xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp (revision fe6060f10f634930ff71b7c50291ddc610da2475)
10b57cec5SDimitry Andric //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // Loops should be simplified before this analysis.
100b57cec5SDimitry Andric //
110b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
120b57cec5SDimitry Andric 
130b57cec5SDimitry Andric #include "llvm/Analysis/BranchProbabilityInfo.h"
140b57cec5SDimitry Andric #include "llvm/ADT/PostOrderIterator.h"
150b57cec5SDimitry Andric #include "llvm/ADT/SCCIterator.h"
160b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
170b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
180b57cec5SDimitry Andric #include "llvm/Analysis/LoopInfo.h"
19480093f4SDimitry Andric #include "llvm/Analysis/PostDominators.h"
200b57cec5SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h"
210b57cec5SDimitry Andric #include "llvm/IR/Attributes.h"
220b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h"
230b57cec5SDimitry Andric #include "llvm/IR/CFG.h"
240b57cec5SDimitry Andric #include "llvm/IR/Constants.h"
250b57cec5SDimitry Andric #include "llvm/IR/Dominators.h"
260b57cec5SDimitry Andric #include "llvm/IR/Function.h"
270b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h"
280b57cec5SDimitry Andric #include "llvm/IR/Instruction.h"
290b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
300b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h"
310b57cec5SDimitry Andric #include "llvm/IR/Metadata.h"
320b57cec5SDimitry Andric #include "llvm/IR/PassManager.h"
330b57cec5SDimitry Andric #include "llvm/IR/Type.h"
340b57cec5SDimitry Andric #include "llvm/IR/Value.h"
35480093f4SDimitry Andric #include "llvm/InitializePasses.h"
360b57cec5SDimitry Andric #include "llvm/Pass.h"
370b57cec5SDimitry Andric #include "llvm/Support/BranchProbability.h"
380b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
39480093f4SDimitry Andric #include "llvm/Support/CommandLine.h"
400b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
410b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h"
420b57cec5SDimitry Andric #include <cassert>
430b57cec5SDimitry Andric #include <cstdint>
440b57cec5SDimitry Andric #include <iterator>
450b57cec5SDimitry Andric #include <utility>
460b57cec5SDimitry Andric 
470b57cec5SDimitry Andric using namespace llvm;
480b57cec5SDimitry Andric 
490b57cec5SDimitry Andric #define DEBUG_TYPE "branch-prob"
500b57cec5SDimitry Andric 
510b57cec5SDimitry Andric static cl::opt<bool> PrintBranchProb(
520b57cec5SDimitry Andric     "print-bpi", cl::init(false), cl::Hidden,
530b57cec5SDimitry Andric     cl::desc("Print the branch probability info."));
540b57cec5SDimitry Andric 
550b57cec5SDimitry Andric cl::opt<std::string> PrintBranchProbFuncName(
560b57cec5SDimitry Andric     "print-bpi-func-name", cl::Hidden,
570b57cec5SDimitry Andric     cl::desc("The option to specify the name of the function "
580b57cec5SDimitry Andric              "whose branch probability info is printed."));
590b57cec5SDimitry Andric 
600b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
610b57cec5SDimitry Andric                       "Branch Probability Analysis", false, true)
620b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
630b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
64e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
655ffd83dbSDimitry Andric INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
660b57cec5SDimitry Andric INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
670b57cec5SDimitry Andric                     "Branch Probability Analysis", false, true)
680b57cec5SDimitry Andric 
69480093f4SDimitry Andric BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
70480093f4SDimitry Andric     : FunctionPass(ID) {
71480093f4SDimitry Andric   initializeBranchProbabilityInfoWrapperPassPass(
72480093f4SDimitry Andric       *PassRegistry::getPassRegistry());
73480093f4SDimitry Andric }
74480093f4SDimitry Andric 
750b57cec5SDimitry Andric char BranchProbabilityInfoWrapperPass::ID = 0;
760b57cec5SDimitry Andric 
770b57cec5SDimitry Andric // Weights are for internal use only. They are used by heuristics to help to
780b57cec5SDimitry Andric // estimate edges' probability. Example:
790b57cec5SDimitry Andric //
800b57cec5SDimitry Andric // Using "Loop Branch Heuristics" we predict weights of edges for the
810b57cec5SDimitry Andric // block BB2.
820b57cec5SDimitry Andric //         ...
830b57cec5SDimitry Andric //          |
840b57cec5SDimitry Andric //          V
850b57cec5SDimitry Andric //         BB1<-+
860b57cec5SDimitry Andric //          |   |
870b57cec5SDimitry Andric //          |   | (Weight = 124)
880b57cec5SDimitry Andric //          V   |
890b57cec5SDimitry Andric //         BB2--+
900b57cec5SDimitry Andric //          |
910b57cec5SDimitry Andric //          | (Weight = 4)
920b57cec5SDimitry Andric //          V
930b57cec5SDimitry Andric //         BB3
940b57cec5SDimitry Andric //
950b57cec5SDimitry Andric // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
960b57cec5SDimitry Andric // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
970b57cec5SDimitry Andric static const uint32_t LBH_TAKEN_WEIGHT = 124;
980b57cec5SDimitry Andric static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
990b57cec5SDimitry Andric 
1000b57cec5SDimitry Andric /// Unreachable-terminating branch taken probability.
1010b57cec5SDimitry Andric ///
1020b57cec5SDimitry Andric /// This is the probability for a branch being taken to a block that terminates
1030b57cec5SDimitry Andric /// (eventually) in unreachable. These are predicted as unlikely as possible.
1045ffd83dbSDimitry Andric /// All reachable probability will proportionally share the remaining part.
1050b57cec5SDimitry Andric static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
1060b57cec5SDimitry Andric 
1070b57cec5SDimitry Andric static const uint32_t PH_TAKEN_WEIGHT = 20;
1080b57cec5SDimitry Andric static const uint32_t PH_NONTAKEN_WEIGHT = 12;
1090b57cec5SDimitry Andric 
1100b57cec5SDimitry Andric static const uint32_t ZH_TAKEN_WEIGHT = 20;
1110b57cec5SDimitry Andric static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
1120b57cec5SDimitry Andric 
1130b57cec5SDimitry Andric static const uint32_t FPH_TAKEN_WEIGHT = 20;
1140b57cec5SDimitry Andric static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
1150b57cec5SDimitry Andric 
1168bcb0991SDimitry Andric /// This is the probability for an ordered floating point comparison.
1178bcb0991SDimitry Andric static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
1188bcb0991SDimitry Andric /// This is the probability for an unordered floating point comparison, it means
1198bcb0991SDimitry Andric /// one or two of the operands are NaN. Usually it is used to test for an
1208bcb0991SDimitry Andric /// exceptional case, so the result is unlikely.
1218bcb0991SDimitry Andric static const uint32_t FPH_UNO_WEIGHT = 1;
1228bcb0991SDimitry Andric 
123e8d8bef9SDimitry Andric /// Set of dedicated "absolute" execution weights for a block. These weights are
124e8d8bef9SDimitry Andric /// meaningful relative to each other and their derivatives only.
125e8d8bef9SDimitry Andric enum class BlockExecWeight : std::uint32_t {
126e8d8bef9SDimitry Andric   /// Special weight used for cases with exact zero probability.
127e8d8bef9SDimitry Andric   ZERO = 0x0,
128e8d8bef9SDimitry Andric   /// Minimal possible non zero weight.
129e8d8bef9SDimitry Andric   LOWEST_NON_ZERO = 0x1,
130e8d8bef9SDimitry Andric   /// Weight to an 'unreachable' block.
131e8d8bef9SDimitry Andric   UNREACHABLE = ZERO,
132e8d8bef9SDimitry Andric   /// Weight to a block containing non returning call.
133e8d8bef9SDimitry Andric   NORETURN = LOWEST_NON_ZERO,
134e8d8bef9SDimitry Andric   /// Weight to 'unwind' block of an invoke instruction.
135e8d8bef9SDimitry Andric   UNWIND = LOWEST_NON_ZERO,
136e8d8bef9SDimitry Andric   /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked
137e8d8bef9SDimitry Andric   /// with attribute 'cold'.
138e8d8bef9SDimitry Andric   COLD = 0xffff,
139e8d8bef9SDimitry Andric   /// Default weight is used in cases when there is no dedicated execution
140e8d8bef9SDimitry Andric   /// weight set. It is not propagated through the domination line either.
141e8d8bef9SDimitry Andric   DEFAULT = 0xfffff
142e8d8bef9SDimitry Andric };
1430b57cec5SDimitry Andric 
144e8d8bef9SDimitry Andric BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
145e8d8bef9SDimitry Andric   // Record SCC numbers of blocks in the CFG to identify irreducible loops.
146e8d8bef9SDimitry Andric   // FIXME: We could only calculate this if the CFG is known to be irreducible
147e8d8bef9SDimitry Andric   // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
148e8d8bef9SDimitry Andric   int SccNum = 0;
149e8d8bef9SDimitry Andric   for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
150e8d8bef9SDimitry Andric        ++It, ++SccNum) {
151e8d8bef9SDimitry Andric     // Ignore single-block SCCs since they either aren't loops or LoopInfo will
152e8d8bef9SDimitry Andric     // catch them.
153e8d8bef9SDimitry Andric     const std::vector<const BasicBlock *> &Scc = *It;
154e8d8bef9SDimitry Andric     if (Scc.size() == 1)
155480093f4SDimitry Andric       continue;
156e8d8bef9SDimitry Andric 
157e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
158e8d8bef9SDimitry Andric     for (const auto *BB : Scc) {
159e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << " " << BB->getName());
160e8d8bef9SDimitry Andric       SccNums[BB] = SccNum;
161e8d8bef9SDimitry Andric       calculateSccBlockType(BB, SccNum);
162480093f4SDimitry Andric     }
163e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "\n");
164e8d8bef9SDimitry Andric   }
165e8d8bef9SDimitry Andric }
166e8d8bef9SDimitry Andric 
167e8d8bef9SDimitry Andric int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
168e8d8bef9SDimitry Andric   auto SccIt = SccNums.find(BB);
169e8d8bef9SDimitry Andric   if (SccIt == SccNums.end())
170e8d8bef9SDimitry Andric     return -1;
171e8d8bef9SDimitry Andric   return SccIt->second;
172e8d8bef9SDimitry Andric }
173e8d8bef9SDimitry Andric 
174e8d8bef9SDimitry Andric void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
175e8d8bef9SDimitry Andric     int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {
176e8d8bef9SDimitry Andric 
177e8d8bef9SDimitry Andric   for (auto MapIt : SccBlocks[SccNum]) {
178e8d8bef9SDimitry Andric     const auto *BB = MapIt.first;
179e8d8bef9SDimitry Andric     if (isSCCHeader(BB, SccNum))
180e8d8bef9SDimitry Andric       for (const auto *Pred : predecessors(BB))
181e8d8bef9SDimitry Andric         if (getSCCNum(Pred) != SccNum)
182e8d8bef9SDimitry Andric           Enters.push_back(const_cast<BasicBlock *>(BB));
183e8d8bef9SDimitry Andric   }
184e8d8bef9SDimitry Andric }
185e8d8bef9SDimitry Andric 
186e8d8bef9SDimitry Andric void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
187e8d8bef9SDimitry Andric     int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
188e8d8bef9SDimitry Andric   for (auto MapIt : SccBlocks[SccNum]) {
189e8d8bef9SDimitry Andric     const auto *BB = MapIt.first;
190e8d8bef9SDimitry Andric     if (isSCCExitingBlock(BB, SccNum))
191e8d8bef9SDimitry Andric       for (const auto *Succ : successors(BB))
192e8d8bef9SDimitry Andric         if (getSCCNum(Succ) != SccNum)
193e8d8bef9SDimitry Andric           Exits.push_back(const_cast<BasicBlock *>(BB));
194e8d8bef9SDimitry Andric   }
195e8d8bef9SDimitry Andric }
196e8d8bef9SDimitry Andric 
197e8d8bef9SDimitry Andric uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
198e8d8bef9SDimitry Andric                                                          int SccNum) const {
199e8d8bef9SDimitry Andric   assert(getSCCNum(BB) == SccNum);
200e8d8bef9SDimitry Andric 
201e8d8bef9SDimitry Andric   assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
202e8d8bef9SDimitry Andric   const auto &SccBlockTypes = SccBlocks[SccNum];
203e8d8bef9SDimitry Andric 
204e8d8bef9SDimitry Andric   auto It = SccBlockTypes.find(BB);
205e8d8bef9SDimitry Andric   if (It != SccBlockTypes.end()) {
206e8d8bef9SDimitry Andric     return It->second;
207e8d8bef9SDimitry Andric   }
208e8d8bef9SDimitry Andric   return Inner;
209e8d8bef9SDimitry Andric }
210e8d8bef9SDimitry Andric 
211e8d8bef9SDimitry Andric void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
212e8d8bef9SDimitry Andric                                                            int SccNum) {
213e8d8bef9SDimitry Andric   assert(getSCCNum(BB) == SccNum);
214e8d8bef9SDimitry Andric   uint32_t BlockType = Inner;
215e8d8bef9SDimitry Andric 
216e8d8bef9SDimitry Andric   if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) {
217e8d8bef9SDimitry Andric         // Consider any block that is an entry point to the SCC as
218e8d8bef9SDimitry Andric         // a header.
219e8d8bef9SDimitry Andric         return getSCCNum(Pred) != SccNum;
220480093f4SDimitry Andric       }))
221e8d8bef9SDimitry Andric     BlockType |= Header;
2220b57cec5SDimitry Andric 
223e8d8bef9SDimitry Andric   if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) {
224e8d8bef9SDimitry Andric         return getSCCNum(Succ) != SccNum;
225480093f4SDimitry Andric       }))
226e8d8bef9SDimitry Andric     BlockType |= Exiting;
227e8d8bef9SDimitry Andric 
228e8d8bef9SDimitry Andric   // Lazily compute the set of headers for a given SCC and cache the results
229e8d8bef9SDimitry Andric   // in the SccHeaderMap.
230e8d8bef9SDimitry Andric   if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
231e8d8bef9SDimitry Andric     SccBlocks.resize(SccNum + 1);
232e8d8bef9SDimitry Andric   auto &SccBlockTypes = SccBlocks[SccNum];
233e8d8bef9SDimitry Andric 
234e8d8bef9SDimitry Andric   if (BlockType != Inner) {
235e8d8bef9SDimitry Andric     bool IsInserted;
236e8d8bef9SDimitry Andric     std::tie(std::ignore, IsInserted) =
237e8d8bef9SDimitry Andric         SccBlockTypes.insert(std::make_pair(BB, BlockType));
238e8d8bef9SDimitry Andric     assert(IsInserted && "Duplicated block in SCC");
2390b57cec5SDimitry Andric   }
2400b57cec5SDimitry Andric }
2410b57cec5SDimitry Andric 
242e8d8bef9SDimitry Andric BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
243e8d8bef9SDimitry Andric                                             const LoopInfo &LI,
244e8d8bef9SDimitry Andric                                             const SccInfo &SccI)
245e8d8bef9SDimitry Andric     : BB(BB) {
246e8d8bef9SDimitry Andric   LD.first = LI.getLoopFor(BB);
247e8d8bef9SDimitry Andric   if (!LD.first) {
248e8d8bef9SDimitry Andric     LD.second = SccI.getSCCNum(BB);
249e8d8bef9SDimitry Andric   }
2500b57cec5SDimitry Andric }
2510b57cec5SDimitry Andric 
252e8d8bef9SDimitry Andric bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
253e8d8bef9SDimitry Andric   const auto &SrcBlock = Edge.first;
254e8d8bef9SDimitry Andric   const auto &DstBlock = Edge.second;
255e8d8bef9SDimitry Andric   return (DstBlock.getLoop() &&
256e8d8bef9SDimitry Andric           !DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
257e8d8bef9SDimitry Andric          // Assume that SCCs can't be nested.
258e8d8bef9SDimitry Andric          (DstBlock.getSccNum() != -1 &&
259e8d8bef9SDimitry Andric           SrcBlock.getSccNum() != DstBlock.getSccNum());
260e8d8bef9SDimitry Andric }
2610b57cec5SDimitry Andric 
262e8d8bef9SDimitry Andric bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
263e8d8bef9SDimitry Andric   return isLoopEnteringEdge({Edge.second, Edge.first});
264e8d8bef9SDimitry Andric }
2650b57cec5SDimitry Andric 
266e8d8bef9SDimitry Andric bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
267e8d8bef9SDimitry Andric     const LoopEdge &Edge) const {
268e8d8bef9SDimitry Andric   return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
269e8d8bef9SDimitry Andric }
270e8d8bef9SDimitry Andric 
271e8d8bef9SDimitry Andric bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
272e8d8bef9SDimitry Andric   const auto &SrcBlock = Edge.first;
273e8d8bef9SDimitry Andric   const auto &DstBlock = Edge.second;
274e8d8bef9SDimitry Andric   return SrcBlock.belongsToSameLoop(DstBlock) &&
275e8d8bef9SDimitry Andric          ((DstBlock.getLoop() &&
276e8d8bef9SDimitry Andric            DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
277e8d8bef9SDimitry Andric           (DstBlock.getSccNum() != -1 &&
278e8d8bef9SDimitry Andric            SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
279e8d8bef9SDimitry Andric }
280e8d8bef9SDimitry Andric 
281e8d8bef9SDimitry Andric void BranchProbabilityInfo::getLoopEnterBlocks(
282e8d8bef9SDimitry Andric     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
283e8d8bef9SDimitry Andric   if (LB.getLoop()) {
284e8d8bef9SDimitry Andric     auto *Header = LB.getLoop()->getHeader();
285e8d8bef9SDimitry Andric     Enters.append(pred_begin(Header), pred_end(Header));
286e8d8bef9SDimitry Andric   } else {
287e8d8bef9SDimitry Andric     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
288e8d8bef9SDimitry Andric     SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
289e8d8bef9SDimitry Andric   }
290e8d8bef9SDimitry Andric }
291e8d8bef9SDimitry Andric 
292e8d8bef9SDimitry Andric void BranchProbabilityInfo::getLoopExitBlocks(
293e8d8bef9SDimitry Andric     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
294e8d8bef9SDimitry Andric   if (LB.getLoop()) {
295e8d8bef9SDimitry Andric     LB.getLoop()->getExitBlocks(Exits);
296e8d8bef9SDimitry Andric   } else {
297e8d8bef9SDimitry Andric     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
298e8d8bef9SDimitry Andric     SccI->getSccExitBlocks(LB.getSccNum(), Exits);
299e8d8bef9SDimitry Andric   }
3000b57cec5SDimitry Andric }
3010b57cec5SDimitry Andric 
3020b57cec5SDimitry Andric // Propagate existing explicit probabilities from either profile data or
3030b57cec5SDimitry Andric // 'expect' intrinsic processing. Examine metadata against unreachable
3040b57cec5SDimitry Andric // heuristic. The probability of the edge coming to unreachable block is
3050b57cec5SDimitry Andric // set to min of metadata and unreachable heuristic.
3060b57cec5SDimitry Andric bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
3070b57cec5SDimitry Andric   const Instruction *TI = BB->getTerminator();
3080b57cec5SDimitry Andric   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
3095ffd83dbSDimitry Andric   if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
3105ffd83dbSDimitry Andric         isa<InvokeInst>(TI)))
3110b57cec5SDimitry Andric     return false;
3120b57cec5SDimitry Andric 
3130b57cec5SDimitry Andric   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
3140b57cec5SDimitry Andric   if (!WeightsNode)
3150b57cec5SDimitry Andric     return false;
3160b57cec5SDimitry Andric 
3170b57cec5SDimitry Andric   // Check that the number of successors is manageable.
3180b57cec5SDimitry Andric   assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
3190b57cec5SDimitry Andric 
3200b57cec5SDimitry Andric   // Ensure there are weights for all of the successors. Note that the first
3210b57cec5SDimitry Andric   // operand to the metadata node is a name, not a weight.
3220b57cec5SDimitry Andric   if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
3230b57cec5SDimitry Andric     return false;
3240b57cec5SDimitry Andric 
3250b57cec5SDimitry Andric   // Build up the final weights that will be used in a temporary buffer.
3260b57cec5SDimitry Andric   // Compute the sum of all weights to later decide whether they need to
3270b57cec5SDimitry Andric   // be scaled to fit in 32 bits.
3280b57cec5SDimitry Andric   uint64_t WeightSum = 0;
3290b57cec5SDimitry Andric   SmallVector<uint32_t, 2> Weights;
3300b57cec5SDimitry Andric   SmallVector<unsigned, 2> UnreachableIdxs;
3310b57cec5SDimitry Andric   SmallVector<unsigned, 2> ReachableIdxs;
3320b57cec5SDimitry Andric   Weights.reserve(TI->getNumSuccessors());
3335ffd83dbSDimitry Andric   for (unsigned I = 1, E = WeightsNode->getNumOperands(); I != E; ++I) {
3340b57cec5SDimitry Andric     ConstantInt *Weight =
3355ffd83dbSDimitry Andric         mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(I));
3360b57cec5SDimitry Andric     if (!Weight)
3370b57cec5SDimitry Andric       return false;
3380b57cec5SDimitry Andric     assert(Weight->getValue().getActiveBits() <= 32 &&
3390b57cec5SDimitry Andric            "Too many bits for uint32_t");
3400b57cec5SDimitry Andric     Weights.push_back(Weight->getZExtValue());
3410b57cec5SDimitry Andric     WeightSum += Weights.back();
342e8d8bef9SDimitry Andric     const LoopBlock SrcLoopBB = getLoopBlock(BB);
343e8d8bef9SDimitry Andric     const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I - 1));
344e8d8bef9SDimitry Andric     auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
345e8d8bef9SDimitry Andric     if (EstimatedWeight &&
346e8d8bef9SDimitry Andric         EstimatedWeight.getValue() <=
347e8d8bef9SDimitry Andric             static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
3485ffd83dbSDimitry Andric       UnreachableIdxs.push_back(I - 1);
3490b57cec5SDimitry Andric     else
3505ffd83dbSDimitry Andric       ReachableIdxs.push_back(I - 1);
3510b57cec5SDimitry Andric   }
3520b57cec5SDimitry Andric   assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
3530b57cec5SDimitry Andric 
3540b57cec5SDimitry Andric   // If the sum of weights does not fit in 32 bits, scale every weight down
3550b57cec5SDimitry Andric   // accordingly.
3560b57cec5SDimitry Andric   uint64_t ScalingFactor =
3570b57cec5SDimitry Andric       (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
3580b57cec5SDimitry Andric 
3590b57cec5SDimitry Andric   if (ScalingFactor > 1) {
3600b57cec5SDimitry Andric     WeightSum = 0;
3615ffd83dbSDimitry Andric     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
3625ffd83dbSDimitry Andric       Weights[I] /= ScalingFactor;
3635ffd83dbSDimitry Andric       WeightSum += Weights[I];
3640b57cec5SDimitry Andric     }
3650b57cec5SDimitry Andric   }
3660b57cec5SDimitry Andric   assert(WeightSum <= UINT32_MAX &&
3670b57cec5SDimitry Andric          "Expected weights to scale down to 32 bits");
3680b57cec5SDimitry Andric 
3690b57cec5SDimitry Andric   if (WeightSum == 0 || ReachableIdxs.size() == 0) {
3705ffd83dbSDimitry Andric     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
3715ffd83dbSDimitry Andric       Weights[I] = 1;
3720b57cec5SDimitry Andric     WeightSum = TI->getNumSuccessors();
3730b57cec5SDimitry Andric   }
3740b57cec5SDimitry Andric 
3750b57cec5SDimitry Andric   // Set the probability.
3760b57cec5SDimitry Andric   SmallVector<BranchProbability, 2> BP;
3775ffd83dbSDimitry Andric   for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
3785ffd83dbSDimitry Andric     BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });
3790b57cec5SDimitry Andric 
3800b57cec5SDimitry Andric   // Examine the metadata against unreachable heuristic.
3810b57cec5SDimitry Andric   // If the unreachable heuristic is more strong then we use it for this edge.
3825ffd83dbSDimitry Andric   if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
3835ffd83dbSDimitry Andric     setEdgeProbability(BB, BP);
3845ffd83dbSDimitry Andric     return true;
3855ffd83dbSDimitry Andric   }
3865ffd83dbSDimitry Andric 
3870b57cec5SDimitry Andric   auto UnreachableProb = UR_TAKEN_PROB;
3885ffd83dbSDimitry Andric   for (auto I : UnreachableIdxs)
3895ffd83dbSDimitry Andric     if (UnreachableProb < BP[I]) {
3905ffd83dbSDimitry Andric       BP[I] = UnreachableProb;
3910b57cec5SDimitry Andric     }
3920b57cec5SDimitry Andric 
3935ffd83dbSDimitry Andric   // Sum of all edge probabilities must be 1.0. If we modified the probability
3945ffd83dbSDimitry Andric   // of some edges then we must distribute the introduced difference over the
3955ffd83dbSDimitry Andric   // reachable blocks.
3965ffd83dbSDimitry Andric   //
3975ffd83dbSDimitry Andric   // Proportional distribution: the relation between probabilities of the
3985ffd83dbSDimitry Andric   // reachable edges is kept unchanged. That is for any reachable edges i and j:
3995ffd83dbSDimitry Andric   //   newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
4005ffd83dbSDimitry Andric   //   newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
4015ffd83dbSDimitry Andric   // Where K is independent of i,j.
4025ffd83dbSDimitry Andric   //   newBP[i] == oldBP[i] * K
4035ffd83dbSDimitry Andric   // We need to find K.
4045ffd83dbSDimitry Andric   // Make sum of all reachables of the left and right parts:
4055ffd83dbSDimitry Andric   //   sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
4065ffd83dbSDimitry Andric   // Sum of newBP must be equal to 1.0:
4075ffd83dbSDimitry Andric   //   sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
4085ffd83dbSDimitry Andric   //   sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
4095ffd83dbSDimitry Andric   // Where sum_of_unreachable(newBP) is what has been just changed.
4105ffd83dbSDimitry Andric   // Finally:
4115ffd83dbSDimitry Andric   //   K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
4125ffd83dbSDimitry Andric   //   K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
4135ffd83dbSDimitry Andric   BranchProbability NewUnreachableSum = BranchProbability::getZero();
4145ffd83dbSDimitry Andric   for (auto I : UnreachableIdxs)
4155ffd83dbSDimitry Andric     NewUnreachableSum += BP[I];
4165ffd83dbSDimitry Andric 
4175ffd83dbSDimitry Andric   BranchProbability NewReachableSum =
4185ffd83dbSDimitry Andric       BranchProbability::getOne() - NewUnreachableSum;
4195ffd83dbSDimitry Andric 
4205ffd83dbSDimitry Andric   BranchProbability OldReachableSum = BranchProbability::getZero();
4215ffd83dbSDimitry Andric   for (auto I : ReachableIdxs)
4225ffd83dbSDimitry Andric     OldReachableSum += BP[I];
4235ffd83dbSDimitry Andric 
4245ffd83dbSDimitry Andric   if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
4255ffd83dbSDimitry Andric     if (OldReachableSum.isZero()) {
4265ffd83dbSDimitry Andric       // If all oldBP[i] are zeroes then the proportional distribution results
4275ffd83dbSDimitry Andric       // in all zero probabilities and the error stays big. In this case we
4285ffd83dbSDimitry Andric       // evenly spread NewReachableSum over the reachable edges.
4295ffd83dbSDimitry Andric       BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
4305ffd83dbSDimitry Andric       for (auto I : ReachableIdxs)
4315ffd83dbSDimitry Andric         BP[I] = PerEdge;
4325ffd83dbSDimitry Andric     } else {
4335ffd83dbSDimitry Andric       for (auto I : ReachableIdxs) {
4345ffd83dbSDimitry Andric         // We use uint64_t to avoid double rounding error of the following
4355ffd83dbSDimitry Andric         // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
4365ffd83dbSDimitry Andric         // The formula is taken from the private constructor
4375ffd83dbSDimitry Andric         // BranchProbability(uint32_t Numerator, uint32_t Denominator)
4385ffd83dbSDimitry Andric         uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
4395ffd83dbSDimitry Andric                        BP[I].getNumerator();
4405ffd83dbSDimitry Andric         uint32_t Div = static_cast<uint32_t>(
4415ffd83dbSDimitry Andric             divideNearest(Mul, OldReachableSum.getNumerator()));
4425ffd83dbSDimitry Andric         BP[I] = BranchProbability::getRaw(Div);
4435ffd83dbSDimitry Andric       }
4440b57cec5SDimitry Andric     }
4450b57cec5SDimitry Andric   }
4460b57cec5SDimitry Andric 
4475ffd83dbSDimitry Andric   setEdgeProbability(BB, BP);
4480b57cec5SDimitry Andric 
4490b57cec5SDimitry Andric   return true;
4500b57cec5SDimitry Andric }
4510b57cec5SDimitry Andric 
4520b57cec5SDimitry Andric // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
4530b57cec5SDimitry Andric // between two pointer or pointer and NULL will fail.
4540b57cec5SDimitry Andric bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
4550b57cec5SDimitry Andric   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
4560b57cec5SDimitry Andric   if (!BI || !BI->isConditional())
4570b57cec5SDimitry Andric     return false;
4580b57cec5SDimitry Andric 
4590b57cec5SDimitry Andric   Value *Cond = BI->getCondition();
4600b57cec5SDimitry Andric   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
4610b57cec5SDimitry Andric   if (!CI || !CI->isEquality())
4620b57cec5SDimitry Andric     return false;
4630b57cec5SDimitry Andric 
4640b57cec5SDimitry Andric   Value *LHS = CI->getOperand(0);
4650b57cec5SDimitry Andric 
4660b57cec5SDimitry Andric   if (!LHS->getType()->isPointerTy())
4670b57cec5SDimitry Andric     return false;
4680b57cec5SDimitry Andric 
4690b57cec5SDimitry Andric   assert(CI->getOperand(1)->getType()->isPointerTy());
4700b57cec5SDimitry Andric 
4715ffd83dbSDimitry Andric   BranchProbability TakenProb(PH_TAKEN_WEIGHT,
4725ffd83dbSDimitry Andric                               PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
4735ffd83dbSDimitry Andric   BranchProbability UntakenProb(PH_NONTAKEN_WEIGHT,
4745ffd83dbSDimitry Andric                                 PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
4755ffd83dbSDimitry Andric 
4760b57cec5SDimitry Andric   // p != 0   ->   isProb = true
4770b57cec5SDimitry Andric   // p == 0   ->   isProb = false
4780b57cec5SDimitry Andric   // p != q   ->   isProb = true
4790b57cec5SDimitry Andric   // p == q   ->   isProb = false;
4800b57cec5SDimitry Andric   bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
4810b57cec5SDimitry Andric   if (!isProb)
4825ffd83dbSDimitry Andric     std::swap(TakenProb, UntakenProb);
4830b57cec5SDimitry Andric 
4845ffd83dbSDimitry Andric   setEdgeProbability(
4855ffd83dbSDimitry Andric       BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
4860b57cec5SDimitry Andric   return true;
4870b57cec5SDimitry Andric }
4880b57cec5SDimitry Andric 
4890b57cec5SDimitry Andric // Compute the unlikely successors to the block BB in the loop L, specifically
4900b57cec5SDimitry Andric // those that are unlikely because this is a loop, and add them to the
4910b57cec5SDimitry Andric // UnlikelyBlocks set.
4920b57cec5SDimitry Andric static void
4930b57cec5SDimitry Andric computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
4940b57cec5SDimitry Andric                           SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
4950b57cec5SDimitry Andric   // Sometimes in a loop we have a branch whose condition is made false by
4960b57cec5SDimitry Andric   // taking it. This is typically something like
4970b57cec5SDimitry Andric   //  int n = 0;
4980b57cec5SDimitry Andric   //  while (...) {
4990b57cec5SDimitry Andric   //    if (++n >= MAX) {
5000b57cec5SDimitry Andric   //      n = 0;
5010b57cec5SDimitry Andric   //    }
5020b57cec5SDimitry Andric   //  }
5030b57cec5SDimitry Andric   // In this sort of situation taking the branch means that at the very least it
5040b57cec5SDimitry Andric   // won't be taken again in the next iteration of the loop, so we should
5050b57cec5SDimitry Andric   // consider it less likely than a typical branch.
5060b57cec5SDimitry Andric   //
5070b57cec5SDimitry Andric   // We detect this by looking back through the graph of PHI nodes that sets the
5080b57cec5SDimitry Andric   // value that the condition depends on, and seeing if we can reach a successor
5090b57cec5SDimitry Andric   // block which can be determined to make the condition false.
5100b57cec5SDimitry Andric   //
5110b57cec5SDimitry Andric   // FIXME: We currently consider unlikely blocks to be half as likely as other
5120b57cec5SDimitry Andric   // blocks, but if we consider the example above the likelyhood is actually
5130b57cec5SDimitry Andric   // 1/MAX. We could therefore be more precise in how unlikely we consider
5140b57cec5SDimitry Andric   // blocks to be, but it would require more careful examination of the form
5150b57cec5SDimitry Andric   // of the comparison expression.
5160b57cec5SDimitry Andric   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
5170b57cec5SDimitry Andric   if (!BI || !BI->isConditional())
5180b57cec5SDimitry Andric     return;
5190b57cec5SDimitry Andric 
5200b57cec5SDimitry Andric   // Check if the branch is based on an instruction compared with a constant
5210b57cec5SDimitry Andric   CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
5220b57cec5SDimitry Andric   if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
5230b57cec5SDimitry Andric       !isa<Constant>(CI->getOperand(1)))
5240b57cec5SDimitry Andric     return;
5250b57cec5SDimitry Andric 
5260b57cec5SDimitry Andric   // Either the instruction must be a PHI, or a chain of operations involving
5270b57cec5SDimitry Andric   // constants that ends in a PHI which we can then collapse into a single value
5280b57cec5SDimitry Andric   // if the PHI value is known.
5290b57cec5SDimitry Andric   Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
5300b57cec5SDimitry Andric   PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
5310b57cec5SDimitry Andric   Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
5320b57cec5SDimitry Andric   // Collect the instructions until we hit a PHI
5330b57cec5SDimitry Andric   SmallVector<BinaryOperator *, 1> InstChain;
5340b57cec5SDimitry Andric   while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
5350b57cec5SDimitry Andric          isa<Constant>(CmpLHS->getOperand(1))) {
5360b57cec5SDimitry Andric     // Stop if the chain extends outside of the loop
5370b57cec5SDimitry Andric     if (!L->contains(CmpLHS))
5380b57cec5SDimitry Andric       return;
5390b57cec5SDimitry Andric     InstChain.push_back(cast<BinaryOperator>(CmpLHS));
5400b57cec5SDimitry Andric     CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
5410b57cec5SDimitry Andric     if (CmpLHS)
5420b57cec5SDimitry Andric       CmpPHI = dyn_cast<PHINode>(CmpLHS);
5430b57cec5SDimitry Andric   }
5440b57cec5SDimitry Andric   if (!CmpPHI || !L->contains(CmpPHI))
5450b57cec5SDimitry Andric     return;
5460b57cec5SDimitry Andric 
5470b57cec5SDimitry Andric   // Trace the phi node to find all values that come from successors of BB
5480b57cec5SDimitry Andric   SmallPtrSet<PHINode*, 8> VisitedInsts;
5490b57cec5SDimitry Andric   SmallVector<PHINode*, 8> WorkList;
5500b57cec5SDimitry Andric   WorkList.push_back(CmpPHI);
5510b57cec5SDimitry Andric   VisitedInsts.insert(CmpPHI);
5520b57cec5SDimitry Andric   while (!WorkList.empty()) {
553*fe6060f1SDimitry Andric     PHINode *P = WorkList.pop_back_val();
5540b57cec5SDimitry Andric     for (BasicBlock *B : P->blocks()) {
5550b57cec5SDimitry Andric       // Skip blocks that aren't part of the loop
5560b57cec5SDimitry Andric       if (!L->contains(B))
5570b57cec5SDimitry Andric         continue;
5580b57cec5SDimitry Andric       Value *V = P->getIncomingValueForBlock(B);
5590b57cec5SDimitry Andric       // If the source is a PHI add it to the work list if we haven't
5600b57cec5SDimitry Andric       // already visited it.
5610b57cec5SDimitry Andric       if (PHINode *PN = dyn_cast<PHINode>(V)) {
5620b57cec5SDimitry Andric         if (VisitedInsts.insert(PN).second)
5630b57cec5SDimitry Andric           WorkList.push_back(PN);
5640b57cec5SDimitry Andric         continue;
5650b57cec5SDimitry Andric       }
5660b57cec5SDimitry Andric       // If this incoming value is a constant and B is a successor of BB, then
5670b57cec5SDimitry Andric       // we can constant-evaluate the compare to see if it makes the branch be
5680b57cec5SDimitry Andric       // taken or not.
5690b57cec5SDimitry Andric       Constant *CmpLHSConst = dyn_cast<Constant>(V);
570e8d8bef9SDimitry Andric       if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
5710b57cec5SDimitry Andric         continue;
5720b57cec5SDimitry Andric       // First collapse InstChain
5730b57cec5SDimitry Andric       for (Instruction *I : llvm::reverse(InstChain)) {
5740b57cec5SDimitry Andric         CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst,
5750b57cec5SDimitry Andric                                         cast<Constant>(I->getOperand(1)), true);
5760b57cec5SDimitry Andric         if (!CmpLHSConst)
5770b57cec5SDimitry Andric           break;
5780b57cec5SDimitry Andric       }
5790b57cec5SDimitry Andric       if (!CmpLHSConst)
5800b57cec5SDimitry Andric         continue;
5810b57cec5SDimitry Andric       // Now constant-evaluate the compare
5820b57cec5SDimitry Andric       Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
5830b57cec5SDimitry Andric                                                   CmpLHSConst, CmpConst, true);
5840b57cec5SDimitry Andric       // If the result means we don't branch to the block then that block is
5850b57cec5SDimitry Andric       // unlikely.
5860b57cec5SDimitry Andric       if (Result &&
5870b57cec5SDimitry Andric           ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
5880b57cec5SDimitry Andric            (Result->isOneValue() && B == BI->getSuccessor(1))))
5890b57cec5SDimitry Andric         UnlikelyBlocks.insert(B);
5900b57cec5SDimitry Andric     }
5910b57cec5SDimitry Andric   }
5920b57cec5SDimitry Andric }
5930b57cec5SDimitry Andric 
594e8d8bef9SDimitry Andric Optional<uint32_t>
595e8d8bef9SDimitry Andric BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const {
596e8d8bef9SDimitry Andric   auto WeightIt = EstimatedBlockWeight.find(BB);
597e8d8bef9SDimitry Andric   if (WeightIt == EstimatedBlockWeight.end())
598e8d8bef9SDimitry Andric     return None;
599e8d8bef9SDimitry Andric   return WeightIt->second;
6000b57cec5SDimitry Andric }
6010b57cec5SDimitry Andric 
602e8d8bef9SDimitry Andric Optional<uint32_t>
603e8d8bef9SDimitry Andric BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const {
604e8d8bef9SDimitry Andric   auto WeightIt = EstimatedLoopWeight.find(L);
605e8d8bef9SDimitry Andric   if (WeightIt == EstimatedLoopWeight.end())
606e8d8bef9SDimitry Andric     return None;
607e8d8bef9SDimitry Andric   return WeightIt->second;
608e8d8bef9SDimitry Andric }
609e8d8bef9SDimitry Andric 
610e8d8bef9SDimitry Andric Optional<uint32_t>
611e8d8bef9SDimitry Andric BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const {
612e8d8bef9SDimitry Andric   // For edges entering a loop take weight of a loop rather than an individual
613e8d8bef9SDimitry Andric   // block in the loop.
614e8d8bef9SDimitry Andric   return isLoopEnteringEdge(Edge)
615e8d8bef9SDimitry Andric              ? getEstimatedLoopWeight(Edge.second.getLoopData())
616e8d8bef9SDimitry Andric              : getEstimatedBlockWeight(Edge.second.getBlock());
617e8d8bef9SDimitry Andric }
618e8d8bef9SDimitry Andric 
619e8d8bef9SDimitry Andric template <class IterT>
620e8d8bef9SDimitry Andric Optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight(
621e8d8bef9SDimitry Andric     const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const {
622e8d8bef9SDimitry Andric   SmallVector<uint32_t, 4> Weights;
623e8d8bef9SDimitry Andric   Optional<uint32_t> MaxWeight;
624e8d8bef9SDimitry Andric   for (const BasicBlock *DstBB : Successors) {
625e8d8bef9SDimitry Andric     const LoopBlock DstLoopBB = getLoopBlock(DstBB);
626e8d8bef9SDimitry Andric     auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
627e8d8bef9SDimitry Andric 
628e8d8bef9SDimitry Andric     if (!Weight)
629e8d8bef9SDimitry Andric       return None;
630e8d8bef9SDimitry Andric 
631e8d8bef9SDimitry Andric     if (!MaxWeight || MaxWeight.getValue() < Weight.getValue())
632e8d8bef9SDimitry Andric       MaxWeight = Weight;
633e8d8bef9SDimitry Andric   }
634e8d8bef9SDimitry Andric 
635e8d8bef9SDimitry Andric   return MaxWeight;
636e8d8bef9SDimitry Andric }
637e8d8bef9SDimitry Andric 
638e8d8bef9SDimitry Andric // Updates \p LoopBB's weight and returns true. If \p LoopBB has already
639e8d8bef9SDimitry Andric // an associated weight it is unchanged and false is returned.
640e8d8bef9SDimitry Andric //
641e8d8bef9SDimitry Andric // Please note by the algorithm the weight is not expected to change once set
642e8d8bef9SDimitry Andric // thus 'false' status is used to track visited blocks.
643e8d8bef9SDimitry Andric bool BranchProbabilityInfo::updateEstimatedBlockWeight(
644e8d8bef9SDimitry Andric     LoopBlock &LoopBB, uint32_t BBWeight,
645e8d8bef9SDimitry Andric     SmallVectorImpl<BasicBlock *> &BlockWorkList,
646e8d8bef9SDimitry Andric     SmallVectorImpl<LoopBlock> &LoopWorkList) {
647e8d8bef9SDimitry Andric   BasicBlock *BB = LoopBB.getBlock();
648e8d8bef9SDimitry Andric 
649e8d8bef9SDimitry Andric   // In general, weight is assigned to a block when it has final value and
650e8d8bef9SDimitry Andric   // can't/shouldn't be changed.  However, there are cases when a block
651e8d8bef9SDimitry Andric   // inherently has several (possibly "contradicting") weights. For example,
652e8d8bef9SDimitry Andric   // "unwind" block may also contain "cold" call. In that case the first
653e8d8bef9SDimitry Andric   // set weight is favored and all consequent weights are ignored.
654e8d8bef9SDimitry Andric   if (!EstimatedBlockWeight.insert({BB, BBWeight}).second)
655e8d8bef9SDimitry Andric     return false;
656e8d8bef9SDimitry Andric 
657e8d8bef9SDimitry Andric   for (BasicBlock *PredBlock : predecessors(BB)) {
658e8d8bef9SDimitry Andric     LoopBlock PredLoop = getLoopBlock(PredBlock);
659e8d8bef9SDimitry Andric     // Add affected block/loop to a working list.
660e8d8bef9SDimitry Andric     if (isLoopExitingEdge({PredLoop, LoopBB})) {
661e8d8bef9SDimitry Andric       if (!EstimatedLoopWeight.count(PredLoop.getLoopData()))
662e8d8bef9SDimitry Andric         LoopWorkList.push_back(PredLoop);
663e8d8bef9SDimitry Andric     } else if (!EstimatedBlockWeight.count(PredBlock))
664e8d8bef9SDimitry Andric       BlockWorkList.push_back(PredBlock);
665e8d8bef9SDimitry Andric   }
666e8d8bef9SDimitry Andric   return true;
667e8d8bef9SDimitry Andric }
668e8d8bef9SDimitry Andric 
669e8d8bef9SDimitry Andric // Starting from \p BB traverse through dominator blocks and assign \p BBWeight
670e8d8bef9SDimitry Andric // to all such blocks that are post dominated by \BB. In other words to all
671e8d8bef9SDimitry Andric // blocks that the one is executed if and only if another one is executed.
672e8d8bef9SDimitry Andric // Importantly, we skip loops here for two reasons. First weights of blocks in
673e8d8bef9SDimitry Andric // a loop should be scaled by trip count (yet possibly unknown). Second there is
674e8d8bef9SDimitry Andric // no any value in doing that because that doesn't give any additional
675e8d8bef9SDimitry Andric // information regarding distribution of probabilities inside the loop.
676e8d8bef9SDimitry Andric // Exception is loop 'enter' and 'exit' edges that are handled in a special way
677e8d8bef9SDimitry Andric // at calcEstimatedHeuristics.
678e8d8bef9SDimitry Andric //
679e8d8bef9SDimitry Andric // In addition, \p WorkList is populated with basic blocks if at leas one
680e8d8bef9SDimitry Andric // successor has updated estimated weight.
681e8d8bef9SDimitry Andric void BranchProbabilityInfo::propagateEstimatedBlockWeight(
682e8d8bef9SDimitry Andric     const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT,
683e8d8bef9SDimitry Andric     uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList,
684e8d8bef9SDimitry Andric     SmallVectorImpl<LoopBlock> &LoopWorkList) {
685e8d8bef9SDimitry Andric   const BasicBlock *BB = LoopBB.getBlock();
686e8d8bef9SDimitry Andric   const auto *DTStartNode = DT->getNode(BB);
687e8d8bef9SDimitry Andric   const auto *PDTStartNode = PDT->getNode(BB);
688e8d8bef9SDimitry Andric 
689e8d8bef9SDimitry Andric   // TODO: Consider propagating weight down the domination line as well.
690e8d8bef9SDimitry Andric   for (const auto *DTNode = DTStartNode; DTNode != nullptr;
691e8d8bef9SDimitry Andric        DTNode = DTNode->getIDom()) {
692e8d8bef9SDimitry Andric     auto *DomBB = DTNode->getBlock();
693e8d8bef9SDimitry Andric     // Consider blocks which lie on one 'line'.
694e8d8bef9SDimitry Andric     if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB)))
695e8d8bef9SDimitry Andric       // If BB doesn't post dominate DomBB it will not post dominate dominators
696e8d8bef9SDimitry Andric       // of DomBB as well.
697e8d8bef9SDimitry Andric       break;
698e8d8bef9SDimitry Andric 
699e8d8bef9SDimitry Andric     LoopBlock DomLoopBB = getLoopBlock(DomBB);
700e8d8bef9SDimitry Andric     const LoopEdge Edge{DomLoopBB, LoopBB};
701e8d8bef9SDimitry Andric     // Don't propagate weight to blocks belonging to different loops.
702e8d8bef9SDimitry Andric     if (!isLoopEnteringExitingEdge(Edge)) {
703e8d8bef9SDimitry Andric       if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList,
704e8d8bef9SDimitry Andric                                       LoopWorkList))
705e8d8bef9SDimitry Andric         // If DomBB has weight set then all it's predecessors are already
706e8d8bef9SDimitry Andric         // processed (since we propagate weight up to the top of IR each time).
707e8d8bef9SDimitry Andric         break;
708e8d8bef9SDimitry Andric     } else if (isLoopExitingEdge(Edge)) {
709e8d8bef9SDimitry Andric       LoopWorkList.push_back(DomLoopBB);
710e8d8bef9SDimitry Andric     }
711e8d8bef9SDimitry Andric   }
712e8d8bef9SDimitry Andric }
713e8d8bef9SDimitry Andric 
714e8d8bef9SDimitry Andric Optional<uint32_t> BranchProbabilityInfo::getInitialEstimatedBlockWeight(
715e8d8bef9SDimitry Andric     const BasicBlock *BB) {
716e8d8bef9SDimitry Andric   // Returns true if \p BB has call marked with "NoReturn" attribute.
717e8d8bef9SDimitry Andric   auto hasNoReturn = [&](const BasicBlock *BB) {
718e8d8bef9SDimitry Andric     for (const auto &I : reverse(*BB))
719e8d8bef9SDimitry Andric       if (const CallInst *CI = dyn_cast<CallInst>(&I))
720e8d8bef9SDimitry Andric         if (CI->hasFnAttr(Attribute::NoReturn))
721e8d8bef9SDimitry Andric           return true;
722e8d8bef9SDimitry Andric 
723e8d8bef9SDimitry Andric     return false;
724e8d8bef9SDimitry Andric   };
725e8d8bef9SDimitry Andric 
726e8d8bef9SDimitry Andric   // Important note regarding the order of checks. They are ordered by weight
727e8d8bef9SDimitry Andric   // from lowest to highest. Doing that allows to avoid "unstable" results
728e8d8bef9SDimitry Andric   // when several conditions heuristics can be applied simultaneously.
729e8d8bef9SDimitry Andric   if (isa<UnreachableInst>(BB->getTerminator()) ||
730e8d8bef9SDimitry Andric       // If this block is terminated by a call to
731e8d8bef9SDimitry Andric       // @llvm.experimental.deoptimize then treat it like an unreachable
732e8d8bef9SDimitry Andric       // since it is expected to practically never execute.
733e8d8bef9SDimitry Andric       // TODO: Should we actually treat as never returning call?
734e8d8bef9SDimitry Andric       BB->getTerminatingDeoptimizeCall())
735e8d8bef9SDimitry Andric     return hasNoReturn(BB)
736e8d8bef9SDimitry Andric                ? static_cast<uint32_t>(BlockExecWeight::NORETURN)
737e8d8bef9SDimitry Andric                : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE);
738e8d8bef9SDimitry Andric 
739e8d8bef9SDimitry Andric   // Check if the block is 'unwind' handler of  some invoke instruction.
740e8d8bef9SDimitry Andric   for (const auto *Pred : predecessors(BB))
741e8d8bef9SDimitry Andric     if (Pred)
742e8d8bef9SDimitry Andric       if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
743e8d8bef9SDimitry Andric         if (II->getUnwindDest() == BB)
744e8d8bef9SDimitry Andric           return static_cast<uint32_t>(BlockExecWeight::UNWIND);
745e8d8bef9SDimitry Andric 
746e8d8bef9SDimitry Andric   // Check if the block contains 'cold' call.
747e8d8bef9SDimitry Andric   for (const auto &I : *BB)
748e8d8bef9SDimitry Andric     if (const CallInst *CI = dyn_cast<CallInst>(&I))
749e8d8bef9SDimitry Andric       if (CI->hasFnAttr(Attribute::Cold))
750e8d8bef9SDimitry Andric         return static_cast<uint32_t>(BlockExecWeight::COLD);
751e8d8bef9SDimitry Andric 
752e8d8bef9SDimitry Andric   return None;
753e8d8bef9SDimitry Andric }
754e8d8bef9SDimitry Andric 
755e8d8bef9SDimitry Andric // Does RPO traversal over all blocks in \p F and assigns weights to
756e8d8bef9SDimitry Andric // 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its
757e8d8bef9SDimitry Andric // best to propagate the weight to up/down the IR.
758e8d8bef9SDimitry Andric void BranchProbabilityInfo::computeEestimateBlockWeight(
759e8d8bef9SDimitry Andric     const Function &F, DominatorTree *DT, PostDominatorTree *PDT) {
760e8d8bef9SDimitry Andric   SmallVector<BasicBlock *, 8> BlockWorkList;
761e8d8bef9SDimitry Andric   SmallVector<LoopBlock, 8> LoopWorkList;
762e8d8bef9SDimitry Andric 
763e8d8bef9SDimitry Andric   // By doing RPO we make sure that all predecessors already have weights
764e8d8bef9SDimitry Andric   // calculated before visiting theirs successors.
765e8d8bef9SDimitry Andric   ReversePostOrderTraversal<const Function *> RPOT(&F);
766e8d8bef9SDimitry Andric   for (const auto *BB : RPOT)
767e8d8bef9SDimitry Andric     if (auto BBWeight = getInitialEstimatedBlockWeight(BB))
768e8d8bef9SDimitry Andric       // If we were able to find estimated weight for the block set it to this
769e8d8bef9SDimitry Andric       // block and propagate up the IR.
770e8d8bef9SDimitry Andric       propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT,
771e8d8bef9SDimitry Andric                                     BBWeight.getValue(), BlockWorkList,
772e8d8bef9SDimitry Andric                                     LoopWorkList);
773e8d8bef9SDimitry Andric 
774e8d8bef9SDimitry Andric   // BlockWorklist/LoopWorkList contains blocks/loops with at least one
775e8d8bef9SDimitry Andric   // successor/exit having estimated weight. Try to propagate weight to such
776e8d8bef9SDimitry Andric   // blocks/loops from successors/exits.
777e8d8bef9SDimitry Andric   // Process loops and blocks. Order is not important.
778e8d8bef9SDimitry Andric   do {
779e8d8bef9SDimitry Andric     while (!LoopWorkList.empty()) {
780e8d8bef9SDimitry Andric       const LoopBlock LoopBB = LoopWorkList.pop_back_val();
781e8d8bef9SDimitry Andric 
782e8d8bef9SDimitry Andric       if (EstimatedLoopWeight.count(LoopBB.getLoopData()))
783e8d8bef9SDimitry Andric         continue;
784e8d8bef9SDimitry Andric 
785e8d8bef9SDimitry Andric       SmallVector<BasicBlock *, 4> Exits;
786e8d8bef9SDimitry Andric       getLoopExitBlocks(LoopBB, Exits);
787e8d8bef9SDimitry Andric       auto LoopWeight = getMaxEstimatedEdgeWeight(
788e8d8bef9SDimitry Andric           LoopBB, make_range(Exits.begin(), Exits.end()));
789e8d8bef9SDimitry Andric 
790e8d8bef9SDimitry Andric       if (LoopWeight) {
791e8d8bef9SDimitry Andric         // If we never exit the loop then we can enter it once at maximum.
792e8d8bef9SDimitry Andric         if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
793e8d8bef9SDimitry Andric           LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
794e8d8bef9SDimitry Andric 
795e8d8bef9SDimitry Andric         EstimatedLoopWeight.insert(
796e8d8bef9SDimitry Andric             {LoopBB.getLoopData(), LoopWeight.getValue()});
797e8d8bef9SDimitry Andric         // Add all blocks entering the loop into working list.
798e8d8bef9SDimitry Andric         getLoopEnterBlocks(LoopBB, BlockWorkList);
799e8d8bef9SDimitry Andric       }
800e8d8bef9SDimitry Andric     }
801e8d8bef9SDimitry Andric 
802e8d8bef9SDimitry Andric     while (!BlockWorkList.empty()) {
803e8d8bef9SDimitry Andric       // We can reach here only if BlockWorkList is not empty.
804e8d8bef9SDimitry Andric       const BasicBlock *BB = BlockWorkList.pop_back_val();
805e8d8bef9SDimitry Andric       if (EstimatedBlockWeight.count(BB))
806e8d8bef9SDimitry Andric         continue;
807e8d8bef9SDimitry Andric 
808e8d8bef9SDimitry Andric       // We take maximum over all weights of successors. In other words we take
809e8d8bef9SDimitry Andric       // weight of "hot" path. In theory we can probably find a better function
810e8d8bef9SDimitry Andric       // which gives higher accuracy results (comparing to "maximum") but I
811e8d8bef9SDimitry Andric       // can't
812e8d8bef9SDimitry Andric       // think of any right now. And I doubt it will make any difference in
813e8d8bef9SDimitry Andric       // practice.
814e8d8bef9SDimitry Andric       const LoopBlock LoopBB = getLoopBlock(BB);
815e8d8bef9SDimitry Andric       auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB));
816e8d8bef9SDimitry Andric 
817e8d8bef9SDimitry Andric       if (MaxWeight)
818e8d8bef9SDimitry Andric         propagateEstimatedBlockWeight(LoopBB, DT, PDT, MaxWeight.getValue(),
819e8d8bef9SDimitry Andric                                       BlockWorkList, LoopWorkList);
820e8d8bef9SDimitry Andric     }
821e8d8bef9SDimitry Andric   } while (!BlockWorkList.empty() || !LoopWorkList.empty());
822e8d8bef9SDimitry Andric }
823e8d8bef9SDimitry Andric 
824e8d8bef9SDimitry Andric // Calculate edge probabilities based on block's estimated weight.
825e8d8bef9SDimitry Andric // Note that gathered weights were not scaled for loops. Thus edges entering
826e8d8bef9SDimitry Andric // and exiting loops requires special processing.
827e8d8bef9SDimitry Andric bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) {
828e8d8bef9SDimitry Andric   assert(BB->getTerminator()->getNumSuccessors() > 1 &&
829e8d8bef9SDimitry Andric          "expected more than one successor!");
830e8d8bef9SDimitry Andric 
831e8d8bef9SDimitry Andric   const LoopBlock LoopBB = getLoopBlock(BB);
832e8d8bef9SDimitry Andric 
8330b57cec5SDimitry Andric   SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks;
834e8d8bef9SDimitry Andric   uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT;
835e8d8bef9SDimitry Andric   if (LoopBB.getLoop())
836e8d8bef9SDimitry Andric     computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks);
8370b57cec5SDimitry Andric 
838e8d8bef9SDimitry Andric   // Changed to 'true' if at least one successor has estimated weight.
839e8d8bef9SDimitry Andric   bool FoundEstimatedWeight = false;
840e8d8bef9SDimitry Andric   SmallVector<uint32_t, 4> SuccWeights;
841e8d8bef9SDimitry Andric   uint64_t TotalWeight = 0;
842e8d8bef9SDimitry Andric   // Go over all successors of BB and put their weights into SuccWeights.
843*fe6060f1SDimitry Andric   for (const BasicBlock *SuccBB : successors(BB)) {
844e8d8bef9SDimitry Andric     Optional<uint32_t> Weight;
845e8d8bef9SDimitry Andric     const LoopBlock SuccLoopBB = getLoopBlock(SuccBB);
846e8d8bef9SDimitry Andric     const LoopEdge Edge{LoopBB, SuccLoopBB};
847e8d8bef9SDimitry Andric 
848e8d8bef9SDimitry Andric     Weight = getEstimatedEdgeWeight(Edge);
849e8d8bef9SDimitry Andric 
850e8d8bef9SDimitry Andric     if (isLoopExitingEdge(Edge) &&
851e8d8bef9SDimitry Andric         // Avoid adjustment of ZERO weight since it should remain unchanged.
852e8d8bef9SDimitry Andric         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
853e8d8bef9SDimitry Andric       // Scale down loop exiting weight by trip count.
854e8d8bef9SDimitry Andric       Weight = std::max(
855e8d8bef9SDimitry Andric           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
856e8d8bef9SDimitry Andric           Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
857e8d8bef9SDimitry Andric               TC);
8580b57cec5SDimitry Andric     }
859e8d8bef9SDimitry Andric     bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB);
860e8d8bef9SDimitry Andric     if (IsUnlikelyEdge &&
861e8d8bef9SDimitry Andric         // Avoid adjustment of ZERO weight since it should remain unchanged.
862e8d8bef9SDimitry Andric         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
863e8d8bef9SDimitry Andric       // 'Unlikely' blocks have twice lower weight.
864e8d8bef9SDimitry Andric       Weight = std::max(
865e8d8bef9SDimitry Andric           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
866e8d8bef9SDimitry Andric           Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
867e8d8bef9SDimitry Andric               2);
8680b57cec5SDimitry Andric     }
8690b57cec5SDimitry Andric 
870e8d8bef9SDimitry Andric     if (Weight)
871e8d8bef9SDimitry Andric       FoundEstimatedWeight = true;
872e8d8bef9SDimitry Andric 
873e8d8bef9SDimitry Andric     auto WeightVal =
874e8d8bef9SDimitry Andric         Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT));
875e8d8bef9SDimitry Andric     TotalWeight += WeightVal;
876e8d8bef9SDimitry Andric     SuccWeights.push_back(WeightVal);
877e8d8bef9SDimitry Andric   }
878e8d8bef9SDimitry Andric 
879e8d8bef9SDimitry Andric   // If non of blocks have estimated weight bail out.
880e8d8bef9SDimitry Andric   // If TotalWeight is 0 that means weight of each successor is 0 as well and
881e8d8bef9SDimitry Andric   // equally likely. Bail out early to not deal with devision by zero.
882e8d8bef9SDimitry Andric   if (!FoundEstimatedWeight || TotalWeight == 0)
8830b57cec5SDimitry Andric     return false;
8840b57cec5SDimitry Andric 
885e8d8bef9SDimitry Andric   assert(SuccWeights.size() == succ_size(BB) && "Missed successor?");
886e8d8bef9SDimitry Andric   const unsigned SuccCount = SuccWeights.size();
8870b57cec5SDimitry Andric 
888e8d8bef9SDimitry Andric   // If the sum of weights does not fit in 32 bits, scale every weight down
889e8d8bef9SDimitry Andric   // accordingly.
890e8d8bef9SDimitry Andric   if (TotalWeight > UINT32_MAX) {
891e8d8bef9SDimitry Andric     uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1;
892e8d8bef9SDimitry Andric     TotalWeight = 0;
893e8d8bef9SDimitry Andric     for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
894e8d8bef9SDimitry Andric       SuccWeights[Idx] /= ScalingFactor;
895e8d8bef9SDimitry Andric       if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO))
896e8d8bef9SDimitry Andric         SuccWeights[Idx] =
897e8d8bef9SDimitry Andric             static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
898e8d8bef9SDimitry Andric       TotalWeight += SuccWeights[Idx];
899e8d8bef9SDimitry Andric     }
900e8d8bef9SDimitry Andric     assert(TotalWeight <= UINT32_MAX && "Total weight overflows");
901e8d8bef9SDimitry Andric   }
902e8d8bef9SDimitry Andric 
903e8d8bef9SDimitry Andric   // Finally set probabilities to edges according to estimated block weights.
9045ffd83dbSDimitry Andric   SmallVector<BranchProbability, 4> EdgeProbabilities(
905e8d8bef9SDimitry Andric       SuccCount, BranchProbability::getUnknown());
9060b57cec5SDimitry Andric 
907e8d8bef9SDimitry Andric   for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
908e8d8bef9SDimitry Andric     EdgeProbabilities[Idx] =
909e8d8bef9SDimitry Andric         BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight);
9100b57cec5SDimitry Andric   }
9115ffd83dbSDimitry Andric   setEdgeProbability(BB, EdgeProbabilities);
9120b57cec5SDimitry Andric   return true;
9130b57cec5SDimitry Andric }
9140b57cec5SDimitry Andric 
9150b57cec5SDimitry Andric bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
9160b57cec5SDimitry Andric                                                const TargetLibraryInfo *TLI) {
9170b57cec5SDimitry Andric   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
9180b57cec5SDimitry Andric   if (!BI || !BI->isConditional())
9190b57cec5SDimitry Andric     return false;
9200b57cec5SDimitry Andric 
9210b57cec5SDimitry Andric   Value *Cond = BI->getCondition();
9220b57cec5SDimitry Andric   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
9230b57cec5SDimitry Andric   if (!CI)
9240b57cec5SDimitry Andric     return false;
9250b57cec5SDimitry Andric 
9260b57cec5SDimitry Andric   auto GetConstantInt = [](Value *V) {
9270b57cec5SDimitry Andric     if (auto *I = dyn_cast<BitCastInst>(V))
9280b57cec5SDimitry Andric       return dyn_cast<ConstantInt>(I->getOperand(0));
9290b57cec5SDimitry Andric     return dyn_cast<ConstantInt>(V);
9300b57cec5SDimitry Andric   };
9310b57cec5SDimitry Andric 
9320b57cec5SDimitry Andric   Value *RHS = CI->getOperand(1);
9330b57cec5SDimitry Andric   ConstantInt *CV = GetConstantInt(RHS);
9340b57cec5SDimitry Andric   if (!CV)
9350b57cec5SDimitry Andric     return false;
9360b57cec5SDimitry Andric 
9370b57cec5SDimitry Andric   // If the LHS is the result of AND'ing a value with a single bit bitmask,
9380b57cec5SDimitry Andric   // we don't have information about probabilities.
9390b57cec5SDimitry Andric   if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
9400b57cec5SDimitry Andric     if (LHS->getOpcode() == Instruction::And)
941e8d8bef9SDimitry Andric       if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1)))
9420b57cec5SDimitry Andric         if (AndRHS->getValue().isPowerOf2())
9430b57cec5SDimitry Andric           return false;
9440b57cec5SDimitry Andric 
9450b57cec5SDimitry Andric   // Check if the LHS is the return value of a library function
9460b57cec5SDimitry Andric   LibFunc Func = NumLibFuncs;
9470b57cec5SDimitry Andric   if (TLI)
9480b57cec5SDimitry Andric     if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
9490b57cec5SDimitry Andric       if (Function *CalledFn = Call->getCalledFunction())
9500b57cec5SDimitry Andric         TLI->getLibFunc(*CalledFn, Func);
9510b57cec5SDimitry Andric 
9520b57cec5SDimitry Andric   bool isProb;
9530b57cec5SDimitry Andric   if (Func == LibFunc_strcasecmp ||
9540b57cec5SDimitry Andric       Func == LibFunc_strcmp ||
9550b57cec5SDimitry Andric       Func == LibFunc_strncasecmp ||
9560b57cec5SDimitry Andric       Func == LibFunc_strncmp ||
957e8d8bef9SDimitry Andric       Func == LibFunc_memcmp ||
958e8d8bef9SDimitry Andric       Func == LibFunc_bcmp) {
9590b57cec5SDimitry Andric     // strcmp and similar functions return zero, negative, or positive, if the
9600b57cec5SDimitry Andric     // first string is equal, less, or greater than the second. We consider it
9610b57cec5SDimitry Andric     // likely that the strings are not equal, so a comparison with zero is
9620b57cec5SDimitry Andric     // probably false, but also a comparison with any other number is also
9630b57cec5SDimitry Andric     // probably false given that what exactly is returned for nonzero values is
9640b57cec5SDimitry Andric     // not specified. Any kind of comparison other than equality we know
9650b57cec5SDimitry Andric     // nothing about.
9660b57cec5SDimitry Andric     switch (CI->getPredicate()) {
9670b57cec5SDimitry Andric     case CmpInst::ICMP_EQ:
9680b57cec5SDimitry Andric       isProb = false;
9690b57cec5SDimitry Andric       break;
9700b57cec5SDimitry Andric     case CmpInst::ICMP_NE:
9710b57cec5SDimitry Andric       isProb = true;
9720b57cec5SDimitry Andric       break;
9730b57cec5SDimitry Andric     default:
9740b57cec5SDimitry Andric       return false;
9750b57cec5SDimitry Andric     }
9760b57cec5SDimitry Andric   } else if (CV->isZero()) {
9770b57cec5SDimitry Andric     switch (CI->getPredicate()) {
9780b57cec5SDimitry Andric     case CmpInst::ICMP_EQ:
9790b57cec5SDimitry Andric       // X == 0   ->  Unlikely
9800b57cec5SDimitry Andric       isProb = false;
9810b57cec5SDimitry Andric       break;
9820b57cec5SDimitry Andric     case CmpInst::ICMP_NE:
9830b57cec5SDimitry Andric       // X != 0   ->  Likely
9840b57cec5SDimitry Andric       isProb = true;
9850b57cec5SDimitry Andric       break;
9860b57cec5SDimitry Andric     case CmpInst::ICMP_SLT:
9870b57cec5SDimitry Andric       // X < 0   ->  Unlikely
9880b57cec5SDimitry Andric       isProb = false;
9890b57cec5SDimitry Andric       break;
9900b57cec5SDimitry Andric     case CmpInst::ICMP_SGT:
9910b57cec5SDimitry Andric       // X > 0   ->  Likely
9920b57cec5SDimitry Andric       isProb = true;
9930b57cec5SDimitry Andric       break;
9940b57cec5SDimitry Andric     default:
9950b57cec5SDimitry Andric       return false;
9960b57cec5SDimitry Andric     }
9970b57cec5SDimitry Andric   } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
9980b57cec5SDimitry Andric     // InstCombine canonicalizes X <= 0 into X < 1.
9990b57cec5SDimitry Andric     // X <= 0   ->  Unlikely
10000b57cec5SDimitry Andric     isProb = false;
10010b57cec5SDimitry Andric   } else if (CV->isMinusOne()) {
10020b57cec5SDimitry Andric     switch (CI->getPredicate()) {
10030b57cec5SDimitry Andric     case CmpInst::ICMP_EQ:
10040b57cec5SDimitry Andric       // X == -1  ->  Unlikely
10050b57cec5SDimitry Andric       isProb = false;
10060b57cec5SDimitry Andric       break;
10070b57cec5SDimitry Andric     case CmpInst::ICMP_NE:
10080b57cec5SDimitry Andric       // X != -1  ->  Likely
10090b57cec5SDimitry Andric       isProb = true;
10100b57cec5SDimitry Andric       break;
10110b57cec5SDimitry Andric     case CmpInst::ICMP_SGT:
10120b57cec5SDimitry Andric       // InstCombine canonicalizes X >= 0 into X > -1.
10130b57cec5SDimitry Andric       // X >= 0   ->  Likely
10140b57cec5SDimitry Andric       isProb = true;
10150b57cec5SDimitry Andric       break;
10160b57cec5SDimitry Andric     default:
10170b57cec5SDimitry Andric       return false;
10180b57cec5SDimitry Andric     }
10190b57cec5SDimitry Andric   } else {
10200b57cec5SDimitry Andric     return false;
10210b57cec5SDimitry Andric   }
10220b57cec5SDimitry Andric 
10230b57cec5SDimitry Andric   BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
10240b57cec5SDimitry Andric                               ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
10255ffd83dbSDimitry Andric   BranchProbability UntakenProb(ZH_NONTAKEN_WEIGHT,
10265ffd83dbSDimitry Andric                                 ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
10275ffd83dbSDimitry Andric   if (!isProb)
10285ffd83dbSDimitry Andric     std::swap(TakenProb, UntakenProb);
10295ffd83dbSDimitry Andric 
10305ffd83dbSDimitry Andric   setEdgeProbability(
10315ffd83dbSDimitry Andric       BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
10320b57cec5SDimitry Andric   return true;
10330b57cec5SDimitry Andric }
10340b57cec5SDimitry Andric 
10350b57cec5SDimitry Andric bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
10360b57cec5SDimitry Andric   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
10370b57cec5SDimitry Andric   if (!BI || !BI->isConditional())
10380b57cec5SDimitry Andric     return false;
10390b57cec5SDimitry Andric 
10400b57cec5SDimitry Andric   Value *Cond = BI->getCondition();
10410b57cec5SDimitry Andric   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
10420b57cec5SDimitry Andric   if (!FCmp)
10430b57cec5SDimitry Andric     return false;
10440b57cec5SDimitry Andric 
10458bcb0991SDimitry Andric   uint32_t TakenWeight = FPH_TAKEN_WEIGHT;
10468bcb0991SDimitry Andric   uint32_t NontakenWeight = FPH_NONTAKEN_WEIGHT;
10470b57cec5SDimitry Andric   bool isProb;
10480b57cec5SDimitry Andric   if (FCmp->isEquality()) {
10490b57cec5SDimitry Andric     // f1 == f2 -> Unlikely
10500b57cec5SDimitry Andric     // f1 != f2 -> Likely
10510b57cec5SDimitry Andric     isProb = !FCmp->isTrueWhenEqual();
10520b57cec5SDimitry Andric   } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
10530b57cec5SDimitry Andric     // !isnan -> Likely
10540b57cec5SDimitry Andric     isProb = true;
10558bcb0991SDimitry Andric     TakenWeight = FPH_ORD_WEIGHT;
10568bcb0991SDimitry Andric     NontakenWeight = FPH_UNO_WEIGHT;
10570b57cec5SDimitry Andric   } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
10580b57cec5SDimitry Andric     // isnan -> Unlikely
10590b57cec5SDimitry Andric     isProb = false;
10608bcb0991SDimitry Andric     TakenWeight = FPH_ORD_WEIGHT;
10618bcb0991SDimitry Andric     NontakenWeight = FPH_UNO_WEIGHT;
10620b57cec5SDimitry Andric   } else {
10630b57cec5SDimitry Andric     return false;
10640b57cec5SDimitry Andric   }
10650b57cec5SDimitry Andric 
10668bcb0991SDimitry Andric   BranchProbability TakenProb(TakenWeight, TakenWeight + NontakenWeight);
10675ffd83dbSDimitry Andric   BranchProbability UntakenProb(NontakenWeight, TakenWeight + NontakenWeight);
10685ffd83dbSDimitry Andric   if (!isProb)
10695ffd83dbSDimitry Andric     std::swap(TakenProb, UntakenProb);
10705ffd83dbSDimitry Andric 
10715ffd83dbSDimitry Andric   setEdgeProbability(
10725ffd83dbSDimitry Andric       BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
10730b57cec5SDimitry Andric   return true;
10740b57cec5SDimitry Andric }
10750b57cec5SDimitry Andric 
10760b57cec5SDimitry Andric void BranchProbabilityInfo::releaseMemory() {
10770b57cec5SDimitry Andric   Probs.clear();
10785ffd83dbSDimitry Andric   Handles.clear();
10795ffd83dbSDimitry Andric }
10805ffd83dbSDimitry Andric 
10815ffd83dbSDimitry Andric bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
10825ffd83dbSDimitry Andric                                        FunctionAnalysisManager::Invalidator &) {
10835ffd83dbSDimitry Andric   // Check whether the analysis, all analyses on functions, or the function's
10845ffd83dbSDimitry Andric   // CFG have been preserved.
10855ffd83dbSDimitry Andric   auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
10865ffd83dbSDimitry Andric   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
10875ffd83dbSDimitry Andric            PAC.preservedSet<CFGAnalyses>());
10880b57cec5SDimitry Andric }
10890b57cec5SDimitry Andric 
10900b57cec5SDimitry Andric void BranchProbabilityInfo::print(raw_ostream &OS) const {
10910b57cec5SDimitry Andric   OS << "---- Branch Probabilities ----\n";
10920b57cec5SDimitry Andric   // We print the probabilities from the last function the analysis ran over,
10930b57cec5SDimitry Andric   // or the function it is currently running over.
10940b57cec5SDimitry Andric   assert(LastF && "Cannot print prior to running over a function");
10950b57cec5SDimitry Andric   for (const auto &BI : *LastF) {
1096*fe6060f1SDimitry Andric     for (const BasicBlock *Succ : successors(&BI))
1097*fe6060f1SDimitry Andric       printEdgeProbability(OS << "  ", &BI, Succ);
10980b57cec5SDimitry Andric   }
10990b57cec5SDimitry Andric }
11000b57cec5SDimitry Andric 
11010b57cec5SDimitry Andric bool BranchProbabilityInfo::
11020b57cec5SDimitry Andric isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
11030b57cec5SDimitry Andric   // Hot probability is at least 4/5 = 80%
11040b57cec5SDimitry Andric   // FIXME: Compare against a static "hot" BranchProbability.
11050b57cec5SDimitry Andric   return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
11060b57cec5SDimitry Andric }
11070b57cec5SDimitry Andric 
11080b57cec5SDimitry Andric /// Get the raw edge probability for the edge. If can't find it, return a
11090b57cec5SDimitry Andric /// default probability 1/N where N is the number of successors. Here an edge is
11100b57cec5SDimitry Andric /// specified using PredBlock and an
11110b57cec5SDimitry Andric /// index to the successors.
11120b57cec5SDimitry Andric BranchProbability
11130b57cec5SDimitry Andric BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
11140b57cec5SDimitry Andric                                           unsigned IndexInSuccessors) const {
11150b57cec5SDimitry Andric   auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
1116e8d8bef9SDimitry Andric   assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) ==
1117e8d8bef9SDimitry Andric              (Probs.end() == I) &&
1118e8d8bef9SDimitry Andric          "Probability for I-th successor must always be defined along with the "
1119e8d8bef9SDimitry Andric          "probability for the first successor");
11200b57cec5SDimitry Andric 
11210b57cec5SDimitry Andric   if (I != Probs.end())
11220b57cec5SDimitry Andric     return I->second;
11230b57cec5SDimitry Andric 
11240b57cec5SDimitry Andric   return {1, static_cast<uint32_t>(succ_size(Src))};
11250b57cec5SDimitry Andric }
11260b57cec5SDimitry Andric 
11270b57cec5SDimitry Andric BranchProbability
11280b57cec5SDimitry Andric BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
11295ffd83dbSDimitry Andric                                           const_succ_iterator Dst) const {
11300b57cec5SDimitry Andric   return getEdgeProbability(Src, Dst.getSuccessorIndex());
11310b57cec5SDimitry Andric }
11320b57cec5SDimitry Andric 
11330b57cec5SDimitry Andric /// Get the raw edge probability calculated for the block pair. This returns the
11340b57cec5SDimitry Andric /// sum of all raw edge probabilities from Src to Dst.
11350b57cec5SDimitry Andric BranchProbability
11360b57cec5SDimitry Andric BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
11370b57cec5SDimitry Andric                                           const BasicBlock *Dst) const {
1138e8d8bef9SDimitry Andric   if (!Probs.count(std::make_pair(Src, 0)))
1139e8d8bef9SDimitry Andric     return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src));
11400b57cec5SDimitry Andric 
1141e8d8bef9SDimitry Andric   auto Prob = BranchProbability::getZero();
1142e8d8bef9SDimitry Andric   for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
1143e8d8bef9SDimitry Andric     if (*I == Dst)
1144e8d8bef9SDimitry Andric       Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second;
1145e8d8bef9SDimitry Andric 
1146e8d8bef9SDimitry Andric   return Prob;
11470b57cec5SDimitry Andric }
11480b57cec5SDimitry Andric 
11495ffd83dbSDimitry Andric /// Set the edge probability for all edges at once.
11505ffd83dbSDimitry Andric void BranchProbabilityInfo::setEdgeProbability(
11515ffd83dbSDimitry Andric     const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
11525ffd83dbSDimitry Andric   assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
1153e8d8bef9SDimitry Andric   eraseBlock(Src); // Erase stale data if any.
11545ffd83dbSDimitry Andric   if (Probs.size() == 0)
11555ffd83dbSDimitry Andric     return; // Nothing to set.
11565ffd83dbSDimitry Andric 
1157e8d8bef9SDimitry Andric   Handles.insert(BasicBlockCallbackVH(Src, this));
11585ffd83dbSDimitry Andric   uint64_t TotalNumerator = 0;
11595ffd83dbSDimitry Andric   for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
1160e8d8bef9SDimitry Andric     this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx];
1161e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx
1162e8d8bef9SDimitry Andric                       << " successor probability to " << Probs[SuccIdx]
1163e8d8bef9SDimitry Andric                       << "\n");
11645ffd83dbSDimitry Andric     TotalNumerator += Probs[SuccIdx].getNumerator();
11655ffd83dbSDimitry Andric   }
11665ffd83dbSDimitry Andric 
11675ffd83dbSDimitry Andric   // Because of rounding errors the total probability cannot be checked to be
11685ffd83dbSDimitry Andric   // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
11695ffd83dbSDimitry Andric   // Instead, every single probability in Probs must be as accurate as possible.
11705ffd83dbSDimitry Andric   // This results in error 1/denominator at most, thus the total absolute error
11715ffd83dbSDimitry Andric   // should be within Probs.size / BranchProbability::getDenominator.
11725ffd83dbSDimitry Andric   assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
11735ffd83dbSDimitry Andric   assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
1174*fe6060f1SDimitry Andric   (void)TotalNumerator;
11755ffd83dbSDimitry Andric }
11765ffd83dbSDimitry Andric 
1177e8d8bef9SDimitry Andric void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src,
1178e8d8bef9SDimitry Andric                                                   BasicBlock *Dst) {
1179e8d8bef9SDimitry Andric   eraseBlock(Dst); // Erase stale data if any.
1180e8d8bef9SDimitry Andric   unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors();
1181e8d8bef9SDimitry Andric   assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors());
1182e8d8bef9SDimitry Andric   if (NumSuccessors == 0)
1183e8d8bef9SDimitry Andric     return; // Nothing to set.
1184e8d8bef9SDimitry Andric   if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end())
1185e8d8bef9SDimitry Andric     return; // No probability is set for edges from Src. Keep the same for Dst.
1186e8d8bef9SDimitry Andric 
1187e8d8bef9SDimitry Andric   Handles.insert(BasicBlockCallbackVH(Dst, this));
1188e8d8bef9SDimitry Andric   for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) {
1189e8d8bef9SDimitry Andric     auto Prob = this->Probs[std::make_pair(Src, SuccIdx)];
1190e8d8bef9SDimitry Andric     this->Probs[std::make_pair(Dst, SuccIdx)] = Prob;
1191e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx
1192e8d8bef9SDimitry Andric                       << " successor probability to " << Prob << "\n");
1193e8d8bef9SDimitry Andric   }
1194e8d8bef9SDimitry Andric }
1195e8d8bef9SDimitry Andric 
11960b57cec5SDimitry Andric raw_ostream &
11970b57cec5SDimitry Andric BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
11980b57cec5SDimitry Andric                                             const BasicBlock *Src,
11990b57cec5SDimitry Andric                                             const BasicBlock *Dst) const {
12000b57cec5SDimitry Andric   const BranchProbability Prob = getEdgeProbability(Src, Dst);
12010b57cec5SDimitry Andric   OS << "edge " << Src->getName() << " -> " << Dst->getName()
12020b57cec5SDimitry Andric      << " probability is " << Prob
12030b57cec5SDimitry Andric      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
12040b57cec5SDimitry Andric 
12050b57cec5SDimitry Andric   return OS;
12060b57cec5SDimitry Andric }
12070b57cec5SDimitry Andric 
12080b57cec5SDimitry Andric void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
1209e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n");
1210e8d8bef9SDimitry Andric 
1211e8d8bef9SDimitry Andric   // Note that we cannot use successors of BB because the terminator of BB may
1212e8d8bef9SDimitry Andric   // have changed when eraseBlock is called as a BasicBlockCallbackVH callback.
1213e8d8bef9SDimitry Andric   // Instead we remove prob data for the block by iterating successors by their
1214e8d8bef9SDimitry Andric   // indices from 0 till the last which exists. There could not be prob data for
1215e8d8bef9SDimitry Andric   // a pair (BB, N) if there is no data for (BB, N-1) because the data is always
1216e8d8bef9SDimitry Andric   // set for all successors from 0 to M at once by the method
1217e8d8bef9SDimitry Andric   // setEdgeProbability().
1218e8d8bef9SDimitry Andric   Handles.erase(BasicBlockCallbackVH(BB, this));
1219e8d8bef9SDimitry Andric   for (unsigned I = 0;; ++I) {
1220e8d8bef9SDimitry Andric     auto MapI = Probs.find(std::make_pair(BB, I));
1221e8d8bef9SDimitry Andric     if (MapI == Probs.end()) {
1222e8d8bef9SDimitry Andric       assert(Probs.count(std::make_pair(BB, I + 1)) == 0 &&
1223e8d8bef9SDimitry Andric              "Must be no more successors");
1224e8d8bef9SDimitry Andric       return;
1225e8d8bef9SDimitry Andric     }
12265ffd83dbSDimitry Andric     Probs.erase(MapI);
12270b57cec5SDimitry Andric   }
12280b57cec5SDimitry Andric }
12290b57cec5SDimitry Andric 
1230e8d8bef9SDimitry Andric void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI,
12315ffd83dbSDimitry Andric                                       const TargetLibraryInfo *TLI,
1232e8d8bef9SDimitry Andric                                       DominatorTree *DT,
12335ffd83dbSDimitry Andric                                       PostDominatorTree *PDT) {
12340b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
12350b57cec5SDimitry Andric                     << " ----\n\n");
12360b57cec5SDimitry Andric   LastF = &F; // Store the last function we ran on for printing.
1237e8d8bef9SDimitry Andric   LI = &LoopI;
12380b57cec5SDimitry Andric 
1239e8d8bef9SDimitry Andric   SccI = std::make_unique<SccInfo>(F);
12400b57cec5SDimitry Andric 
1241e8d8bef9SDimitry Andric   assert(EstimatedBlockWeight.empty());
1242e8d8bef9SDimitry Andric   assert(EstimatedLoopWeight.empty());
12430b57cec5SDimitry Andric 
1244e8d8bef9SDimitry Andric   std::unique_ptr<DominatorTree> DTPtr;
12455ffd83dbSDimitry Andric   std::unique_ptr<PostDominatorTree> PDTPtr;
12465ffd83dbSDimitry Andric 
1247e8d8bef9SDimitry Andric   if (!DT) {
1248e8d8bef9SDimitry Andric     DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F));
1249e8d8bef9SDimitry Andric     DT = DTPtr.get();
1250e8d8bef9SDimitry Andric   }
1251e8d8bef9SDimitry Andric 
12525ffd83dbSDimitry Andric   if (!PDT) {
12535ffd83dbSDimitry Andric     PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
12545ffd83dbSDimitry Andric     PDT = PDTPtr.get();
12555ffd83dbSDimitry Andric   }
12565ffd83dbSDimitry Andric 
1257e8d8bef9SDimitry Andric   computeEestimateBlockWeight(F, DT, PDT);
1258480093f4SDimitry Andric 
12590b57cec5SDimitry Andric   // Walk the basic blocks in post-order so that we can build up state about
12600b57cec5SDimitry Andric   // the successors of a block iteratively.
12610b57cec5SDimitry Andric   for (auto BB : post_order(&F.getEntryBlock())) {
12620b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
12630b57cec5SDimitry Andric                       << "\n");
12640b57cec5SDimitry Andric     // If there is no at least two successors, no sense to set probability.
12650b57cec5SDimitry Andric     if (BB->getTerminator()->getNumSuccessors() < 2)
12660b57cec5SDimitry Andric       continue;
12670b57cec5SDimitry Andric     if (calcMetadataWeights(BB))
12680b57cec5SDimitry Andric       continue;
1269e8d8bef9SDimitry Andric     if (calcEstimatedHeuristics(BB))
12700b57cec5SDimitry Andric       continue;
12710b57cec5SDimitry Andric     if (calcPointerHeuristics(BB))
12720b57cec5SDimitry Andric       continue;
12730b57cec5SDimitry Andric     if (calcZeroHeuristics(BB, TLI))
12740b57cec5SDimitry Andric       continue;
12750b57cec5SDimitry Andric     if (calcFloatingPointHeuristics(BB))
12760b57cec5SDimitry Andric       continue;
12770b57cec5SDimitry Andric   }
12780b57cec5SDimitry Andric 
1279e8d8bef9SDimitry Andric   EstimatedLoopWeight.clear();
1280e8d8bef9SDimitry Andric   EstimatedBlockWeight.clear();
1281e8d8bef9SDimitry Andric   SccI.reset();
12820b57cec5SDimitry Andric 
12830b57cec5SDimitry Andric   if (PrintBranchProb &&
12840b57cec5SDimitry Andric       (PrintBranchProbFuncName.empty() ||
12850b57cec5SDimitry Andric        F.getName().equals(PrintBranchProbFuncName))) {
12860b57cec5SDimitry Andric     print(dbgs());
12870b57cec5SDimitry Andric   }
12880b57cec5SDimitry Andric }
12890b57cec5SDimitry Andric 
12900b57cec5SDimitry Andric void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
12910b57cec5SDimitry Andric     AnalysisUsage &AU) const {
12920b57cec5SDimitry Andric   // We require DT so it's available when LI is available. The LI updating code
12930b57cec5SDimitry Andric   // asserts that DT is also present so if we don't make sure that we have DT
12940b57cec5SDimitry Andric   // here, that assert will trigger.
12950b57cec5SDimitry Andric   AU.addRequired<DominatorTreeWrapperPass>();
12960b57cec5SDimitry Andric   AU.addRequired<LoopInfoWrapperPass>();
12970b57cec5SDimitry Andric   AU.addRequired<TargetLibraryInfoWrapperPass>();
1298e8d8bef9SDimitry Andric   AU.addRequired<DominatorTreeWrapperPass>();
12995ffd83dbSDimitry Andric   AU.addRequired<PostDominatorTreeWrapperPass>();
13000b57cec5SDimitry Andric   AU.setPreservesAll();
13010b57cec5SDimitry Andric }
13020b57cec5SDimitry Andric 
13030b57cec5SDimitry Andric bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
13040b57cec5SDimitry Andric   const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
13058bcb0991SDimitry Andric   const TargetLibraryInfo &TLI =
13068bcb0991SDimitry Andric       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1307e8d8bef9SDimitry Andric   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
13085ffd83dbSDimitry Andric   PostDominatorTree &PDT =
13095ffd83dbSDimitry Andric       getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1310e8d8bef9SDimitry Andric   BPI.calculate(F, LI, &TLI, &DT, &PDT);
13110b57cec5SDimitry Andric   return false;
13120b57cec5SDimitry Andric }
13130b57cec5SDimitry Andric 
13140b57cec5SDimitry Andric void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
13150b57cec5SDimitry Andric 
13160b57cec5SDimitry Andric void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
13170b57cec5SDimitry Andric                                              const Module *) const {
13180b57cec5SDimitry Andric   BPI.print(OS);
13190b57cec5SDimitry Andric }
13200b57cec5SDimitry Andric 
13210b57cec5SDimitry Andric AnalysisKey BranchProbabilityAnalysis::Key;
13220b57cec5SDimitry Andric BranchProbabilityInfo
13230b57cec5SDimitry Andric BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
13240b57cec5SDimitry Andric   BranchProbabilityInfo BPI;
13255ffd83dbSDimitry Andric   BPI.calculate(F, AM.getResult<LoopAnalysis>(F),
13265ffd83dbSDimitry Andric                 &AM.getResult<TargetLibraryAnalysis>(F),
1327e8d8bef9SDimitry Andric                 &AM.getResult<DominatorTreeAnalysis>(F),
13285ffd83dbSDimitry Andric                 &AM.getResult<PostDominatorTreeAnalysis>(F));
13290b57cec5SDimitry Andric   return BPI;
13300b57cec5SDimitry Andric }
13310b57cec5SDimitry Andric 
13320b57cec5SDimitry Andric PreservedAnalyses
13330b57cec5SDimitry Andric BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
13340b57cec5SDimitry Andric   OS << "Printing analysis results of BPI for function "
13350b57cec5SDimitry Andric      << "'" << F.getName() << "':"
13360b57cec5SDimitry Andric      << "\n";
13370b57cec5SDimitry Andric   AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
13380b57cec5SDimitry Andric   return PreservedAnalyses::all();
13390b57cec5SDimitry Andric }
1340