   // blocks, but if we consider the example above the likelyhood is actually
513   // 1/MAX. We could therefore be more precise in how unlikely we consider
514   // blocks to be, but it would require more careful examination of the form
515   // of the comparison expression.
516   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
517   if (!BI || !BI->isConditional())
518     return;
519 
520   // Check if the branch is based on an instruction compared with a constant
521   CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
522   if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
523       !isa<Constant>(CI->getOperand(1)))
524     return;
525 
526   // Either the instruction must be a PHI, or a chain of operations involving
527   // constants that ends in a PHI which we can then collapse into a single value
528   // if the PHI value is known.
529   Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
530   PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
531   Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
532   // Collect the instructions until we hit a PHI
533   SmallVector<BinaryOperator *, 1> InstChain;
534   while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
535          isa<Constant>(CmpLHS->getOperand(1))) {
536     // Stop if the chain extends outside of the loop
537     if (!L->contains(CmpLHS))
538       return;
539     InstChain.push_back(cast<BinaryOperator>(CmpLHS));
540     CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
541     if (CmpLHS)
542       CmpPHI = dyn_cast<PHINode>(CmpLHS);
543   }
544   if (!CmpPHI || !L->contains(CmpPHI))
545     return;
546 
547   // Trace the phi node to find all values that come from successors of BB
548   SmallPtrSet<PHINode*, 8> VisitedInsts;
549   SmallVector<PHINode*, 8> WorkList;
550   WorkList.push_back(CmpPHI);
551   VisitedInsts.insert(CmpPHI);
552   while (!WorkList.empty()) {
553     PHINode *P = WorkList.pop_back_val();
554     for (BasicBlock *B : P->blocks()) {
555       // Skip blocks that aren't part of the loop
556       if (!L->contains(B))
557         continue;
558       Value *V = P->getIncomingValueForBlock(B);
559       // If the source is a PHI add it to the work list if we haven't
560       // already visited it.
561       if (PHINode *PN = dyn_cast<PHINode>(V)) {
562         if (VisitedInsts.insert(PN).second)
563           WorkList.push_back(PN);
564         continue;
565       }
566       // If this incoming value is a constant and B is a successor of BB, then
567       // we can constant-evaluate the compare to see if it makes the branch be
568       // taken or not.
569       Constant *CmpLHSConst = dyn_cast<Constant>(V);
570       if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
571         continue;
572       // First collapse InstChain
573       for (Instruction *I : llvm::reverse(InstChain)) {
574         CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst,
575                                         cast<Constant>(I->getOperand(1)), true);
576         if (!CmpLHSConst)
577           break;
578       }
579       if (!CmpLHSConst)
580         continue;
581       // Now constant-evaluate the compare
582       Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
583                                                   CmpLHSConst, CmpConst, true);
584       // If the result means we don't branch to the block then that block is
585       // unlikely.
586       if (Result &&
587           ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
588            (Result->isOneValue() && B == BI->getSuccessor(1))))
589         UnlikelyBlocks.insert(B);
590     }
591   }
592 }
593 
594 Optional<uint32_t>
595 BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const {
596   auto WeightIt = EstimatedBlockWeight.find(BB);
597   if (WeightIt == EstimatedBlockWeight.end())
598     return None;
599   return WeightIt->second;
600 }
601 
602 Optional<uint32_t>
603 BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const {
604   auto WeightIt = EstimatedLoopWeight.find(L);
605   if (WeightIt == EstimatedLoopWeight.end())
606     return None;
607   return WeightIt->second;
608 }
609 
610 Optional<uint32_t>
611 BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const {
612   // For edges entering a loop take weight of a loop rather than an individual
613   // block in the loop.
614   return isLoopEnteringEdge(Edge)
615              ? getEstimatedLoopWeight(Edge.second.getLoopData())
616              : getEstimatedBlockWeight(Edge.second.getBlock());
617 }
618 
619 template <class IterT>
620 Optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight(
621     const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const {
622   SmallVector<uint32_t, 4> Weights;
623   Optional<uint32_t> MaxWeight;
624   for (const BasicBlock *DstBB : Successors) {
625     const LoopBlock DstLoopBB = getLoopBlock(DstBB);
626     auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
627 
628     if (!Weight)
629       return None;
630 
631     if (!MaxWeight || MaxWeight.getValue() < Weight.getValue())
632       MaxWeight = Weight;
633   }
634 
635   return MaxWeight;
636 }
637 
638 // Updates \p LoopBB's weight and returns true. If \p LoopBB has already
639 // an associated weight it is unchanged and false is returned.
640 //
641 // Please note by the algorithm the weight is not expected to change once set
642 // thus 'false' status is used to track visited blocks.
643 bool BranchProbabilityInfo::updateEstimatedBlockWeight(
644     LoopBlock &LoopBB, uint32_t BBWeight,
645     SmallVectorImpl<BasicBlock *> &BlockWorkList,
646     SmallVectorImpl<LoopBlock> &LoopWorkList) {
647   BasicBlock *BB = LoopBB.getBlock();
648 
649   // In general, weight is assigned to a block when it has final value and
650   // can't/shouldn't be changed.  However, there are cases when a block
651   // inherently has several (possibly "contradicting") weights. For example,
652   // "unwind" block may also contain "cold" call. In that case the first
653   // set weight is favored and all consequent weights are ignored.
654   if (!EstimatedBlockWeight.insert({BB, BBWeight}).second)
655     return false;
656 
657   for (BasicBlock *PredBlock : predecessors(BB)) {
658     LoopBlock PredLoop = getLoopBlock(PredBlock);
659     // Add affected block/loop to a working list.
660     if (isLoopExitingEdge({PredLoop, LoopBB})) {
661       if (!EstimatedLoopWeight.count(PredLoop.getLoopData()))
662         LoopWorkList.push_back(PredLoop);
663     } else if (!EstimatedBlockWeight.count(PredBlock))
664       BlockWorkList.push_back(PredBlock);
665   }
666   return true;
667 }
668 
669 // Starting from \p BB traverse through dominator blocks and assign \p BBWeight
670 // to all such blocks that are post dominated by \BB. In other words to all
671 // blocks that the one is executed if and only if another one is executed.
672 // Importantly, we skip loops here for two reasons. First weights of blocks in
673 // a loop should be scaled by trip count (yet possibly unknown). Second there is
674 // no any value in doing that because that doesn't give any additional
675 // information regarding distribution of probabilities inside the loop.
676 // Exception is loop 'enter' and 'exit' edges that are handled in a special way
677 // at calcEstimatedHeuristics.
678 //
679 // In addition, \p WorkList is populated with basic blocks if at leas one
680 // successor has updated estimated weight.
681 void BranchProbabilityInfo::propagateEstimatedBlockWeight(
682     const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT,
683     uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList,
684     SmallVectorImpl<LoopBlock> &LoopWorkList) {
685   const BasicBlock *BB = LoopBB.getBlock();
686   const auto *DTStartNode = DT->getNode(BB);
687   const auto *PDTStartNode = PDT->getNode(BB);
688 
689   // TODO: Consider propagating weight down the domination line as well.
690   for (const auto *DTNode = DTStartNode; DTNode != nullptr;
691        DTNode = DTNode->getIDom()) {
692     auto *DomBB = DTNode->getBlock();
693     // Consider blocks which lie on one 'line'.
694     if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB)))
695       // If BB doesn't post dominate DomBB it will not post dominate dominators
696       // of DomBB as well.
697       break;
698 
699     LoopBlock DomLoopBB = getLoopBlock(DomBB);
700     const LoopEdge Edge{DomLoopBB, LoopBB};
701     // Don't propagate weight to blocks belonging to different loops.
702     if (!isLoopEnteringExitingEdge(Edge)) {
703       if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList,
704                                       LoopWorkList))
705         // If DomBB has weight set then all it's predecessors are already
706         // processed (since we propagate weight up to the top of IR each time).
707         break;
708     } else if (isLoopExitingEdge(Edge)) {
709       LoopWorkList.push_back(DomLoopBB);
710     }
711   }
712 }
713 
714 Optional<uint32_t> BranchProbabilityInfo::getInitialEstimatedBlockWeight(
715     const BasicBlock *BB) {
716   // Returns true if \p BB has call marked with "NoReturn" attribute.
717   auto hasNoReturn = [&](const BasicBlock *BB) {
718     for (const auto &I : reverse(*BB))
719       if (const CallInst *CI = dyn_cast<CallInst>(&I))
720         if (CI->hasFnAttr(Attribute::NoReturn))
721           return true;
722 
723     return false;
724   };
725 
726   // Important note regarding the order of checks. They are ordered by weight
727   // from lowest to highest. Doing that allows to avoid "unstable" results
728   // when several conditions heuristics can be applied simultaneously.
729   if (isa<UnreachableInst>(BB->getTerminator()) ||
730       // If this block is terminated by a call to
731       // @llvm.experimental.deoptimize then treat it like an unreachable
732       // since it is expected to practically never execute.
733       // TODO: Should we actually treat as never returning call?
734       BB->getTerminatingDeoptimizeCall())
735     return hasNoReturn(BB)
736                ? static_cast<uint32_t>(BlockExecWeight::NORETURN)
737                : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE);
738 
739   // Check if the block is 'unwind' handler of  some invoke instruction.
740   for (const auto *Pred : predecessors(BB))
741     if (Pred)
742       if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
743         if (II->getUnwindDest() == BB)
744           return static_cast<uint32_t>(BlockExecWeight::UNWIND);
745 
746   // Check if the block contains 'cold' call.
747   for (const auto &I : *BB)
748     if (const CallInst *CI = dyn_cast<CallInst>(&I))
749       if (CI->hasFnAttr(Attribute::Cold))
750         return static_cast<uint32_t>(BlockExecWeight::COLD);
751 
752   return None;
753 }
754 
755 // Does RPO traversal over all blocks in \p F and assigns weights to
756 // 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its
757 // best to propagate the weight to up/down the IR.
758 void BranchProbabilityInfo::computeEestimateBlockWeight(
759     const Function &F, DominatorTree *DT, PostDominatorTree *PDT) {
760   SmallVector<BasicBlock *, 8> BlockWorkList;
761   SmallVector<LoopBlock, 8> LoopWorkList;
762 
763   // By doing RPO we make sure that all predecessors already have weights
764   // calculated before visiting theirs successors.
765   ReversePostOrderTraversal<const Function *> RPOT(&F);
766   for (const auto *BB : RPOT)
767     if (auto BBWeight = getInitialEstimatedBlockWeight(BB))
768       // If we were able to find estimated weight for the block set it to this
769       // block and propagate up the IR.
770       propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT,
771                                     BBWeight.getValue(), BlockWorkList,
772                                     LoopWorkList);
773 
774   // BlockWorklist/LoopWorkList contains blocks/loops with at least one
775   // successor/exit having estimated weight. Try to propagate weight to such
776   // blocks/loops from successors/exits.
777   // Process loops and blocks. Order is not important.
778   do {
779     while (!LoopWorkList.empty()) {
780       const LoopBlock LoopBB = LoopWorkList.pop_back_val();
781 
782       if (EstimatedLoopWeight.count(LoopBB.getLoopData()))
783         continue;
784 
785       SmallVector<BasicBlock *, 4> Exits;
786       getLoopExitBlocks(LoopBB, Exits);
787       auto LoopWeight = getMaxEstimatedEdgeWeight(
788           LoopBB, make_range(Exits.begin(), Exits.end()));
789 
790       if (LoopWeight) {
791         // If we never exit the loop then we can enter it once at maximum.
792         if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
793           LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
794 
795         EstimatedLoopWeight.insert(
796             {LoopBB.getLoopData(), LoopWeight.getValue()});
797         // Add all blocks entering the loop into working list.
798         getLoopEnterBlocks(LoopBB, BlockWorkList);
799       }
800     }
801 
802     while (!BlockWorkList.empty()) {
803       // We can reach here only if BlockWorkList is not empty.
804       const BasicBlock *BB = BlockWorkList.pop_back_val();
805       if (EstimatedBlockWeight.count(BB))
806         continue;
807 
808       // We take maximum over all weights of successors. In other words we take
809       // weight of "hot" path. In theory we can probably find a better function
810       // which gives higher accuracy results (comparing to "maximum") but I
811       // can't
812       // think of any right now. And I doubt it will make any difference in
813       // practice.
814       const LoopBlock LoopBB = getLoopBlock(BB);
815       auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB));
816 
817       if (MaxWeight)
818         propagateEstimatedBlockWeight(LoopBB, DT, PDT, MaxWeight.getValue(),
819                                       BlockWorkList, LoopWorkList);
820     }
821   } while (!BlockWorkList.empty() || !LoopWorkList.empty());
822 }
823 
824 // Calculate edge probabilities based on block's estimated weight.
825 // Note that gathered weights were not scaled for loops. Thus edges entering
826 // and exiting loops requires special processing.
827 bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) {
828   assert(BB->getTerminator()->getNumSuccessors() > 1 &&
829          "expected more than one successor!");
830 
831   const LoopBlock LoopBB = getLoopBlock(BB);
832 
833   SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks;
834   uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT;
835   if (LoopBB.getLoop())
836     computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks);
837 
838   // Changed to 'true' if at least one successor has estimated weight.
839   bool FoundEstimatedWeight = false;
840   SmallVector<uint32_t, 4> SuccWeights;
841   uint64_t TotalWeight = 0;
842   // Go over all successors of BB and put their weights into SuccWeights.
843   for (const BasicBlock *SuccBB : successors(BB)) {
844     Optional<uint32_t> Weight;
845     const LoopBlock SuccLoopBB = getLoopBlock(SuccBB);
846     const LoopEdge Edge{LoopBB, SuccLoopBB};
847 
848     Weight = getEstimatedEdgeWeight(Edge);
849 
850     if (isLoopExitingEdge(Edge) &&
851         // Avoid adjustment of ZERO weight since it should remain unchanged.
852         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
853       // Scale down loop exiting weight by trip count.
854       Weight = std::max(
855           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
856           Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
857               TC);
858     }
859     bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB);
860     if (IsUnlikelyEdge &&
861         // Avoid adjustment of ZERO weight since it should remain unchanged.
862         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
863       // 'Unlikely' blocks have twice lower weight.
864       Weight = std::max(
865           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
866           Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
867               2);
868     }
869 
870     if (Weight)
871       FoundEstimatedWeight = true;
872 
873     auto WeightVal =
874         Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT));
875     TotalWeight += WeightVal;
876     SuccWeights.push_back(WeightVal);
877   }
878 
879   // If non of blocks have estimated weight bail out.
880   // If TotalWeight is 0 that means weight of each successor is 0 as well and
881   // equally likely. Bail out early to not deal with devision by zero.
882   if (!FoundEstimatedWeight || TotalWeight == 0)
883     return false;
884 
885   assert(SuccWeights.size() == succ_size(BB) && "Missed successor?");
886   const unsigned SuccCount = SuccWeights.size();
887 
888   // If the sum of weights does not fit in 32 bits, scale every weight down
889   // accordingly.
890   if (TotalWeight > UINT32_MAX) {
891     uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1;
892     TotalWeight = 0;
893     for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
894       SuccWeights[Idx] /= ScalingFactor;
895       if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO))
896         SuccWeights[Idx] =
897             static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
898       TotalWeight += SuccWeights[Idx];
899     }
900     assert(TotalWeight <= UINT32_MAX && "Total weight overflows");
901   }
902 
903   // Finally set probabilities to edges according to estimated block weights.
904   SmallVector<BranchProbability, 4> EdgeProbabilities(
905       SuccCount, BranchProbability::getUnknown());
906 
907   for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
908     EdgeProbabilities[Idx] =
909         BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight);
910   }
911   setEdgeProbability(BB, EdgeProbabilities);
912   return true;
913 }
914 
915 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
916                                                const TargetLibraryInfo *TLI) {
917   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
918   if (!BI || !BI->isConditional())
919     return false;
920 
921   Value *Cond = BI->getCondition();
922   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
923   if (!CI)
924     return false;
925 
926   auto GetConstantInt = [](Value *V) {
927     if (auto *I = dyn_cast<BitCastInst>(V))
928       return dyn_cast<ConstantInt>(I->getOperand(0));
929     return dyn_cast<ConstantInt>(V);
930   };
931 
932   Value *RHS = CI->getOperand(1);
933   ConstantInt *CV = GetConstantInt(RHS);
934   if (!CV)
935     return false;
936 
937   // If the LHS is the result of AND'ing a value with a single bit bitmask,
938   // we don't have information about probabilities.
939   if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
940     if (LHS->getOpcode() == Instruction::And)
941       if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1)))
942         if (AndRHS->getValue().isPowerOf2())
943           return false;
944 
945   // Check if the LHS is the return value of a library function
946   LibFunc Func = NumLibFuncs;
947   if (TLI)
948     if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
949       if (Function *CalledFn = Call->getCalledFunction())
950         TLI->getLibFunc(*CalledFn, Func);
951 
952   bool isProb;
953   if (Func == LibFunc_strcasecmp ||
954       Func == LibFunc_strcmp ||
955       Func == LibFunc_strncasecmp ||
956       Func == LibFunc_strncmp ||
957       Func == LibFunc_memcmp ||
958       Func == LibFunc_bcmp) {
959     // strcmp and similar functions return zero, negative, or positive, if the
960     // first string is equal, less, or greater than the second. We consider it
961     // likely that the strings are not equal, so a comparison with zero is
962     // probably false, but also a comparison with any other number is also
963     // probably false given that what exactly is returned for nonzero values is
964     // not specified. Any kind of comparison other than equality we know
965     // nothing about.
966     switch (CI->getPredicate()) {
967     case CmpInst::ICMP_EQ:
968       isProb = false;
969       break;
970     case CmpInst::ICMP_NE:
971       isProb = true;
972       break;
973     default:
974       return false;
975     }
976   } else if (CV->isZero()) {
977     switch (CI->getPredicate()) {
978     case CmpInst::ICMP_EQ:
979       // X == 0   ->  Unlikely
980       isProb = false;
981       break;
982     case CmpInst::ICMP_NE:
983       // X != 0   ->  Likely
984       isProb = true;
985       break;
986     case CmpInst::ICMP_SLT:
987       // X < 0   ->  Unlikely
988       isProb = false;
989       break;
990     case CmpInst::ICMP_SGT:
991       // X > 0   ->  Likely
992       isProb = true;
993       break;
994     default:
995       return false;
996     }
997   } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
998     // InstCombine canonicalizes X <= 0 into X < 1.
999     // X <= 0   ->  Unlikely
1000     isProb = false;
1001   } else if (CV->isMinusOne()) {
1002     switch (CI->getPredicate()) {
1003     case CmpInst::ICMP_EQ:
1004       // X == -1  ->  Unlikely
1005       isProb = false;
1006       break;
1007     case CmpInst::ICMP_NE:
1008       // X != -1  ->  Likely
1009       isProb = true;
1010       break;
1011     case CmpInst::ICMP_SGT:
1012       // InstCombine canonicalizes X >= 0 into X > -1.
1013       // X >= 0   ->  Likely
1014       isProb = true;
1015       break;
1016     default:
1017       return false;
1018     }
1019   } else {
1020     return false;
1021   }
1022 
1023   BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
1024                               ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
1025   BranchProbability UntakenProb(ZH_NONTAKEN_WEIGHT,
1026                                 ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
1027   if (!isProb)
1028     std::swap(TakenProb, UntakenProb);
1029 
1030   setEdgeProbability(
1031       BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
1032   return true;
1033 }
1034 
1035 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
1036   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
1037   if (!BI || !BI->isConditional())
1038     return false;
1039 
1040   Value *Cond = BI->getCondition();
1041   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
1042   if (!FCmp)
1043     return false;
1044 
1045   uint32_t TakenWeight = FPH_TAKEN_WEIGHT;
1046   uint32_t NontakenWeight = FPH_NONTAKEN_WEIGHT;
1047   bool isProb;
1048   if (FCmp->isEquality()) {
1049     // f1 == f2 -> Unlikely
1050     // f1 != f2 -> Likely
1051     isProb = !FCmp->isTrueWhenEqual();
1052   } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
1053     // !isnan -> Likely
1054     isProb = true;
1055     TakenWeight = FPH_ORD_WEIGHT;
1056     NontakenWeight = FPH_UNO_WEIGHT;
1057   } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
1058     // isnan -> Unlikely
1059     isProb = false;
1060     TakenWeight = FPH_ORD_WEIGHT;
1061     NontakenWeight = FPH_UNO_WEIGHT;
1062   } else {
1063     return false;
1064   }
1065 
1066   BranchProbability TakenProb(TakenWeight, TakenWeight + NontakenWeight);
1067   BranchProbability UntakenProb(NontakenWeight, TakenWeight + NontakenWeight);
1068   if (!isProb)
1069     std::swap(TakenProb, UntakenProb);
1070 
1071   setEdgeProbability(
1072       BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
1073   return true;
1074 }
1075 
1076 void BranchProbabilityInfo::releaseMemory() {
1077   Probs.clear();
1078   Handles.clear();
1079 }
1080 
1081 bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
1082                                        FunctionAnalysisManager::Invalidator &) {
1083   // Check whether the analysis, all analyses on functions, or the function's
1084   // CFG have been preserved.
1085   auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
1086   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
1087            PAC.preservedSet<CFGAnalyses>());
1088 }
1089 
1090 void BranchProbabilityInfo::print(raw_ostream &OS) const {
1091   OS << "---- Branch Probabilities ----\n";
1092   // We print the probabilities from the last function the analysis ran over,
1093   // or the function it is currently running over.
1094   assert(LastF && "Cannot print prior to running over a function");
1095   for (const auto &BI : *LastF) {
1096     for (const BasicBlock *Succ : successors(&BI))
1097       printEdgeProbability(OS << "  ", &BI, Succ);
1098   }
1099 }
1100 
1101 bool BranchProbabilityInfo::
1102 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
1103   // Hot probability is at least 4/5 = 80%
1104   // FIXME: Compare against a static "hot" BranchProbability.
1105   return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
1106 }
1107 
1108 /// Get the raw edge probability for the edge. If can't find it, return a
1109 /// default probability 1/N where N is the number of successors. Here an edge is
1110 /// specified using PredBlock and an
1111 /// index to the successors.
1112 BranchProbability
1113 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1114                                           unsigned IndexInSuccessors) const {
1115   auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
1116   assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) ==
1117              (Probs.end() == I) &&
1118          "Probability for I-th successor must always be defined along with the "
1119          "probability for the first successor");
1120 
1121   if (I != Probs.end())
1122     return I->second;
1123 
1124   return {1, static_cast<uint32_t>(succ_size(Src))};
1125 }
1126 
1127 BranchProbability
1128 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1129                                           const_succ_iterator Dst) const {
1130   return getEdgeProbability(Src, Dst.getSuccessorIndex());
1131 }
1132 
1133 /// Get the raw edge probability calculated for the block pair. This returns the
1134 /// sum of all raw edge probabilities from Src to Dst.
1135 BranchProbability
1136 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1137                                           const BasicBlock *Dst) const {
1138   if (!Probs.count(std::make_pair(Src, 0)))
1139     return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src));
1140 
1141   auto Prob = BranchProbability::getZero();
1142   for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
1143     if (*I == Dst)
1144       Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second;
1145 
1146   return Prob;
1147 }
1148 
1149 /// Set the edge probability for all edges at once.
1150 void BranchProbabilityInfo::setEdgeProbability(
1151     const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
1152   assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
1153   eraseBlock(Src); // Erase stale data if any.
1154   if (Probs.size() == 0)
1155     return; // Nothing to set.
1156 
1157   Handles.insert(BasicBlockCallbackVH(Src, this));
1158   uint64_t TotalNumerator = 0;
1159   for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
1160     this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx];
1161     LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx
1162                       << " successor probability to " << Probs[SuccIdx]
1163                       << "\n");
1164     TotalNumerator += Probs[SuccIdx].getNumerator();
1165   }
1166 
1167   // Because of rounding errors the total probability cannot be checked to be
1168   // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
1169   // Instead, every single probability in Probs must be as accurate as possible.
1170   // This results in error 1/denominator at most, thus the total absolute error
1171   // should be within Probs.size / BranchProbability::getDenominator.
1172   assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
1173   assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
1174   (void)TotalNumerator;
1175 }
1176 
1177 void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src,
1178                                                   BasicBlock *Dst) {
1179   eraseBlock(Dst); // Erase stale data if any.
1180   unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors();
1181   assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors());
1182   if (NumSuccessors == 0)
1183     return; // Nothing to set.
1184   if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end())
1185     return; // No probability is set for edges from Src. Keep the same for Dst.
1186 
1187   Handles.insert(BasicBlockCallbackVH(Dst, this));
1188   for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) {
1189     auto Prob = this->Probs[std::make_pair(Src, SuccIdx)];
1190     this->Probs[std::make_pair(Dst, SuccIdx)] = Prob;
1191     LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx
1192                       << " successor probability to " << Prob << "\n");
1193   }
1194 }
1195 
1196 raw_ostream &
1197 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
1198                                             const BasicBlock *Src,
1199                                             const BasicBlock *Dst) const {
1200   const BranchProbability Prob = getEdgeProbability(Src, Dst);
1201   OS << "edge " << Src->getName() << " -> " << Dst->getName()
1202      << " probability is " << Prob
1203      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
1204 
1205   return OS;
1206 }
1207 
1208 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
1209   LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n");
1210 
1211   // Note that we cannot use successors of BB because the terminator of BB may
1212   // have changed when eraseBlock is called as a BasicBlockCallbackVH callback.
1213   // Instead we remove prob data for the block by iterating successors by their
1214   // indices from 0 till the last which exists. There could not be prob data for
1215   // a pair (BB, N) if there is no data for (BB, N-1) because the data is always
1216   // set for all successors from 0 to M at once by the method
1217   // setEdgeProbability().
1218   Handles.erase(BasicBlockCallbackVH(BB, this));
1219   for (unsigned I = 0;; ++I) {
1220     auto MapI = Probs.find(std::make_pair(BB, I));
1221     if (MapI == Probs.end()) {
1222       assert(Probs.count(std::make_pair(BB, I + 1)) == 0 &&
1223              "Must be no more successors");
1224       return;
1225     }
1226     Probs.erase(MapI);
1227   }
1228 }
1229 
1230 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI,
1231                                       const TargetLibraryInfo *TLI,
1232                                       DominatorTree *DT,
1233                                       PostDominatorTree *PDT) {
1234   LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
1235                     << " ----\n\n");
1236   LastF = &F; // Store the last function we ran on for printing.
1237   LI = &LoopI;
1238 
1239   SccI = std::make_unique<SccInfo>(F);
1240 
1241   assert(EstimatedBlockWeight.empty());
1242   assert(EstimatedLoopWeight.empty());
1243 
1244   std::unique_ptr<DominatorTree> DTPtr;
1245   std::unique_ptr<PostDominatorTree> PDTPtr;
1246 
1247   if (!DT) {
1248     DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F));
1249     DT = DTPtr.get();
1250   }
1251 
1252   if (!PDT) {
1253     PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
1254     PDT = PDTPtr.get();
1255   }
1256 
1257   computeEestimateBlockWeight(F, DT, PDT);
1258 
1259   // Walk the basic blocks in post-order so that we can build up state about
1260   // the successors of a block iteratively.
1261   for (auto BB : post_order(&F.getEntryBlock())) {
1262     LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
1263                       << "\n");
1264     // If there is no at least two successors, no sense to set probability.
1265     if (BB->getTerminator()->getNumSuccessors() < 2)
1266       continue;
1267     if (calcMetadataWeights(BB))
1268       continue;
1269     if (calcEstimatedHeuristics(BB))
1270       continue;
1271     if (calcPointerHeuristics(BB))
1272       continue;
1273     if (calcZeroHeuristics(BB, TLI))
1274       continue;
1275     if (calcFloatingPointHeuristics(BB))
1276       continue;
1277   }
1278 
1279   EstimatedLoopWeight.clear();
1280   EstimatedBlockWeight.clear();
1281   SccI.reset();
1282 
1283   if (PrintBranchProb &&
1284       (PrintBranchProbFuncName.empty() ||
1285        F.getName().equals(PrintBranchProbFuncName))) {
1286     print(dbgs());
1287   }
1288 }
1289 
1290 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
1291     AnalysisUsage &AU) const {
1292   // We require DT so it's available when LI is available. The LI updating code
1293   // asserts that DT is also present so if we don't make sure that we have DT
1294   // here, that assert will trigger.
1295   AU.addRequired<DominatorTreeWrapperPass>();
1296   AU.addRequired<LoopInfoWrapperPass>();
1297   AU.addRequired<TargetLibraryInfoWrapperPass>();
1298   AU.addRequired<DominatorTreeWrapperPass>();
1299   AU.addRequired<PostDominatorTreeWrapperPass>();
1300   AU.setPreservesAll();
1301 }
1302 
1303 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
1304   const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1305   const TargetLibraryInfo &TLI =
1306       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1307   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1308   PostDominatorTree &PDT =
1309       getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1310   BPI.calculate(F, LI, &TLI, &DT, &PDT);
1311   return false;
1312 }
1313 
1314 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
1315 
1316 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
1317                                              const Module *) const {
1318   BPI.print(OS);
1319 }
1320 
1321 AnalysisKey BranchProbabilityAnalysis::Key;
1322 BranchProbabilityInfo
1323 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1324   BranchProbabilityInfo BPI;
1325   BPI.calculate(F, AM.getResult<LoopAnalysis>(F),
1326                 &AM.getResult<TargetLibraryAnalysis>(F),
1327                 &AM.getResult<DominatorTreeAnalysis>(F),
1328                 &AM.getResult<PostDominatorTreeAnalysis>(F));
1329   return BPI;
1330 }
1331 
1332 PreservedAnalyses
1333 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
1334   OS << "Printing analysis results of BPI for function "
1335      << "'" << F.getName() << "':"
1336      << "\n";
1337   AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
1338   return PreservedAnalyses::all();
1339 }
1340