10b57cec5SDimitry Andric //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // Loops should be simplified before this analysis. 100b57cec5SDimitry Andric // 110b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 120b57cec5SDimitry Andric 130b57cec5SDimitry Andric #include "llvm/Analysis/BranchProbabilityInfo.h" 140b57cec5SDimitry Andric #include "llvm/ADT/PostOrderIterator.h" 150b57cec5SDimitry Andric #include "llvm/ADT/SCCIterator.h" 160b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h" 170b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 18*753f127fSDimitry Andric #include "llvm/Analysis/ConstantFolding.h" 190b57cec5SDimitry Andric #include "llvm/Analysis/LoopInfo.h" 20480093f4SDimitry Andric #include "llvm/Analysis/PostDominators.h" 210b57cec5SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h" 220b57cec5SDimitry Andric #include "llvm/IR/Attributes.h" 230b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h" 240b57cec5SDimitry Andric #include "llvm/IR/CFG.h" 250b57cec5SDimitry Andric #include "llvm/IR/Constants.h" 260b57cec5SDimitry Andric #include "llvm/IR/Dominators.h" 270b57cec5SDimitry Andric #include "llvm/IR/Function.h" 280b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h" 290b57cec5SDimitry Andric #include "llvm/IR/Instruction.h" 300b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 310b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h" 320b57cec5SDimitry Andric #include "llvm/IR/Metadata.h" 330b57cec5SDimitry Andric #include "llvm/IR/PassManager.h" 340b57cec5SDimitry Andric #include "llvm/IR/Type.h" 350b57cec5SDimitry Andric #include "llvm/IR/Value.h" 36480093f4SDimitry Andric #include "llvm/InitializePasses.h" 370b57cec5SDimitry Andric #include "llvm/Pass.h" 380b57cec5SDimitry Andric #include "llvm/Support/BranchProbability.h" 390b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 40480093f4SDimitry Andric #include "llvm/Support/CommandLine.h" 410b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 420b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h" 430b57cec5SDimitry Andric #include <cassert> 440b57cec5SDimitry Andric #include <cstdint> 450b57cec5SDimitry Andric #include <iterator> 4604eeddc0SDimitry Andric #include <map> 470b57cec5SDimitry Andric #include <utility> 480b57cec5SDimitry Andric 490b57cec5SDimitry Andric using namespace llvm; 500b57cec5SDimitry Andric 510b57cec5SDimitry Andric #define DEBUG_TYPE "branch-prob" 520b57cec5SDimitry Andric 530b57cec5SDimitry Andric static cl::opt<bool> PrintBranchProb( 540b57cec5SDimitry Andric "print-bpi", cl::init(false), cl::Hidden, 550b57cec5SDimitry Andric cl::desc("Print the branch probability info.")); 560b57cec5SDimitry Andric 570b57cec5SDimitry Andric cl::opt<std::string> PrintBranchProbFuncName( 580b57cec5SDimitry Andric "print-bpi-func-name", cl::Hidden, 590b57cec5SDimitry Andric cl::desc("The option to specify the name of the function " 600b57cec5SDimitry Andric "whose branch probability info is printed.")); 610b57cec5SDimitry Andric 620b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob", 630b57cec5SDimitry Andric "Branch Probability Analysis", false, true) 640b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 650b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 66e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 675ffd83dbSDimitry Andric INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 680b57cec5SDimitry Andric INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob", 690b57cec5SDimitry Andric "Branch Probability Analysis", false, true) 700b57cec5SDimitry Andric 71480093f4SDimitry Andric BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass() 72480093f4SDimitry Andric : FunctionPass(ID) { 73480093f4SDimitry Andric initializeBranchProbabilityInfoWrapperPassPass( 74480093f4SDimitry Andric *PassRegistry::getPassRegistry()); 75480093f4SDimitry Andric } 76480093f4SDimitry Andric 770b57cec5SDimitry Andric char BranchProbabilityInfoWrapperPass::ID = 0; 780b57cec5SDimitry Andric 790b57cec5SDimitry Andric // Weights are for internal use only. They are used by heuristics to help to 800b57cec5SDimitry Andric // estimate edges' probability. Example: 810b57cec5SDimitry Andric // 820b57cec5SDimitry Andric // Using "Loop Branch Heuristics" we predict weights of edges for the 830b57cec5SDimitry Andric // block BB2. 840b57cec5SDimitry Andric // ... 850b57cec5SDimitry Andric // | 860b57cec5SDimitry Andric // V 870b57cec5SDimitry Andric // BB1<-+ 880b57cec5SDimitry Andric // | | 890b57cec5SDimitry Andric // | | (Weight = 124) 900b57cec5SDimitry Andric // V | 910b57cec5SDimitry Andric // BB2--+ 920b57cec5SDimitry Andric // | 930b57cec5SDimitry Andric // | (Weight = 4) 940b57cec5SDimitry Andric // V 950b57cec5SDimitry Andric // BB3 960b57cec5SDimitry Andric // 970b57cec5SDimitry Andric // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875 980b57cec5SDimitry Andric // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125 990b57cec5SDimitry Andric static const uint32_t LBH_TAKEN_WEIGHT = 124; 1000b57cec5SDimitry Andric static const uint32_t LBH_NONTAKEN_WEIGHT = 4; 1010b57cec5SDimitry Andric 1020b57cec5SDimitry Andric /// Unreachable-terminating branch taken probability. 1030b57cec5SDimitry Andric /// 1040b57cec5SDimitry Andric /// This is the probability for a branch being taken to a block that terminates 1050b57cec5SDimitry Andric /// (eventually) in unreachable. These are predicted as unlikely as possible. 1065ffd83dbSDimitry Andric /// All reachable probability will proportionally share the remaining part. 1070b57cec5SDimitry Andric static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1); 1080b57cec5SDimitry Andric 1094824e7fdSDimitry Andric /// Heuristics and lookup tables for non-loop branches: 1104824e7fdSDimitry Andric /// Pointer Heuristics (PH) 1110b57cec5SDimitry Andric static const uint32_t PH_TAKEN_WEIGHT = 20; 1120b57cec5SDimitry Andric static const uint32_t PH_NONTAKEN_WEIGHT = 12; 1134824e7fdSDimitry Andric static const BranchProbability 1144824e7fdSDimitry Andric PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT); 1154824e7fdSDimitry Andric static const BranchProbability 1164824e7fdSDimitry Andric PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT); 1170b57cec5SDimitry Andric 1184824e7fdSDimitry Andric using ProbabilityList = SmallVector<BranchProbability>; 1194824e7fdSDimitry Andric using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>; 1204824e7fdSDimitry Andric 1214824e7fdSDimitry Andric /// Pointer comparisons: 1224824e7fdSDimitry Andric static const ProbabilityTable PointerTable{ 1234824e7fdSDimitry Andric {ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely 1244824e7fdSDimitry Andric {ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely 1254824e7fdSDimitry Andric }; 1264824e7fdSDimitry Andric 1274824e7fdSDimitry Andric /// Zero Heuristics (ZH) 1280b57cec5SDimitry Andric static const uint32_t ZH_TAKEN_WEIGHT = 20; 1290b57cec5SDimitry Andric static const uint32_t ZH_NONTAKEN_WEIGHT = 12; 1304824e7fdSDimitry Andric static const BranchProbability 1314824e7fdSDimitry Andric ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT); 1324824e7fdSDimitry Andric static const BranchProbability 1334824e7fdSDimitry Andric ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT); 1340b57cec5SDimitry Andric 1354824e7fdSDimitry Andric /// Integer compares with 0: 1364824e7fdSDimitry Andric static const ProbabilityTable ICmpWithZeroTable{ 1374824e7fdSDimitry Andric {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == 0 -> Unlikely 1384824e7fdSDimitry Andric {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != 0 -> Likely 1394824e7fdSDimitry Andric {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0 -> Unlikely 1404824e7fdSDimitry Andric {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0 -> Likely 1414824e7fdSDimitry Andric }; 1424824e7fdSDimitry Andric 1434824e7fdSDimitry Andric /// Integer compares with -1: 1444824e7fdSDimitry Andric static const ProbabilityTable ICmpWithMinusOneTable{ 1454824e7fdSDimitry Andric {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == -1 -> Unlikely 1464824e7fdSDimitry Andric {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != -1 -> Likely 1474824e7fdSDimitry Andric // InstCombine canonicalizes X >= 0 into X > -1 1484824e7fdSDimitry Andric {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0 -> Likely 1494824e7fdSDimitry Andric }; 1504824e7fdSDimitry Andric 1514824e7fdSDimitry Andric /// Integer compares with 1: 1524824e7fdSDimitry Andric static const ProbabilityTable ICmpWithOneTable{ 1534824e7fdSDimitry Andric // InstCombine canonicalizes X <= 0 into X < 1 1544824e7fdSDimitry Andric {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely 1554824e7fdSDimitry Andric }; 1564824e7fdSDimitry Andric 1574824e7fdSDimitry Andric /// strcmp and similar functions return zero, negative, or positive, if the 1584824e7fdSDimitry Andric /// first string is equal, less, or greater than the second. We consider it 1594824e7fdSDimitry Andric /// likely that the strings are not equal, so a comparison with zero is 1604824e7fdSDimitry Andric /// probably false, but also a comparison with any other number is also 1614824e7fdSDimitry Andric /// probably false given that what exactly is returned for nonzero values is 1624824e7fdSDimitry Andric /// not specified. Any kind of comparison other than equality we know 1634824e7fdSDimitry Andric /// nothing about. 1644824e7fdSDimitry Andric static const ProbabilityTable ICmpWithLibCallTable{ 1654824e7fdSDimitry Andric {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, 1664824e7fdSDimitry Andric {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, 1674824e7fdSDimitry Andric }; 1684824e7fdSDimitry Andric 1694824e7fdSDimitry Andric // Floating-Point Heuristics (FPH) 1700b57cec5SDimitry Andric static const uint32_t FPH_TAKEN_WEIGHT = 20; 1710b57cec5SDimitry Andric static const uint32_t FPH_NONTAKEN_WEIGHT = 12; 1720b57cec5SDimitry Andric 1738bcb0991SDimitry Andric /// This is the probability for an ordered floating point comparison. 1748bcb0991SDimitry Andric static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1; 1758bcb0991SDimitry Andric /// This is the probability for an unordered floating point comparison, it means 1768bcb0991SDimitry Andric /// one or two of the operands are NaN. Usually it is used to test for an 1778bcb0991SDimitry Andric /// exceptional case, so the result is unlikely. 1788bcb0991SDimitry Andric static const uint32_t FPH_UNO_WEIGHT = 1; 1798bcb0991SDimitry Andric 1804824e7fdSDimitry Andric static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT, 1814824e7fdSDimitry Andric FPH_ORD_WEIGHT + FPH_UNO_WEIGHT); 1824824e7fdSDimitry Andric static const BranchProbability 1834824e7fdSDimitry Andric FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT); 1844824e7fdSDimitry Andric static const BranchProbability 1854824e7fdSDimitry Andric FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT); 1864824e7fdSDimitry Andric static const BranchProbability 1874824e7fdSDimitry Andric FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT); 1884824e7fdSDimitry Andric 1894824e7fdSDimitry Andric /// Floating-Point compares: 1904824e7fdSDimitry Andric static const ProbabilityTable FCmpTable{ 1914824e7fdSDimitry Andric {FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely 1924824e7fdSDimitry Andric {FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely 1934824e7fdSDimitry Andric }; 1944824e7fdSDimitry Andric 195e8d8bef9SDimitry Andric /// Set of dedicated "absolute" execution weights for a block. These weights are 196e8d8bef9SDimitry Andric /// meaningful relative to each other and their derivatives only. 197e8d8bef9SDimitry Andric enum class BlockExecWeight : std::uint32_t { 198e8d8bef9SDimitry Andric /// Special weight used for cases with exact zero probability. 199e8d8bef9SDimitry Andric ZERO = 0x0, 200e8d8bef9SDimitry Andric /// Minimal possible non zero weight. 201e8d8bef9SDimitry Andric LOWEST_NON_ZERO = 0x1, 202e8d8bef9SDimitry Andric /// Weight to an 'unreachable' block. 203e8d8bef9SDimitry Andric UNREACHABLE = ZERO, 204e8d8bef9SDimitry Andric /// Weight to a block containing non returning call. 205e8d8bef9SDimitry Andric NORETURN = LOWEST_NON_ZERO, 206e8d8bef9SDimitry Andric /// Weight to 'unwind' block of an invoke instruction. 207e8d8bef9SDimitry Andric UNWIND = LOWEST_NON_ZERO, 208e8d8bef9SDimitry Andric /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked 209e8d8bef9SDimitry Andric /// with attribute 'cold'. 210e8d8bef9SDimitry Andric COLD = 0xffff, 211e8d8bef9SDimitry Andric /// Default weight is used in cases when there is no dedicated execution 212e8d8bef9SDimitry Andric /// weight set. It is not propagated through the domination line either. 213e8d8bef9SDimitry Andric DEFAULT = 0xfffff 214e8d8bef9SDimitry Andric }; 2150b57cec5SDimitry Andric 216e8d8bef9SDimitry Andric BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) { 217e8d8bef9SDimitry Andric // Record SCC numbers of blocks in the CFG to identify irreducible loops. 218e8d8bef9SDimitry Andric // FIXME: We could only calculate this if the CFG is known to be irreducible 219e8d8bef9SDimitry Andric // (perhaps cache this info in LoopInfo if we can easily calculate it there?). 220e8d8bef9SDimitry Andric int SccNum = 0; 221e8d8bef9SDimitry Andric for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd(); 222e8d8bef9SDimitry Andric ++It, ++SccNum) { 223e8d8bef9SDimitry Andric // Ignore single-block SCCs since they either aren't loops or LoopInfo will 224e8d8bef9SDimitry Andric // catch them. 225e8d8bef9SDimitry Andric const std::vector<const BasicBlock *> &Scc = *It; 226e8d8bef9SDimitry Andric if (Scc.size() == 1) 227480093f4SDimitry Andric continue; 228e8d8bef9SDimitry Andric 229e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":"); 230e8d8bef9SDimitry Andric for (const auto *BB : Scc) { 231e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << " " << BB->getName()); 232e8d8bef9SDimitry Andric SccNums[BB] = SccNum; 233e8d8bef9SDimitry Andric calculateSccBlockType(BB, SccNum); 234480093f4SDimitry Andric } 235e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "\n"); 236e8d8bef9SDimitry Andric } 237e8d8bef9SDimitry Andric } 238e8d8bef9SDimitry Andric 239e8d8bef9SDimitry Andric int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const { 240e8d8bef9SDimitry Andric auto SccIt = SccNums.find(BB); 241e8d8bef9SDimitry Andric if (SccIt == SccNums.end()) 242e8d8bef9SDimitry Andric return -1; 243e8d8bef9SDimitry Andric return SccIt->second; 244e8d8bef9SDimitry Andric } 245e8d8bef9SDimitry Andric 246e8d8bef9SDimitry Andric void BranchProbabilityInfo::SccInfo::getSccEnterBlocks( 247e8d8bef9SDimitry Andric int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const { 248e8d8bef9SDimitry Andric 249e8d8bef9SDimitry Andric for (auto MapIt : SccBlocks[SccNum]) { 250e8d8bef9SDimitry Andric const auto *BB = MapIt.first; 251e8d8bef9SDimitry Andric if (isSCCHeader(BB, SccNum)) 252e8d8bef9SDimitry Andric for (const auto *Pred : predecessors(BB)) 253e8d8bef9SDimitry Andric if (getSCCNum(Pred) != SccNum) 254e8d8bef9SDimitry Andric Enters.push_back(const_cast<BasicBlock *>(BB)); 255e8d8bef9SDimitry Andric } 256e8d8bef9SDimitry Andric } 257e8d8bef9SDimitry Andric 258e8d8bef9SDimitry Andric void BranchProbabilityInfo::SccInfo::getSccExitBlocks( 259e8d8bef9SDimitry Andric int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const { 260e8d8bef9SDimitry Andric for (auto MapIt : SccBlocks[SccNum]) { 261e8d8bef9SDimitry Andric const auto *BB = MapIt.first; 262e8d8bef9SDimitry Andric if (isSCCExitingBlock(BB, SccNum)) 263e8d8bef9SDimitry Andric for (const auto *Succ : successors(BB)) 264e8d8bef9SDimitry Andric if (getSCCNum(Succ) != SccNum) 265349cc55cSDimitry Andric Exits.push_back(const_cast<BasicBlock *>(Succ)); 266e8d8bef9SDimitry Andric } 267e8d8bef9SDimitry Andric } 268e8d8bef9SDimitry Andric 269e8d8bef9SDimitry Andric uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB, 270e8d8bef9SDimitry Andric int SccNum) const { 271e8d8bef9SDimitry Andric assert(getSCCNum(BB) == SccNum); 272e8d8bef9SDimitry Andric 273e8d8bef9SDimitry Andric assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC"); 274e8d8bef9SDimitry Andric const auto &SccBlockTypes = SccBlocks[SccNum]; 275e8d8bef9SDimitry Andric 276e8d8bef9SDimitry Andric auto It = SccBlockTypes.find(BB); 277e8d8bef9SDimitry Andric if (It != SccBlockTypes.end()) { 278e8d8bef9SDimitry Andric return It->second; 279e8d8bef9SDimitry Andric } 280e8d8bef9SDimitry Andric return Inner; 281e8d8bef9SDimitry Andric } 282e8d8bef9SDimitry Andric 283e8d8bef9SDimitry Andric void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB, 284e8d8bef9SDimitry Andric int SccNum) { 285e8d8bef9SDimitry Andric assert(getSCCNum(BB) == SccNum); 286e8d8bef9SDimitry Andric uint32_t BlockType = Inner; 287e8d8bef9SDimitry Andric 288e8d8bef9SDimitry Andric if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) { 289e8d8bef9SDimitry Andric // Consider any block that is an entry point to the SCC as 290e8d8bef9SDimitry Andric // a header. 291e8d8bef9SDimitry Andric return getSCCNum(Pred) != SccNum; 292480093f4SDimitry Andric })) 293e8d8bef9SDimitry Andric BlockType |= Header; 2940b57cec5SDimitry Andric 295e8d8bef9SDimitry Andric if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) { 296e8d8bef9SDimitry Andric return getSCCNum(Succ) != SccNum; 297480093f4SDimitry Andric })) 298e8d8bef9SDimitry Andric BlockType |= Exiting; 299e8d8bef9SDimitry Andric 300e8d8bef9SDimitry Andric // Lazily compute the set of headers for a given SCC and cache the results 301e8d8bef9SDimitry Andric // in the SccHeaderMap. 302e8d8bef9SDimitry Andric if (SccBlocks.size() <= static_cast<unsigned>(SccNum)) 303e8d8bef9SDimitry Andric SccBlocks.resize(SccNum + 1); 304e8d8bef9SDimitry Andric auto &SccBlockTypes = SccBlocks[SccNum]; 305e8d8bef9SDimitry Andric 306e8d8bef9SDimitry Andric if (BlockType != Inner) { 307e8d8bef9SDimitry Andric bool IsInserted; 308e8d8bef9SDimitry Andric std::tie(std::ignore, IsInserted) = 309e8d8bef9SDimitry Andric SccBlockTypes.insert(std::make_pair(BB, BlockType)); 310e8d8bef9SDimitry Andric assert(IsInserted && "Duplicated block in SCC"); 3110b57cec5SDimitry Andric } 3120b57cec5SDimitry Andric } 3130b57cec5SDimitry Andric 314e8d8bef9SDimitry Andric BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB, 315e8d8bef9SDimitry Andric const LoopInfo &LI, 316e8d8bef9SDimitry Andric const SccInfo &SccI) 317e8d8bef9SDimitry Andric : BB(BB) { 318e8d8bef9SDimitry Andric LD.first = LI.getLoopFor(BB); 319e8d8bef9SDimitry Andric if (!LD.first) { 320e8d8bef9SDimitry Andric LD.second = SccI.getSCCNum(BB); 321e8d8bef9SDimitry Andric } 3220b57cec5SDimitry Andric } 3230b57cec5SDimitry Andric 324e8d8bef9SDimitry Andric bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const { 325e8d8bef9SDimitry Andric const auto &SrcBlock = Edge.first; 326e8d8bef9SDimitry Andric const auto &DstBlock = Edge.second; 327e8d8bef9SDimitry Andric return (DstBlock.getLoop() && 328e8d8bef9SDimitry Andric !DstBlock.getLoop()->contains(SrcBlock.getLoop())) || 329e8d8bef9SDimitry Andric // Assume that SCCs can't be nested. 330e8d8bef9SDimitry Andric (DstBlock.getSccNum() != -1 && 331e8d8bef9SDimitry Andric SrcBlock.getSccNum() != DstBlock.getSccNum()); 332e8d8bef9SDimitry Andric } 3330b57cec5SDimitry Andric 334e8d8bef9SDimitry Andric bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const { 335e8d8bef9SDimitry Andric return isLoopEnteringEdge({Edge.second, Edge.first}); 336e8d8bef9SDimitry Andric } 3370b57cec5SDimitry Andric 338e8d8bef9SDimitry Andric bool BranchProbabilityInfo::isLoopEnteringExitingEdge( 339e8d8bef9SDimitry Andric const LoopEdge &Edge) const { 340e8d8bef9SDimitry Andric return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge); 341e8d8bef9SDimitry Andric } 342e8d8bef9SDimitry Andric 343e8d8bef9SDimitry Andric bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const { 344e8d8bef9SDimitry Andric const auto &SrcBlock = Edge.first; 345e8d8bef9SDimitry Andric const auto &DstBlock = Edge.second; 346e8d8bef9SDimitry Andric return SrcBlock.belongsToSameLoop(DstBlock) && 347e8d8bef9SDimitry Andric ((DstBlock.getLoop() && 348e8d8bef9SDimitry Andric DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) || 349e8d8bef9SDimitry Andric (DstBlock.getSccNum() != -1 && 350e8d8bef9SDimitry Andric SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum()))); 351e8d8bef9SDimitry Andric } 352e8d8bef9SDimitry Andric 353e8d8bef9SDimitry Andric void BranchProbabilityInfo::getLoopEnterBlocks( 354e8d8bef9SDimitry Andric const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const { 355e8d8bef9SDimitry Andric if (LB.getLoop()) { 356e8d8bef9SDimitry Andric auto *Header = LB.getLoop()->getHeader(); 357e8d8bef9SDimitry Andric Enters.append(pred_begin(Header), pred_end(Header)); 358e8d8bef9SDimitry Andric } else { 359e8d8bef9SDimitry Andric assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?"); 360e8d8bef9SDimitry Andric SccI->getSccEnterBlocks(LB.getSccNum(), Enters); 361e8d8bef9SDimitry Andric } 362e8d8bef9SDimitry Andric } 363e8d8bef9SDimitry Andric 364e8d8bef9SDimitry Andric void BranchProbabilityInfo::getLoopExitBlocks( 365e8d8bef9SDimitry Andric const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const { 366e8d8bef9SDimitry Andric if (LB.getLoop()) { 367e8d8bef9SDimitry Andric LB.getLoop()->getExitBlocks(Exits); 368e8d8bef9SDimitry Andric } else { 369e8d8bef9SDimitry Andric assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?"); 370e8d8bef9SDimitry Andric SccI->getSccExitBlocks(LB.getSccNum(), Exits); 371e8d8bef9SDimitry Andric } 3720b57cec5SDimitry Andric } 3730b57cec5SDimitry Andric 3740b57cec5SDimitry Andric // Propagate existing explicit probabilities from either profile data or 3750b57cec5SDimitry Andric // 'expect' intrinsic processing. Examine metadata against unreachable 3760b57cec5SDimitry Andric // heuristic. The probability of the edge coming to unreachable block is 3770b57cec5SDimitry Andric // set to min of metadata and unreachable heuristic. 3780b57cec5SDimitry Andric bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) { 3790b57cec5SDimitry Andric const Instruction *TI = BB->getTerminator(); 3800b57cec5SDimitry Andric assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); 3815ffd83dbSDimitry Andric if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) || 3825ffd83dbSDimitry Andric isa<InvokeInst>(TI))) 3830b57cec5SDimitry Andric return false; 3840b57cec5SDimitry Andric 3850b57cec5SDimitry Andric MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 3860b57cec5SDimitry Andric if (!WeightsNode) 3870b57cec5SDimitry Andric return false; 3880b57cec5SDimitry Andric 3890b57cec5SDimitry Andric // Check that the number of successors is manageable. 3900b57cec5SDimitry Andric assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors"); 3910b57cec5SDimitry Andric 3920b57cec5SDimitry Andric // Ensure there are weights for all of the successors. Note that the first 3930b57cec5SDimitry Andric // operand to the metadata node is a name, not a weight. 3940b57cec5SDimitry Andric if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1) 3950b57cec5SDimitry Andric return false; 3960b57cec5SDimitry Andric 3970b57cec5SDimitry Andric // Build up the final weights that will be used in a temporary buffer. 3980b57cec5SDimitry Andric // Compute the sum of all weights to later decide whether they need to 3990b57cec5SDimitry Andric // be scaled to fit in 32 bits. 4000b57cec5SDimitry Andric uint64_t WeightSum = 0; 4010b57cec5SDimitry Andric SmallVector<uint32_t, 2> Weights; 4020b57cec5SDimitry Andric SmallVector<unsigned, 2> UnreachableIdxs; 4030b57cec5SDimitry Andric SmallVector<unsigned, 2> ReachableIdxs; 4040b57cec5SDimitry Andric Weights.reserve(TI->getNumSuccessors()); 4055ffd83dbSDimitry Andric for (unsigned I = 1, E = WeightsNode->getNumOperands(); I != E; ++I) { 4060b57cec5SDimitry Andric ConstantInt *Weight = 4075ffd83dbSDimitry Andric mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(I)); 4080b57cec5SDimitry Andric if (!Weight) 4090b57cec5SDimitry Andric return false; 4100b57cec5SDimitry Andric assert(Weight->getValue().getActiveBits() <= 32 && 4110b57cec5SDimitry Andric "Too many bits for uint32_t"); 4120b57cec5SDimitry Andric Weights.push_back(Weight->getZExtValue()); 4130b57cec5SDimitry Andric WeightSum += Weights.back(); 414e8d8bef9SDimitry Andric const LoopBlock SrcLoopBB = getLoopBlock(BB); 415e8d8bef9SDimitry Andric const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I - 1)); 416e8d8bef9SDimitry Andric auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB}); 417e8d8bef9SDimitry Andric if (EstimatedWeight && 41881ad6265SDimitry Andric *EstimatedWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE)) 4195ffd83dbSDimitry Andric UnreachableIdxs.push_back(I - 1); 4200b57cec5SDimitry Andric else 4215ffd83dbSDimitry Andric ReachableIdxs.push_back(I - 1); 4220b57cec5SDimitry Andric } 4230b57cec5SDimitry Andric assert(Weights.size() == TI->getNumSuccessors() && "Checked above"); 4240b57cec5SDimitry Andric 4250b57cec5SDimitry Andric // If the sum of weights does not fit in 32 bits, scale every weight down 4260b57cec5SDimitry Andric // accordingly. 4270b57cec5SDimitry Andric uint64_t ScalingFactor = 4280b57cec5SDimitry Andric (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1; 4290b57cec5SDimitry Andric 4300b57cec5SDimitry Andric if (ScalingFactor > 1) { 4310b57cec5SDimitry Andric WeightSum = 0; 4325ffd83dbSDimitry Andric for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { 4335ffd83dbSDimitry Andric Weights[I] /= ScalingFactor; 4345ffd83dbSDimitry Andric WeightSum += Weights[I]; 4350b57cec5SDimitry Andric } 4360b57cec5SDimitry Andric } 4370b57cec5SDimitry Andric assert(WeightSum <= UINT32_MAX && 4380b57cec5SDimitry Andric "Expected weights to scale down to 32 bits"); 4390b57cec5SDimitry Andric 4400b57cec5SDimitry Andric if (WeightSum == 0 || ReachableIdxs.size() == 0) { 4415ffd83dbSDimitry Andric for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) 4425ffd83dbSDimitry Andric Weights[I] = 1; 4430b57cec5SDimitry Andric WeightSum = TI->getNumSuccessors(); 4440b57cec5SDimitry Andric } 4450b57cec5SDimitry Andric 4460b57cec5SDimitry Andric // Set the probability. 4470b57cec5SDimitry Andric SmallVector<BranchProbability, 2> BP; 4485ffd83dbSDimitry Andric for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) 4495ffd83dbSDimitry Andric BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) }); 4500b57cec5SDimitry Andric 4510b57cec5SDimitry Andric // Examine the metadata against unreachable heuristic. 4520b57cec5SDimitry Andric // If the unreachable heuristic is more strong then we use it for this edge. 4535ffd83dbSDimitry Andric if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) { 4545ffd83dbSDimitry Andric setEdgeProbability(BB, BP); 4555ffd83dbSDimitry Andric return true; 4565ffd83dbSDimitry Andric } 4575ffd83dbSDimitry Andric 4580b57cec5SDimitry Andric auto UnreachableProb = UR_TAKEN_PROB; 4595ffd83dbSDimitry Andric for (auto I : UnreachableIdxs) 4605ffd83dbSDimitry Andric if (UnreachableProb < BP[I]) { 4615ffd83dbSDimitry Andric BP[I] = UnreachableProb; 4620b57cec5SDimitry Andric } 4630b57cec5SDimitry Andric 4645ffd83dbSDimitry Andric // Sum of all edge probabilities must be 1.0. If we modified the probability 4655ffd83dbSDimitry Andric // of some edges then we must distribute the introduced difference over the 4665ffd83dbSDimitry Andric // reachable blocks. 4675ffd83dbSDimitry Andric // 4685ffd83dbSDimitry Andric // Proportional distribution: the relation between probabilities of the 4695ffd83dbSDimitry Andric // reachable edges is kept unchanged. That is for any reachable edges i and j: 4705ffd83dbSDimitry Andric // newBP[i] / newBP[j] == oldBP[i] / oldBP[j] => 4715ffd83dbSDimitry Andric // newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K 4725ffd83dbSDimitry Andric // Where K is independent of i,j. 4735ffd83dbSDimitry Andric // newBP[i] == oldBP[i] * K 4745ffd83dbSDimitry Andric // We need to find K. 4755ffd83dbSDimitry Andric // Make sum of all reachables of the left and right parts: 4765ffd83dbSDimitry Andric // sum_of_reachable(newBP) == K * sum_of_reachable(oldBP) 4775ffd83dbSDimitry Andric // Sum of newBP must be equal to 1.0: 4785ffd83dbSDimitry Andric // sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 => 4795ffd83dbSDimitry Andric // sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP) 4805ffd83dbSDimitry Andric // Where sum_of_unreachable(newBP) is what has been just changed. 4815ffd83dbSDimitry Andric // Finally: 4825ffd83dbSDimitry Andric // K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) => 4835ffd83dbSDimitry Andric // K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP) 4845ffd83dbSDimitry Andric BranchProbability NewUnreachableSum = BranchProbability::getZero(); 4855ffd83dbSDimitry Andric for (auto I : UnreachableIdxs) 4865ffd83dbSDimitry Andric NewUnreachableSum += BP[I]; 4875ffd83dbSDimitry Andric 4885ffd83dbSDimitry Andric BranchProbability NewReachableSum = 4895ffd83dbSDimitry Andric BranchProbability::getOne() - NewUnreachableSum; 4905ffd83dbSDimitry Andric 4915ffd83dbSDimitry Andric BranchProbability OldReachableSum = BranchProbability::getZero(); 4925ffd83dbSDimitry Andric for (auto I : ReachableIdxs) 4935ffd83dbSDimitry Andric OldReachableSum += BP[I]; 4945ffd83dbSDimitry Andric 4955ffd83dbSDimitry Andric if (OldReachableSum != NewReachableSum) { // Anything to dsitribute? 4965ffd83dbSDimitry Andric if (OldReachableSum.isZero()) { 4975ffd83dbSDimitry Andric // If all oldBP[i] are zeroes then the proportional distribution results 4985ffd83dbSDimitry Andric // in all zero probabilities and the error stays big. In this case we 4995ffd83dbSDimitry Andric // evenly spread NewReachableSum over the reachable edges. 5005ffd83dbSDimitry Andric BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size(); 5015ffd83dbSDimitry Andric for (auto I : ReachableIdxs) 5025ffd83dbSDimitry Andric BP[I] = PerEdge; 5035ffd83dbSDimitry Andric } else { 5045ffd83dbSDimitry Andric for (auto I : ReachableIdxs) { 5055ffd83dbSDimitry Andric // We use uint64_t to avoid double rounding error of the following 5065ffd83dbSDimitry Andric // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum 5075ffd83dbSDimitry Andric // The formula is taken from the private constructor 5085ffd83dbSDimitry Andric // BranchProbability(uint32_t Numerator, uint32_t Denominator) 5095ffd83dbSDimitry Andric uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) * 5105ffd83dbSDimitry Andric BP[I].getNumerator(); 5115ffd83dbSDimitry Andric uint32_t Div = static_cast<uint32_t>( 5125ffd83dbSDimitry Andric divideNearest(Mul, OldReachableSum.getNumerator())); 5135ffd83dbSDimitry Andric BP[I] = BranchProbability::getRaw(Div); 5145ffd83dbSDimitry Andric } 5150b57cec5SDimitry Andric } 5160b57cec5SDimitry Andric } 5170b57cec5SDimitry Andric 5185ffd83dbSDimitry Andric setEdgeProbability(BB, BP); 5190b57cec5SDimitry Andric 5200b57cec5SDimitry Andric return true; 5210b57cec5SDimitry Andric } 5220b57cec5SDimitry Andric 5230b57cec5SDimitry Andric // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison 5240b57cec5SDimitry Andric // between two pointer or pointer and NULL will fail. 5250b57cec5SDimitry Andric bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) { 5260b57cec5SDimitry Andric const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 5270b57cec5SDimitry Andric if (!BI || !BI->isConditional()) 5280b57cec5SDimitry Andric return false; 5290b57cec5SDimitry Andric 5300b57cec5SDimitry Andric Value *Cond = BI->getCondition(); 5310b57cec5SDimitry Andric ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 5320b57cec5SDimitry Andric if (!CI || !CI->isEquality()) 5330b57cec5SDimitry Andric return false; 5340b57cec5SDimitry Andric 5350b57cec5SDimitry Andric Value *LHS = CI->getOperand(0); 5360b57cec5SDimitry Andric 5370b57cec5SDimitry Andric if (!LHS->getType()->isPointerTy()) 5380b57cec5SDimitry Andric return false; 5390b57cec5SDimitry Andric 5400b57cec5SDimitry Andric assert(CI->getOperand(1)->getType()->isPointerTy()); 5410b57cec5SDimitry Andric 5424824e7fdSDimitry Andric auto Search = PointerTable.find(CI->getPredicate()); 5434824e7fdSDimitry Andric if (Search == PointerTable.end()) 5444824e7fdSDimitry Andric return false; 5454824e7fdSDimitry Andric setEdgeProbability(BB, Search->second); 5460b57cec5SDimitry Andric return true; 5470b57cec5SDimitry Andric } 5480b57cec5SDimitry Andric 5490b57cec5SDimitry Andric // Compute the unlikely successors to the block BB in the loop L, specifically 5500b57cec5SDimitry Andric // those that are unlikely because this is a loop, and add them to the 5510b57cec5SDimitry Andric // UnlikelyBlocks set. 5520b57cec5SDimitry Andric static void 5530b57cec5SDimitry Andric computeUnlikelySuccessors(const BasicBlock *BB, Loop *L, 5540b57cec5SDimitry Andric SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) { 5550b57cec5SDimitry Andric // Sometimes in a loop we have a branch whose condition is made false by 5560b57cec5SDimitry Andric // taking it. This is typically something like 5570b57cec5SDimitry Andric // int n = 0; 5580b57cec5SDimitry Andric // while (...) { 5590b57cec5SDimitry Andric // if (++n >= MAX) { 5600b57cec5SDimitry Andric // n = 0; 5610b57cec5SDimitry Andric // } 5620b57cec5SDimitry Andric // } 5630b57cec5SDimitry Andric // In this sort of situation taking the branch means that at the very least it 5640b57cec5SDimitry Andric // won't be taken again in the next iteration of the loop, so we should 5650b57cec5SDimitry Andric // consider it less likely than a typical branch. 5660b57cec5SDimitry Andric // 5670b57cec5SDimitry Andric // We detect this by looking back through the graph of PHI nodes that sets the 5680b57cec5SDimitry Andric // value that the condition depends on, and seeing if we can reach a successor 5690b57cec5SDimitry Andric // block which can be determined to make the condition false. 5700b57cec5SDimitry Andric // 5710b57cec5SDimitry Andric // FIXME: We currently consider unlikely blocks to be half as likely as other 5720b57cec5SDimitry Andric // blocks, but if we consider the example above the likelyhood is actually 5730b57cec5SDimitry Andric // 1/MAX. We could therefore be more precise in how unlikely we consider 5740b57cec5SDimitry Andric // blocks to be, but it would require more careful examination of the form 5750b57cec5SDimitry Andric // of the comparison expression. 5760b57cec5SDimitry Andric const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 5770b57cec5SDimitry Andric if (!BI || !BI->isConditional()) 5780b57cec5SDimitry Andric return; 5790b57cec5SDimitry Andric 5800b57cec5SDimitry Andric // Check if the branch is based on an instruction compared with a constant 5810b57cec5SDimitry Andric CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 5820b57cec5SDimitry Andric if (!CI || !isa<Instruction>(CI->getOperand(0)) || 5830b57cec5SDimitry Andric !isa<Constant>(CI->getOperand(1))) 5840b57cec5SDimitry Andric return; 5850b57cec5SDimitry Andric 5860b57cec5SDimitry Andric // Either the instruction must be a PHI, or a chain of operations involving 5870b57cec5SDimitry Andric // constants that ends in a PHI which we can then collapse into a single value 5880b57cec5SDimitry Andric // if the PHI value is known. 5890b57cec5SDimitry Andric Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0)); 5900b57cec5SDimitry Andric PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS); 5910b57cec5SDimitry Andric Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1)); 5920b57cec5SDimitry Andric // Collect the instructions until we hit a PHI 5930b57cec5SDimitry Andric SmallVector<BinaryOperator *, 1> InstChain; 5940b57cec5SDimitry Andric while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) && 5950b57cec5SDimitry Andric isa<Constant>(CmpLHS->getOperand(1))) { 5960b57cec5SDimitry Andric // Stop if the chain extends outside of the loop 5970b57cec5SDimitry Andric if (!L->contains(CmpLHS)) 5980b57cec5SDimitry Andric return; 5990b57cec5SDimitry Andric InstChain.push_back(cast<BinaryOperator>(CmpLHS)); 6000b57cec5SDimitry Andric CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0)); 6010b57cec5SDimitry Andric if (CmpLHS) 6020b57cec5SDimitry Andric CmpPHI = dyn_cast<PHINode>(CmpLHS); 6030b57cec5SDimitry Andric } 6040b57cec5SDimitry Andric if (!CmpPHI || !L->contains(CmpPHI)) 6050b57cec5SDimitry Andric return; 6060b57cec5SDimitry Andric 6070b57cec5SDimitry Andric // Trace the phi node to find all values that come from successors of BB 6080b57cec5SDimitry Andric SmallPtrSet<PHINode*, 8> VisitedInsts; 6090b57cec5SDimitry Andric SmallVector<PHINode*, 8> WorkList; 6100b57cec5SDimitry Andric WorkList.push_back(CmpPHI); 6110b57cec5SDimitry Andric VisitedInsts.insert(CmpPHI); 6120b57cec5SDimitry Andric while (!WorkList.empty()) { 613fe6060f1SDimitry Andric PHINode *P = WorkList.pop_back_val(); 6140b57cec5SDimitry Andric for (BasicBlock *B : P->blocks()) { 6150b57cec5SDimitry Andric // Skip blocks that aren't part of the loop 6160b57cec5SDimitry Andric if (!L->contains(B)) 6170b57cec5SDimitry Andric continue; 6180b57cec5SDimitry Andric Value *V = P->getIncomingValueForBlock(B); 6190b57cec5SDimitry Andric // If the source is a PHI add it to the work list if we haven't 6200b57cec5SDimitry Andric // already visited it. 6210b57cec5SDimitry Andric if (PHINode *PN = dyn_cast<PHINode>(V)) { 6220b57cec5SDimitry Andric if (VisitedInsts.insert(PN).second) 6230b57cec5SDimitry Andric WorkList.push_back(PN); 6240b57cec5SDimitry Andric continue; 6250b57cec5SDimitry Andric } 6260b57cec5SDimitry Andric // If this incoming value is a constant and B is a successor of BB, then 6270b57cec5SDimitry Andric // we can constant-evaluate the compare to see if it makes the branch be 6280b57cec5SDimitry Andric // taken or not. 6290b57cec5SDimitry Andric Constant *CmpLHSConst = dyn_cast<Constant>(V); 630e8d8bef9SDimitry Andric if (!CmpLHSConst || !llvm::is_contained(successors(BB), B)) 6310b57cec5SDimitry Andric continue; 6320b57cec5SDimitry Andric // First collapse InstChain 633*753f127fSDimitry Andric const DataLayout &DL = BB->getModule()->getDataLayout(); 6340b57cec5SDimitry Andric for (Instruction *I : llvm::reverse(InstChain)) { 635*753f127fSDimitry Andric CmpLHSConst = ConstantFoldBinaryOpOperands( 636*753f127fSDimitry Andric I->getOpcode(), CmpLHSConst, cast<Constant>(I->getOperand(1)), DL); 6370b57cec5SDimitry Andric if (!CmpLHSConst) 6380b57cec5SDimitry Andric break; 6390b57cec5SDimitry Andric } 6400b57cec5SDimitry Andric if (!CmpLHSConst) 6410b57cec5SDimitry Andric continue; 6420b57cec5SDimitry Andric // Now constant-evaluate the compare 6430b57cec5SDimitry Andric Constant *Result = ConstantExpr::getCompare(CI->getPredicate(), 6440b57cec5SDimitry Andric CmpLHSConst, CmpConst, true); 6450b57cec5SDimitry Andric // If the result means we don't branch to the block then that block is 6460b57cec5SDimitry Andric // unlikely. 6470b57cec5SDimitry Andric if (Result && 6480b57cec5SDimitry Andric ((Result->isZeroValue() && B == BI->getSuccessor(0)) || 6490b57cec5SDimitry Andric (Result->isOneValue() && B == BI->getSuccessor(1)))) 6500b57cec5SDimitry Andric UnlikelyBlocks.insert(B); 6510b57cec5SDimitry Andric } 6520b57cec5SDimitry Andric } 6530b57cec5SDimitry Andric } 6540b57cec5SDimitry Andric 655e8d8bef9SDimitry Andric Optional<uint32_t> 656e8d8bef9SDimitry Andric BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const { 657e8d8bef9SDimitry Andric auto WeightIt = EstimatedBlockWeight.find(BB); 658e8d8bef9SDimitry Andric if (WeightIt == EstimatedBlockWeight.end()) 659e8d8bef9SDimitry Andric return None; 660e8d8bef9SDimitry Andric return WeightIt->second; 6610b57cec5SDimitry Andric } 6620b57cec5SDimitry Andric 663e8d8bef9SDimitry Andric Optional<uint32_t> 664e8d8bef9SDimitry Andric BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const { 665e8d8bef9SDimitry Andric auto WeightIt = EstimatedLoopWeight.find(L); 666e8d8bef9SDimitry Andric if (WeightIt == EstimatedLoopWeight.end()) 667e8d8bef9SDimitry Andric return None; 668e8d8bef9SDimitry Andric return WeightIt->second; 669e8d8bef9SDimitry Andric } 670e8d8bef9SDimitry Andric 671e8d8bef9SDimitry Andric Optional<uint32_t> 672e8d8bef9SDimitry Andric BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const { 673e8d8bef9SDimitry Andric // For edges entering a loop take weight of a loop rather than an individual 674e8d8bef9SDimitry Andric // block in the loop. 675e8d8bef9SDimitry Andric return isLoopEnteringEdge(Edge) 676e8d8bef9SDimitry Andric ? getEstimatedLoopWeight(Edge.second.getLoopData()) 677e8d8bef9SDimitry Andric : getEstimatedBlockWeight(Edge.second.getBlock()); 678e8d8bef9SDimitry Andric } 679e8d8bef9SDimitry Andric 680e8d8bef9SDimitry Andric template <class IterT> 681e8d8bef9SDimitry Andric Optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight( 682e8d8bef9SDimitry Andric const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const { 683e8d8bef9SDimitry Andric SmallVector<uint32_t, 4> Weights; 684e8d8bef9SDimitry Andric Optional<uint32_t> MaxWeight; 685e8d8bef9SDimitry Andric for (const BasicBlock *DstBB : Successors) { 686e8d8bef9SDimitry Andric const LoopBlock DstLoopBB = getLoopBlock(DstBB); 687e8d8bef9SDimitry Andric auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB}); 688e8d8bef9SDimitry Andric 689e8d8bef9SDimitry Andric if (!Weight) 690e8d8bef9SDimitry Andric return None; 691e8d8bef9SDimitry Andric 69281ad6265SDimitry Andric if (!MaxWeight || *MaxWeight < *Weight) 693e8d8bef9SDimitry Andric MaxWeight = Weight; 694e8d8bef9SDimitry Andric } 695e8d8bef9SDimitry Andric 696e8d8bef9SDimitry Andric return MaxWeight; 697e8d8bef9SDimitry Andric } 698e8d8bef9SDimitry Andric 699e8d8bef9SDimitry Andric // Updates \p LoopBB's weight and returns true. If \p LoopBB has already 700e8d8bef9SDimitry Andric // an associated weight it is unchanged and false is returned. 701e8d8bef9SDimitry Andric // 702e8d8bef9SDimitry Andric // Please note by the algorithm the weight is not expected to change once set 703e8d8bef9SDimitry Andric // thus 'false' status is used to track visited blocks. 704e8d8bef9SDimitry Andric bool BranchProbabilityInfo::updateEstimatedBlockWeight( 705e8d8bef9SDimitry Andric LoopBlock &LoopBB, uint32_t BBWeight, 706e8d8bef9SDimitry Andric SmallVectorImpl<BasicBlock *> &BlockWorkList, 707e8d8bef9SDimitry Andric SmallVectorImpl<LoopBlock> &LoopWorkList) { 708e8d8bef9SDimitry Andric BasicBlock *BB = LoopBB.getBlock(); 709e8d8bef9SDimitry Andric 710e8d8bef9SDimitry Andric // In general, weight is assigned to a block when it has final value and 711e8d8bef9SDimitry Andric // can't/shouldn't be changed. However, there are cases when a block 712e8d8bef9SDimitry Andric // inherently has several (possibly "contradicting") weights. For example, 713e8d8bef9SDimitry Andric // "unwind" block may also contain "cold" call. In that case the first 714e8d8bef9SDimitry Andric // set weight is favored and all consequent weights are ignored. 715e8d8bef9SDimitry Andric if (!EstimatedBlockWeight.insert({BB, BBWeight}).second) 716e8d8bef9SDimitry Andric return false; 717e8d8bef9SDimitry Andric 718e8d8bef9SDimitry Andric for (BasicBlock *PredBlock : predecessors(BB)) { 719e8d8bef9SDimitry Andric LoopBlock PredLoop = getLoopBlock(PredBlock); 720e8d8bef9SDimitry Andric // Add affected block/loop to a working list. 721e8d8bef9SDimitry Andric if (isLoopExitingEdge({PredLoop, LoopBB})) { 722e8d8bef9SDimitry Andric if (!EstimatedLoopWeight.count(PredLoop.getLoopData())) 723e8d8bef9SDimitry Andric LoopWorkList.push_back(PredLoop); 724e8d8bef9SDimitry Andric } else if (!EstimatedBlockWeight.count(PredBlock)) 725e8d8bef9SDimitry Andric BlockWorkList.push_back(PredBlock); 726e8d8bef9SDimitry Andric } 727e8d8bef9SDimitry Andric return true; 728e8d8bef9SDimitry Andric } 729e8d8bef9SDimitry Andric 730e8d8bef9SDimitry Andric // Starting from \p BB traverse through dominator blocks and assign \p BBWeight 731e8d8bef9SDimitry Andric // to all such blocks that are post dominated by \BB. In other words to all 732e8d8bef9SDimitry Andric // blocks that the one is executed if and only if another one is executed. 733e8d8bef9SDimitry Andric // Importantly, we skip loops here for two reasons. First weights of blocks in 734e8d8bef9SDimitry Andric // a loop should be scaled by trip count (yet possibly unknown). Second there is 735e8d8bef9SDimitry Andric // no any value in doing that because that doesn't give any additional 736e8d8bef9SDimitry Andric // information regarding distribution of probabilities inside the loop. 737e8d8bef9SDimitry Andric // Exception is loop 'enter' and 'exit' edges that are handled in a special way 738e8d8bef9SDimitry Andric // at calcEstimatedHeuristics. 739e8d8bef9SDimitry Andric // 740e8d8bef9SDimitry Andric // In addition, \p WorkList is populated with basic blocks if at leas one 741e8d8bef9SDimitry Andric // successor has updated estimated weight. 742e8d8bef9SDimitry Andric void BranchProbabilityInfo::propagateEstimatedBlockWeight( 743e8d8bef9SDimitry Andric const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT, 744e8d8bef9SDimitry Andric uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList, 745e8d8bef9SDimitry Andric SmallVectorImpl<LoopBlock> &LoopWorkList) { 746e8d8bef9SDimitry Andric const BasicBlock *BB = LoopBB.getBlock(); 747e8d8bef9SDimitry Andric const auto *DTStartNode = DT->getNode(BB); 748e8d8bef9SDimitry Andric const auto *PDTStartNode = PDT->getNode(BB); 749e8d8bef9SDimitry Andric 750e8d8bef9SDimitry Andric // TODO: Consider propagating weight down the domination line as well. 751e8d8bef9SDimitry Andric for (const auto *DTNode = DTStartNode; DTNode != nullptr; 752e8d8bef9SDimitry Andric DTNode = DTNode->getIDom()) { 753e8d8bef9SDimitry Andric auto *DomBB = DTNode->getBlock(); 754e8d8bef9SDimitry Andric // Consider blocks which lie on one 'line'. 755e8d8bef9SDimitry Andric if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB))) 756e8d8bef9SDimitry Andric // If BB doesn't post dominate DomBB it will not post dominate dominators 757e8d8bef9SDimitry Andric // of DomBB as well. 758e8d8bef9SDimitry Andric break; 759e8d8bef9SDimitry Andric 760e8d8bef9SDimitry Andric LoopBlock DomLoopBB = getLoopBlock(DomBB); 761e8d8bef9SDimitry Andric const LoopEdge Edge{DomLoopBB, LoopBB}; 762e8d8bef9SDimitry Andric // Don't propagate weight to blocks belonging to different loops. 763e8d8bef9SDimitry Andric if (!isLoopEnteringExitingEdge(Edge)) { 764e8d8bef9SDimitry Andric if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList, 765e8d8bef9SDimitry Andric LoopWorkList)) 766e8d8bef9SDimitry Andric // If DomBB has weight set then all it's predecessors are already 767e8d8bef9SDimitry Andric // processed (since we propagate weight up to the top of IR each time). 768e8d8bef9SDimitry Andric break; 769e8d8bef9SDimitry Andric } else if (isLoopExitingEdge(Edge)) { 770e8d8bef9SDimitry Andric LoopWorkList.push_back(DomLoopBB); 771e8d8bef9SDimitry Andric } 772e8d8bef9SDimitry Andric } 773e8d8bef9SDimitry Andric } 774e8d8bef9SDimitry Andric 775e8d8bef9SDimitry Andric Optional<uint32_t> BranchProbabilityInfo::getInitialEstimatedBlockWeight( 776e8d8bef9SDimitry Andric const BasicBlock *BB) { 777e8d8bef9SDimitry Andric // Returns true if \p BB has call marked with "NoReturn" attribute. 778e8d8bef9SDimitry Andric auto hasNoReturn = [&](const BasicBlock *BB) { 779e8d8bef9SDimitry Andric for (const auto &I : reverse(*BB)) 780e8d8bef9SDimitry Andric if (const CallInst *CI = dyn_cast<CallInst>(&I)) 781e8d8bef9SDimitry Andric if (CI->hasFnAttr(Attribute::NoReturn)) 782e8d8bef9SDimitry Andric return true; 783e8d8bef9SDimitry Andric 784e8d8bef9SDimitry Andric return false; 785e8d8bef9SDimitry Andric }; 786e8d8bef9SDimitry Andric 787e8d8bef9SDimitry Andric // Important note regarding the order of checks. They are ordered by weight 788e8d8bef9SDimitry Andric // from lowest to highest. Doing that allows to avoid "unstable" results 789e8d8bef9SDimitry Andric // when several conditions heuristics can be applied simultaneously. 790e8d8bef9SDimitry Andric if (isa<UnreachableInst>(BB->getTerminator()) || 791e8d8bef9SDimitry Andric // If this block is terminated by a call to 792e8d8bef9SDimitry Andric // @llvm.experimental.deoptimize then treat it like an unreachable 793e8d8bef9SDimitry Andric // since it is expected to practically never execute. 794e8d8bef9SDimitry Andric // TODO: Should we actually treat as never returning call? 795e8d8bef9SDimitry Andric BB->getTerminatingDeoptimizeCall()) 796e8d8bef9SDimitry Andric return hasNoReturn(BB) 797e8d8bef9SDimitry Andric ? static_cast<uint32_t>(BlockExecWeight::NORETURN) 798e8d8bef9SDimitry Andric : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE); 799e8d8bef9SDimitry Andric 800e8d8bef9SDimitry Andric // Check if the block is 'unwind' handler of some invoke instruction. 801e8d8bef9SDimitry Andric for (const auto *Pred : predecessors(BB)) 802e8d8bef9SDimitry Andric if (Pred) 803e8d8bef9SDimitry Andric if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator())) 804e8d8bef9SDimitry Andric if (II->getUnwindDest() == BB) 805e8d8bef9SDimitry Andric return static_cast<uint32_t>(BlockExecWeight::UNWIND); 806e8d8bef9SDimitry Andric 807e8d8bef9SDimitry Andric // Check if the block contains 'cold' call. 808e8d8bef9SDimitry Andric for (const auto &I : *BB) 809e8d8bef9SDimitry Andric if (const CallInst *CI = dyn_cast<CallInst>(&I)) 810e8d8bef9SDimitry Andric if (CI->hasFnAttr(Attribute::Cold)) 811e8d8bef9SDimitry Andric return static_cast<uint32_t>(BlockExecWeight::COLD); 812e8d8bef9SDimitry Andric 813e8d8bef9SDimitry Andric return None; 814e8d8bef9SDimitry Andric } 815e8d8bef9SDimitry Andric 816e8d8bef9SDimitry Andric // Does RPO traversal over all blocks in \p F and assigns weights to 817e8d8bef9SDimitry Andric // 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its 818e8d8bef9SDimitry Andric // best to propagate the weight to up/down the IR. 819e8d8bef9SDimitry Andric void BranchProbabilityInfo::computeEestimateBlockWeight( 820e8d8bef9SDimitry Andric const Function &F, DominatorTree *DT, PostDominatorTree *PDT) { 821e8d8bef9SDimitry Andric SmallVector<BasicBlock *, 8> BlockWorkList; 822e8d8bef9SDimitry Andric SmallVector<LoopBlock, 8> LoopWorkList; 823e8d8bef9SDimitry Andric 824e8d8bef9SDimitry Andric // By doing RPO we make sure that all predecessors already have weights 825e8d8bef9SDimitry Andric // calculated before visiting theirs successors. 826e8d8bef9SDimitry Andric ReversePostOrderTraversal<const Function *> RPOT(&F); 827e8d8bef9SDimitry Andric for (const auto *BB : RPOT) 828e8d8bef9SDimitry Andric if (auto BBWeight = getInitialEstimatedBlockWeight(BB)) 829e8d8bef9SDimitry Andric // If we were able to find estimated weight for the block set it to this 830e8d8bef9SDimitry Andric // block and propagate up the IR. 831*753f127fSDimitry Andric propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT, BBWeight.value(), 832*753f127fSDimitry Andric BlockWorkList, LoopWorkList); 833e8d8bef9SDimitry Andric 834e8d8bef9SDimitry Andric // BlockWorklist/LoopWorkList contains blocks/loops with at least one 835e8d8bef9SDimitry Andric // successor/exit having estimated weight. Try to propagate weight to such 836e8d8bef9SDimitry Andric // blocks/loops from successors/exits. 837e8d8bef9SDimitry Andric // Process loops and blocks. Order is not important. 838e8d8bef9SDimitry Andric do { 839e8d8bef9SDimitry Andric while (!LoopWorkList.empty()) { 840e8d8bef9SDimitry Andric const LoopBlock LoopBB = LoopWorkList.pop_back_val(); 841e8d8bef9SDimitry Andric 842e8d8bef9SDimitry Andric if (EstimatedLoopWeight.count(LoopBB.getLoopData())) 843e8d8bef9SDimitry Andric continue; 844e8d8bef9SDimitry Andric 845e8d8bef9SDimitry Andric SmallVector<BasicBlock *, 4> Exits; 846e8d8bef9SDimitry Andric getLoopExitBlocks(LoopBB, Exits); 847e8d8bef9SDimitry Andric auto LoopWeight = getMaxEstimatedEdgeWeight( 848e8d8bef9SDimitry Andric LoopBB, make_range(Exits.begin(), Exits.end())); 849e8d8bef9SDimitry Andric 850e8d8bef9SDimitry Andric if (LoopWeight) { 851e8d8bef9SDimitry Andric // If we never exit the loop then we can enter it once at maximum. 852e8d8bef9SDimitry Andric if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE)) 853e8d8bef9SDimitry Andric LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO); 854e8d8bef9SDimitry Andric 85581ad6265SDimitry Andric EstimatedLoopWeight.insert({LoopBB.getLoopData(), *LoopWeight}); 856e8d8bef9SDimitry Andric // Add all blocks entering the loop into working list. 857e8d8bef9SDimitry Andric getLoopEnterBlocks(LoopBB, BlockWorkList); 858e8d8bef9SDimitry Andric } 859e8d8bef9SDimitry Andric } 860e8d8bef9SDimitry Andric 861e8d8bef9SDimitry Andric while (!BlockWorkList.empty()) { 862e8d8bef9SDimitry Andric // We can reach here only if BlockWorkList is not empty. 863e8d8bef9SDimitry Andric const BasicBlock *BB = BlockWorkList.pop_back_val(); 864e8d8bef9SDimitry Andric if (EstimatedBlockWeight.count(BB)) 865e8d8bef9SDimitry Andric continue; 866e8d8bef9SDimitry Andric 867e8d8bef9SDimitry Andric // We take maximum over all weights of successors. In other words we take 868e8d8bef9SDimitry Andric // weight of "hot" path. In theory we can probably find a better function 869e8d8bef9SDimitry Andric // which gives higher accuracy results (comparing to "maximum") but I 870e8d8bef9SDimitry Andric // can't 871e8d8bef9SDimitry Andric // think of any right now. And I doubt it will make any difference in 872e8d8bef9SDimitry Andric // practice. 873e8d8bef9SDimitry Andric const LoopBlock LoopBB = getLoopBlock(BB); 874e8d8bef9SDimitry Andric auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB)); 875e8d8bef9SDimitry Andric 876e8d8bef9SDimitry Andric if (MaxWeight) 87781ad6265SDimitry Andric propagateEstimatedBlockWeight(LoopBB, DT, PDT, *MaxWeight, 878e8d8bef9SDimitry Andric BlockWorkList, LoopWorkList); 879e8d8bef9SDimitry Andric } 880e8d8bef9SDimitry Andric } while (!BlockWorkList.empty() || !LoopWorkList.empty()); 881e8d8bef9SDimitry Andric } 882e8d8bef9SDimitry Andric 883e8d8bef9SDimitry Andric // Calculate edge probabilities based on block's estimated weight. 884e8d8bef9SDimitry Andric // Note that gathered weights were not scaled for loops. Thus edges entering 885e8d8bef9SDimitry Andric // and exiting loops requires special processing. 886e8d8bef9SDimitry Andric bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) { 887e8d8bef9SDimitry Andric assert(BB->getTerminator()->getNumSuccessors() > 1 && 888e8d8bef9SDimitry Andric "expected more than one successor!"); 889e8d8bef9SDimitry Andric 890e8d8bef9SDimitry Andric const LoopBlock LoopBB = getLoopBlock(BB); 891e8d8bef9SDimitry Andric 8920b57cec5SDimitry Andric SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks; 893e8d8bef9SDimitry Andric uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT; 894e8d8bef9SDimitry Andric if (LoopBB.getLoop()) 895e8d8bef9SDimitry Andric computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks); 8960b57cec5SDimitry Andric 897e8d8bef9SDimitry Andric // Changed to 'true' if at least one successor has estimated weight. 898e8d8bef9SDimitry Andric bool FoundEstimatedWeight = false; 899e8d8bef9SDimitry Andric SmallVector<uint32_t, 4> SuccWeights; 900e8d8bef9SDimitry Andric uint64_t TotalWeight = 0; 901e8d8bef9SDimitry Andric // Go over all successors of BB and put their weights into SuccWeights. 902fe6060f1SDimitry Andric for (const BasicBlock *SuccBB : successors(BB)) { 903e8d8bef9SDimitry Andric Optional<uint32_t> Weight; 904e8d8bef9SDimitry Andric const LoopBlock SuccLoopBB = getLoopBlock(SuccBB); 905e8d8bef9SDimitry Andric const LoopEdge Edge{LoopBB, SuccLoopBB}; 906e8d8bef9SDimitry Andric 907e8d8bef9SDimitry Andric Weight = getEstimatedEdgeWeight(Edge); 908e8d8bef9SDimitry Andric 909e8d8bef9SDimitry Andric if (isLoopExitingEdge(Edge) && 910e8d8bef9SDimitry Andric // Avoid adjustment of ZERO weight since it should remain unchanged. 911e8d8bef9SDimitry Andric Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) { 912e8d8bef9SDimitry Andric // Scale down loop exiting weight by trip count. 913e8d8bef9SDimitry Andric Weight = std::max( 914e8d8bef9SDimitry Andric static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO), 91581ad6265SDimitry Andric Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) / 916e8d8bef9SDimitry Andric TC); 9170b57cec5SDimitry Andric } 918e8d8bef9SDimitry Andric bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB); 919e8d8bef9SDimitry Andric if (IsUnlikelyEdge && 920e8d8bef9SDimitry Andric // Avoid adjustment of ZERO weight since it should remain unchanged. 921e8d8bef9SDimitry Andric Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) { 922e8d8bef9SDimitry Andric // 'Unlikely' blocks have twice lower weight. 923e8d8bef9SDimitry Andric Weight = std::max( 924e8d8bef9SDimitry Andric static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO), 92581ad6265SDimitry Andric Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) / 2); 9260b57cec5SDimitry Andric } 9270b57cec5SDimitry Andric 928e8d8bef9SDimitry Andric if (Weight) 929e8d8bef9SDimitry Andric FoundEstimatedWeight = true; 930e8d8bef9SDimitry Andric 931e8d8bef9SDimitry Andric auto WeightVal = 93281ad6265SDimitry Andric Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)); 933e8d8bef9SDimitry Andric TotalWeight += WeightVal; 934e8d8bef9SDimitry Andric SuccWeights.push_back(WeightVal); 935e8d8bef9SDimitry Andric } 936e8d8bef9SDimitry Andric 937e8d8bef9SDimitry Andric // If non of blocks have estimated weight bail out. 938e8d8bef9SDimitry Andric // If TotalWeight is 0 that means weight of each successor is 0 as well and 939e8d8bef9SDimitry Andric // equally likely. Bail out early to not deal with devision by zero. 940e8d8bef9SDimitry Andric if (!FoundEstimatedWeight || TotalWeight == 0) 9410b57cec5SDimitry Andric return false; 9420b57cec5SDimitry Andric 943e8d8bef9SDimitry Andric assert(SuccWeights.size() == succ_size(BB) && "Missed successor?"); 944e8d8bef9SDimitry Andric const unsigned SuccCount = SuccWeights.size(); 9450b57cec5SDimitry Andric 946e8d8bef9SDimitry Andric // If the sum of weights does not fit in 32 bits, scale every weight down 947e8d8bef9SDimitry Andric // accordingly. 948e8d8bef9SDimitry Andric if (TotalWeight > UINT32_MAX) { 949e8d8bef9SDimitry Andric uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1; 950e8d8bef9SDimitry Andric TotalWeight = 0; 951e8d8bef9SDimitry Andric for (unsigned Idx = 0; Idx < SuccCount; ++Idx) { 952e8d8bef9SDimitry Andric SuccWeights[Idx] /= ScalingFactor; 953e8d8bef9SDimitry Andric if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO)) 954e8d8bef9SDimitry Andric SuccWeights[Idx] = 955e8d8bef9SDimitry Andric static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO); 956e8d8bef9SDimitry Andric TotalWeight += SuccWeights[Idx]; 957e8d8bef9SDimitry Andric } 958e8d8bef9SDimitry Andric assert(TotalWeight <= UINT32_MAX && "Total weight overflows"); 959e8d8bef9SDimitry Andric } 960e8d8bef9SDimitry Andric 961e8d8bef9SDimitry Andric // Finally set probabilities to edges according to estimated block weights. 9625ffd83dbSDimitry Andric SmallVector<BranchProbability, 4> EdgeProbabilities( 963e8d8bef9SDimitry Andric SuccCount, BranchProbability::getUnknown()); 9640b57cec5SDimitry Andric 965e8d8bef9SDimitry Andric for (unsigned Idx = 0; Idx < SuccCount; ++Idx) { 966e8d8bef9SDimitry Andric EdgeProbabilities[Idx] = 967e8d8bef9SDimitry Andric BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight); 9680b57cec5SDimitry Andric } 9695ffd83dbSDimitry Andric setEdgeProbability(BB, EdgeProbabilities); 9700b57cec5SDimitry Andric return true; 9710b57cec5SDimitry Andric } 9720b57cec5SDimitry Andric 9730b57cec5SDimitry Andric bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB, 9740b57cec5SDimitry Andric const TargetLibraryInfo *TLI) { 9750b57cec5SDimitry Andric const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 9760b57cec5SDimitry Andric if (!BI || !BI->isConditional()) 9770b57cec5SDimitry Andric return false; 9780b57cec5SDimitry Andric 9790b57cec5SDimitry Andric Value *Cond = BI->getCondition(); 9800b57cec5SDimitry Andric ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 9810b57cec5SDimitry Andric if (!CI) 9820b57cec5SDimitry Andric return false; 9830b57cec5SDimitry Andric 9840b57cec5SDimitry Andric auto GetConstantInt = [](Value *V) { 9850b57cec5SDimitry Andric if (auto *I = dyn_cast<BitCastInst>(V)) 9860b57cec5SDimitry Andric return dyn_cast<ConstantInt>(I->getOperand(0)); 9870b57cec5SDimitry Andric return dyn_cast<ConstantInt>(V); 9880b57cec5SDimitry Andric }; 9890b57cec5SDimitry Andric 9900b57cec5SDimitry Andric Value *RHS = CI->getOperand(1); 9910b57cec5SDimitry Andric ConstantInt *CV = GetConstantInt(RHS); 9920b57cec5SDimitry Andric if (!CV) 9930b57cec5SDimitry Andric return false; 9940b57cec5SDimitry Andric 9950b57cec5SDimitry Andric // If the LHS is the result of AND'ing a value with a single bit bitmask, 9960b57cec5SDimitry Andric // we don't have information about probabilities. 9970b57cec5SDimitry Andric if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0))) 9980b57cec5SDimitry Andric if (LHS->getOpcode() == Instruction::And) 999e8d8bef9SDimitry Andric if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1))) 10000b57cec5SDimitry Andric if (AndRHS->getValue().isPowerOf2()) 10010b57cec5SDimitry Andric return false; 10020b57cec5SDimitry Andric 10030b57cec5SDimitry Andric // Check if the LHS is the return value of a library function 10040b57cec5SDimitry Andric LibFunc Func = NumLibFuncs; 10050b57cec5SDimitry Andric if (TLI) 10060b57cec5SDimitry Andric if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0))) 10070b57cec5SDimitry Andric if (Function *CalledFn = Call->getCalledFunction()) 10080b57cec5SDimitry Andric TLI->getLibFunc(*CalledFn, Func); 10090b57cec5SDimitry Andric 10104824e7fdSDimitry Andric ProbabilityTable::const_iterator Search; 10110b57cec5SDimitry Andric if (Func == LibFunc_strcasecmp || 10120b57cec5SDimitry Andric Func == LibFunc_strcmp || 10130b57cec5SDimitry Andric Func == LibFunc_strncasecmp || 10140b57cec5SDimitry Andric Func == LibFunc_strncmp || 1015e8d8bef9SDimitry Andric Func == LibFunc_memcmp || 1016e8d8bef9SDimitry Andric Func == LibFunc_bcmp) { 10174824e7fdSDimitry Andric Search = ICmpWithLibCallTable.find(CI->getPredicate()); 10184824e7fdSDimitry Andric if (Search == ICmpWithLibCallTable.end()) 10190b57cec5SDimitry Andric return false; 10200b57cec5SDimitry Andric } else if (CV->isZero()) { 10214824e7fdSDimitry Andric Search = ICmpWithZeroTable.find(CI->getPredicate()); 10224824e7fdSDimitry Andric if (Search == ICmpWithZeroTable.end()) 10230b57cec5SDimitry Andric return false; 10244824e7fdSDimitry Andric } else if (CV->isOne()) { 10254824e7fdSDimitry Andric Search = ICmpWithOneTable.find(CI->getPredicate()); 10264824e7fdSDimitry Andric if (Search == ICmpWithOneTable.end()) 10274824e7fdSDimitry Andric return false; 10280b57cec5SDimitry Andric } else if (CV->isMinusOne()) { 10294824e7fdSDimitry Andric Search = ICmpWithMinusOneTable.find(CI->getPredicate()); 10304824e7fdSDimitry Andric if (Search == ICmpWithMinusOneTable.end()) 10310b57cec5SDimitry Andric return false; 10320b57cec5SDimitry Andric } else { 10330b57cec5SDimitry Andric return false; 10340b57cec5SDimitry Andric } 10350b57cec5SDimitry Andric 10364824e7fdSDimitry Andric setEdgeProbability(BB, Search->second); 10370b57cec5SDimitry Andric return true; 10380b57cec5SDimitry Andric } 10390b57cec5SDimitry Andric 10400b57cec5SDimitry Andric bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) { 10410b57cec5SDimitry Andric const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 10420b57cec5SDimitry Andric if (!BI || !BI->isConditional()) 10430b57cec5SDimitry Andric return false; 10440b57cec5SDimitry Andric 10450b57cec5SDimitry Andric Value *Cond = BI->getCondition(); 10460b57cec5SDimitry Andric FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond); 10470b57cec5SDimitry Andric if (!FCmp) 10480b57cec5SDimitry Andric return false; 10490b57cec5SDimitry Andric 10504824e7fdSDimitry Andric ProbabilityList ProbList; 10510b57cec5SDimitry Andric if (FCmp->isEquality()) { 10524824e7fdSDimitry Andric ProbList = !FCmp->isTrueWhenEqual() ? 10530b57cec5SDimitry Andric // f1 == f2 -> Unlikely 10544824e7fdSDimitry Andric ProbabilityList({FPTakenProb, FPUntakenProb}) : 10550b57cec5SDimitry Andric // f1 != f2 -> Likely 10564824e7fdSDimitry Andric ProbabilityList({FPUntakenProb, FPTakenProb}); 10570b57cec5SDimitry Andric } else { 10584824e7fdSDimitry Andric auto Search = FCmpTable.find(FCmp->getPredicate()); 10594824e7fdSDimitry Andric if (Search == FCmpTable.end()) 10600b57cec5SDimitry Andric return false; 10614824e7fdSDimitry Andric ProbList = Search->second; 10620b57cec5SDimitry Andric } 10630b57cec5SDimitry Andric 10644824e7fdSDimitry Andric setEdgeProbability(BB, ProbList); 10650b57cec5SDimitry Andric return true; 10660b57cec5SDimitry Andric } 10670b57cec5SDimitry Andric 10680b57cec5SDimitry Andric void BranchProbabilityInfo::releaseMemory() { 10690b57cec5SDimitry Andric Probs.clear(); 10705ffd83dbSDimitry Andric Handles.clear(); 10715ffd83dbSDimitry Andric } 10725ffd83dbSDimitry Andric 10735ffd83dbSDimitry Andric bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA, 10745ffd83dbSDimitry Andric FunctionAnalysisManager::Invalidator &) { 10755ffd83dbSDimitry Andric // Check whether the analysis, all analyses on functions, or the function's 10765ffd83dbSDimitry Andric // CFG have been preserved. 10775ffd83dbSDimitry Andric auto PAC = PA.getChecker<BranchProbabilityAnalysis>(); 10785ffd83dbSDimitry Andric return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 10795ffd83dbSDimitry Andric PAC.preservedSet<CFGAnalyses>()); 10800b57cec5SDimitry Andric } 10810b57cec5SDimitry Andric 10820b57cec5SDimitry Andric void BranchProbabilityInfo::print(raw_ostream &OS) const { 10830b57cec5SDimitry Andric OS << "---- Branch Probabilities ----\n"; 10840b57cec5SDimitry Andric // We print the probabilities from the last function the analysis ran over, 10850b57cec5SDimitry Andric // or the function it is currently running over. 10860b57cec5SDimitry Andric assert(LastF && "Cannot print prior to running over a function"); 10870b57cec5SDimitry Andric for (const auto &BI : *LastF) { 1088fe6060f1SDimitry Andric for (const BasicBlock *Succ : successors(&BI)) 1089fe6060f1SDimitry Andric printEdgeProbability(OS << " ", &BI, Succ); 10900b57cec5SDimitry Andric } 10910b57cec5SDimitry Andric } 10920b57cec5SDimitry Andric 10930b57cec5SDimitry Andric bool BranchProbabilityInfo:: 10940b57cec5SDimitry Andric isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const { 10950b57cec5SDimitry Andric // Hot probability is at least 4/5 = 80% 10960b57cec5SDimitry Andric // FIXME: Compare against a static "hot" BranchProbability. 10970b57cec5SDimitry Andric return getEdgeProbability(Src, Dst) > BranchProbability(4, 5); 10980b57cec5SDimitry Andric } 10990b57cec5SDimitry Andric 11000b57cec5SDimitry Andric /// Get the raw edge probability for the edge. If can't find it, return a 11010b57cec5SDimitry Andric /// default probability 1/N where N is the number of successors. Here an edge is 11020b57cec5SDimitry Andric /// specified using PredBlock and an 11030b57cec5SDimitry Andric /// index to the successors. 11040b57cec5SDimitry Andric BranchProbability 11050b57cec5SDimitry Andric BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 11060b57cec5SDimitry Andric unsigned IndexInSuccessors) const { 11070b57cec5SDimitry Andric auto I = Probs.find(std::make_pair(Src, IndexInSuccessors)); 1108e8d8bef9SDimitry Andric assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) == 1109e8d8bef9SDimitry Andric (Probs.end() == I) && 1110e8d8bef9SDimitry Andric "Probability for I-th successor must always be defined along with the " 1111e8d8bef9SDimitry Andric "probability for the first successor"); 11120b57cec5SDimitry Andric 11130b57cec5SDimitry Andric if (I != Probs.end()) 11140b57cec5SDimitry Andric return I->second; 11150b57cec5SDimitry Andric 11160b57cec5SDimitry Andric return {1, static_cast<uint32_t>(succ_size(Src))}; 11170b57cec5SDimitry Andric } 11180b57cec5SDimitry Andric 11190b57cec5SDimitry Andric BranchProbability 11200b57cec5SDimitry Andric BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 11215ffd83dbSDimitry Andric const_succ_iterator Dst) const { 11220b57cec5SDimitry Andric return getEdgeProbability(Src, Dst.getSuccessorIndex()); 11230b57cec5SDimitry Andric } 11240b57cec5SDimitry Andric 11250b57cec5SDimitry Andric /// Get the raw edge probability calculated for the block pair. This returns the 11260b57cec5SDimitry Andric /// sum of all raw edge probabilities from Src to Dst. 11270b57cec5SDimitry Andric BranchProbability 11280b57cec5SDimitry Andric BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 11290b57cec5SDimitry Andric const BasicBlock *Dst) const { 1130e8d8bef9SDimitry Andric if (!Probs.count(std::make_pair(Src, 0))) 1131e8d8bef9SDimitry Andric return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src)); 11320b57cec5SDimitry Andric 1133e8d8bef9SDimitry Andric auto Prob = BranchProbability::getZero(); 1134e8d8bef9SDimitry Andric for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I) 1135e8d8bef9SDimitry Andric if (*I == Dst) 1136e8d8bef9SDimitry Andric Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second; 1137e8d8bef9SDimitry Andric 1138e8d8bef9SDimitry Andric return Prob; 11390b57cec5SDimitry Andric } 11400b57cec5SDimitry Andric 11415ffd83dbSDimitry Andric /// Set the edge probability for all edges at once. 11425ffd83dbSDimitry Andric void BranchProbabilityInfo::setEdgeProbability( 11435ffd83dbSDimitry Andric const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) { 11445ffd83dbSDimitry Andric assert(Src->getTerminator()->getNumSuccessors() == Probs.size()); 1145e8d8bef9SDimitry Andric eraseBlock(Src); // Erase stale data if any. 11465ffd83dbSDimitry Andric if (Probs.size() == 0) 11475ffd83dbSDimitry Andric return; // Nothing to set. 11485ffd83dbSDimitry Andric 1149e8d8bef9SDimitry Andric Handles.insert(BasicBlockCallbackVH(Src, this)); 11505ffd83dbSDimitry Andric uint64_t TotalNumerator = 0; 11515ffd83dbSDimitry Andric for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) { 1152e8d8bef9SDimitry Andric this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx]; 1153e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx 1154e8d8bef9SDimitry Andric << " successor probability to " << Probs[SuccIdx] 1155e8d8bef9SDimitry Andric << "\n"); 11565ffd83dbSDimitry Andric TotalNumerator += Probs[SuccIdx].getNumerator(); 11575ffd83dbSDimitry Andric } 11585ffd83dbSDimitry Andric 11595ffd83dbSDimitry Andric // Because of rounding errors the total probability cannot be checked to be 11605ffd83dbSDimitry Andric // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator. 11615ffd83dbSDimitry Andric // Instead, every single probability in Probs must be as accurate as possible. 11625ffd83dbSDimitry Andric // This results in error 1/denominator at most, thus the total absolute error 11635ffd83dbSDimitry Andric // should be within Probs.size / BranchProbability::getDenominator. 11645ffd83dbSDimitry Andric assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size()); 11655ffd83dbSDimitry Andric assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size()); 1166fe6060f1SDimitry Andric (void)TotalNumerator; 11675ffd83dbSDimitry Andric } 11685ffd83dbSDimitry Andric 1169e8d8bef9SDimitry Andric void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src, 1170e8d8bef9SDimitry Andric BasicBlock *Dst) { 1171e8d8bef9SDimitry Andric eraseBlock(Dst); // Erase stale data if any. 1172e8d8bef9SDimitry Andric unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors(); 1173e8d8bef9SDimitry Andric assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors()); 1174e8d8bef9SDimitry Andric if (NumSuccessors == 0) 1175e8d8bef9SDimitry Andric return; // Nothing to set. 1176e8d8bef9SDimitry Andric if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end()) 1177e8d8bef9SDimitry Andric return; // No probability is set for edges from Src. Keep the same for Dst. 1178e8d8bef9SDimitry Andric 1179e8d8bef9SDimitry Andric Handles.insert(BasicBlockCallbackVH(Dst, this)); 1180e8d8bef9SDimitry Andric for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) { 1181e8d8bef9SDimitry Andric auto Prob = this->Probs[std::make_pair(Src, SuccIdx)]; 1182e8d8bef9SDimitry Andric this->Probs[std::make_pair(Dst, SuccIdx)] = Prob; 1183e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx 1184e8d8bef9SDimitry Andric << " successor probability to " << Prob << "\n"); 1185e8d8bef9SDimitry Andric } 1186e8d8bef9SDimitry Andric } 1187e8d8bef9SDimitry Andric 11880b57cec5SDimitry Andric raw_ostream & 11890b57cec5SDimitry Andric BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, 11900b57cec5SDimitry Andric const BasicBlock *Src, 11910b57cec5SDimitry Andric const BasicBlock *Dst) const { 11920b57cec5SDimitry Andric const BranchProbability Prob = getEdgeProbability(Src, Dst); 11930b57cec5SDimitry Andric OS << "edge " << Src->getName() << " -> " << Dst->getName() 11940b57cec5SDimitry Andric << " probability is " << Prob 11950b57cec5SDimitry Andric << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n"); 11960b57cec5SDimitry Andric 11970b57cec5SDimitry Andric return OS; 11980b57cec5SDimitry Andric } 11990b57cec5SDimitry Andric 12000b57cec5SDimitry Andric void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) { 1201e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n"); 1202e8d8bef9SDimitry Andric 1203e8d8bef9SDimitry Andric // Note that we cannot use successors of BB because the terminator of BB may 1204e8d8bef9SDimitry Andric // have changed when eraseBlock is called as a BasicBlockCallbackVH callback. 1205e8d8bef9SDimitry Andric // Instead we remove prob data for the block by iterating successors by their 1206e8d8bef9SDimitry Andric // indices from 0 till the last which exists. There could not be prob data for 1207e8d8bef9SDimitry Andric // a pair (BB, N) if there is no data for (BB, N-1) because the data is always 1208e8d8bef9SDimitry Andric // set for all successors from 0 to M at once by the method 1209e8d8bef9SDimitry Andric // setEdgeProbability(). 1210e8d8bef9SDimitry Andric Handles.erase(BasicBlockCallbackVH(BB, this)); 1211e8d8bef9SDimitry Andric for (unsigned I = 0;; ++I) { 1212e8d8bef9SDimitry Andric auto MapI = Probs.find(std::make_pair(BB, I)); 1213e8d8bef9SDimitry Andric if (MapI == Probs.end()) { 1214e8d8bef9SDimitry Andric assert(Probs.count(std::make_pair(BB, I + 1)) == 0 && 1215e8d8bef9SDimitry Andric "Must be no more successors"); 1216e8d8bef9SDimitry Andric return; 1217e8d8bef9SDimitry Andric } 12185ffd83dbSDimitry Andric Probs.erase(MapI); 12190b57cec5SDimitry Andric } 12200b57cec5SDimitry Andric } 12210b57cec5SDimitry Andric 1222e8d8bef9SDimitry Andric void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI, 12235ffd83dbSDimitry Andric const TargetLibraryInfo *TLI, 1224e8d8bef9SDimitry Andric DominatorTree *DT, 12255ffd83dbSDimitry Andric PostDominatorTree *PDT) { 12260b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName() 12270b57cec5SDimitry Andric << " ----\n\n"); 12280b57cec5SDimitry Andric LastF = &F; // Store the last function we ran on for printing. 1229e8d8bef9SDimitry Andric LI = &LoopI; 12300b57cec5SDimitry Andric 1231e8d8bef9SDimitry Andric SccI = std::make_unique<SccInfo>(F); 12320b57cec5SDimitry Andric 1233e8d8bef9SDimitry Andric assert(EstimatedBlockWeight.empty()); 1234e8d8bef9SDimitry Andric assert(EstimatedLoopWeight.empty()); 12350b57cec5SDimitry Andric 1236e8d8bef9SDimitry Andric std::unique_ptr<DominatorTree> DTPtr; 12375ffd83dbSDimitry Andric std::unique_ptr<PostDominatorTree> PDTPtr; 12385ffd83dbSDimitry Andric 1239e8d8bef9SDimitry Andric if (!DT) { 1240e8d8bef9SDimitry Andric DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F)); 1241e8d8bef9SDimitry Andric DT = DTPtr.get(); 1242e8d8bef9SDimitry Andric } 1243e8d8bef9SDimitry Andric 12445ffd83dbSDimitry Andric if (!PDT) { 12455ffd83dbSDimitry Andric PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F)); 12465ffd83dbSDimitry Andric PDT = PDTPtr.get(); 12475ffd83dbSDimitry Andric } 12485ffd83dbSDimitry Andric 1249e8d8bef9SDimitry Andric computeEestimateBlockWeight(F, DT, PDT); 1250480093f4SDimitry Andric 12510b57cec5SDimitry Andric // Walk the basic blocks in post-order so that we can build up state about 12520b57cec5SDimitry Andric // the successors of a block iteratively. 12530b57cec5SDimitry Andric for (auto BB : post_order(&F.getEntryBlock())) { 12540b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName() 12550b57cec5SDimitry Andric << "\n"); 12560b57cec5SDimitry Andric // If there is no at least two successors, no sense to set probability. 12570b57cec5SDimitry Andric if (BB->getTerminator()->getNumSuccessors() < 2) 12580b57cec5SDimitry Andric continue; 12590b57cec5SDimitry Andric if (calcMetadataWeights(BB)) 12600b57cec5SDimitry Andric continue; 1261e8d8bef9SDimitry Andric if (calcEstimatedHeuristics(BB)) 12620b57cec5SDimitry Andric continue; 12630b57cec5SDimitry Andric if (calcPointerHeuristics(BB)) 12640b57cec5SDimitry Andric continue; 12650b57cec5SDimitry Andric if (calcZeroHeuristics(BB, TLI)) 12660b57cec5SDimitry Andric continue; 12670b57cec5SDimitry Andric if (calcFloatingPointHeuristics(BB)) 12680b57cec5SDimitry Andric continue; 12690b57cec5SDimitry Andric } 12700b57cec5SDimitry Andric 1271e8d8bef9SDimitry Andric EstimatedLoopWeight.clear(); 1272e8d8bef9SDimitry Andric EstimatedBlockWeight.clear(); 1273e8d8bef9SDimitry Andric SccI.reset(); 12740b57cec5SDimitry Andric 12750b57cec5SDimitry Andric if (PrintBranchProb && 12760b57cec5SDimitry Andric (PrintBranchProbFuncName.empty() || 12770b57cec5SDimitry Andric F.getName().equals(PrintBranchProbFuncName))) { 12780b57cec5SDimitry Andric print(dbgs()); 12790b57cec5SDimitry Andric } 12800b57cec5SDimitry Andric } 12810b57cec5SDimitry Andric 12820b57cec5SDimitry Andric void BranchProbabilityInfoWrapperPass::getAnalysisUsage( 12830b57cec5SDimitry Andric AnalysisUsage &AU) const { 12840b57cec5SDimitry Andric // We require DT so it's available when LI is available. The LI updating code 12850b57cec5SDimitry Andric // asserts that DT is also present so if we don't make sure that we have DT 12860b57cec5SDimitry Andric // here, that assert will trigger. 12870b57cec5SDimitry Andric AU.addRequired<DominatorTreeWrapperPass>(); 12880b57cec5SDimitry Andric AU.addRequired<LoopInfoWrapperPass>(); 12890b57cec5SDimitry Andric AU.addRequired<TargetLibraryInfoWrapperPass>(); 1290e8d8bef9SDimitry Andric AU.addRequired<DominatorTreeWrapperPass>(); 12915ffd83dbSDimitry Andric AU.addRequired<PostDominatorTreeWrapperPass>(); 12920b57cec5SDimitry Andric AU.setPreservesAll(); 12930b57cec5SDimitry Andric } 12940b57cec5SDimitry Andric 12950b57cec5SDimitry Andric bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) { 12960b57cec5SDimitry Andric const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 12978bcb0991SDimitry Andric const TargetLibraryInfo &TLI = 12988bcb0991SDimitry Andric getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1299e8d8bef9SDimitry Andric DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 13005ffd83dbSDimitry Andric PostDominatorTree &PDT = 13015ffd83dbSDimitry Andric getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1302e8d8bef9SDimitry Andric BPI.calculate(F, LI, &TLI, &DT, &PDT); 13030b57cec5SDimitry Andric return false; 13040b57cec5SDimitry Andric } 13050b57cec5SDimitry Andric 13060b57cec5SDimitry Andric void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); } 13070b57cec5SDimitry Andric 13080b57cec5SDimitry Andric void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS, 13090b57cec5SDimitry Andric const Module *) const { 13100b57cec5SDimitry Andric BPI.print(OS); 13110b57cec5SDimitry Andric } 13120b57cec5SDimitry Andric 13130b57cec5SDimitry Andric AnalysisKey BranchProbabilityAnalysis::Key; 13140b57cec5SDimitry Andric BranchProbabilityInfo 13150b57cec5SDimitry Andric BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 13160b57cec5SDimitry Andric BranchProbabilityInfo BPI; 13175ffd83dbSDimitry Andric BPI.calculate(F, AM.getResult<LoopAnalysis>(F), 13185ffd83dbSDimitry Andric &AM.getResult<TargetLibraryAnalysis>(F), 1319e8d8bef9SDimitry Andric &AM.getResult<DominatorTreeAnalysis>(F), 13205ffd83dbSDimitry Andric &AM.getResult<PostDominatorTreeAnalysis>(F)); 13210b57cec5SDimitry Andric return BPI; 13220b57cec5SDimitry Andric } 13230b57cec5SDimitry Andric 13240b57cec5SDimitry Andric PreservedAnalyses 13250b57cec5SDimitry Andric BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13260b57cec5SDimitry Andric OS << "Printing analysis results of BPI for function " 13270b57cec5SDimitry Andric << "'" << F.getName() << "':" 13280b57cec5SDimitry Andric << "\n"; 13290b57cec5SDimitry Andric AM.getResult<BranchProbabilityAnalysis>(F).print(OS); 13300b57cec5SDimitry Andric return PreservedAnalyses::all(); 13310b57cec5SDimitry Andric } 1332