10b57cec5SDimitry Andric //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // Loops should be simplified before this analysis. 100b57cec5SDimitry Andric // 110b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 120b57cec5SDimitry Andric 130b57cec5SDimitry Andric #include "llvm/Analysis/BranchProbabilityInfo.h" 140b57cec5SDimitry Andric #include "llvm/ADT/PostOrderIterator.h" 150b57cec5SDimitry Andric #include "llvm/ADT/SCCIterator.h" 160b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h" 170b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 180b57cec5SDimitry Andric #include "llvm/Analysis/LoopInfo.h" 19480093f4SDimitry Andric #include "llvm/Analysis/PostDominators.h" 200b57cec5SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h" 210b57cec5SDimitry Andric #include "llvm/IR/Attributes.h" 220b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h" 230b57cec5SDimitry Andric #include "llvm/IR/CFG.h" 240b57cec5SDimitry Andric #include "llvm/IR/Constants.h" 250b57cec5SDimitry Andric #include "llvm/IR/Dominators.h" 260b57cec5SDimitry Andric #include "llvm/IR/Function.h" 270b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h" 280b57cec5SDimitry Andric #include "llvm/IR/Instruction.h" 290b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 300b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h" 310b57cec5SDimitry Andric #include "llvm/IR/Metadata.h" 320b57cec5SDimitry Andric #include "llvm/IR/PassManager.h" 330b57cec5SDimitry Andric #include "llvm/IR/Type.h" 340b57cec5SDimitry Andric #include "llvm/IR/Value.h" 35480093f4SDimitry Andric #include "llvm/InitializePasses.h" 360b57cec5SDimitry Andric #include "llvm/Pass.h" 370b57cec5SDimitry Andric #include "llvm/Support/BranchProbability.h" 380b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 39480093f4SDimitry Andric #include "llvm/Support/CommandLine.h" 400b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 410b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h" 420b57cec5SDimitry Andric #include <cassert> 430b57cec5SDimitry Andric #include <cstdint> 440b57cec5SDimitry Andric #include <iterator> 450b57cec5SDimitry Andric #include <utility> 460b57cec5SDimitry Andric 470b57cec5SDimitry Andric using namespace llvm; 480b57cec5SDimitry Andric 490b57cec5SDimitry Andric #define DEBUG_TYPE "branch-prob" 500b57cec5SDimitry Andric 510b57cec5SDimitry Andric static cl::opt<bool> PrintBranchProb( 520b57cec5SDimitry Andric "print-bpi", cl::init(false), cl::Hidden, 530b57cec5SDimitry Andric cl::desc("Print the branch probability info.")); 540b57cec5SDimitry Andric 550b57cec5SDimitry Andric cl::opt<std::string> PrintBranchProbFuncName( 560b57cec5SDimitry Andric "print-bpi-func-name", cl::Hidden, 570b57cec5SDimitry Andric cl::desc("The option to specify the name of the function " 580b57cec5SDimitry Andric "whose branch probability info is printed.")); 590b57cec5SDimitry Andric 600b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob", 610b57cec5SDimitry Andric "Branch Probability Analysis", false, true) 620b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 630b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 64e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 655ffd83dbSDimitry Andric INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 660b57cec5SDimitry Andric INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob", 670b57cec5SDimitry Andric "Branch Probability Analysis", false, true) 680b57cec5SDimitry Andric 69480093f4SDimitry Andric BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass() 70480093f4SDimitry Andric : FunctionPass(ID) { 71480093f4SDimitry Andric initializeBranchProbabilityInfoWrapperPassPass( 72480093f4SDimitry Andric *PassRegistry::getPassRegistry()); 73480093f4SDimitry Andric } 74480093f4SDimitry Andric 750b57cec5SDimitry Andric char BranchProbabilityInfoWrapperPass::ID = 0; 760b57cec5SDimitry Andric 770b57cec5SDimitry Andric // Weights are for internal use only. They are used by heuristics to help to 780b57cec5SDimitry Andric // estimate edges' probability. Example: 790b57cec5SDimitry Andric // 800b57cec5SDimitry Andric // Using "Loop Branch Heuristics" we predict weights of edges for the 810b57cec5SDimitry Andric // block BB2. 820b57cec5SDimitry Andric // ... 830b57cec5SDimitry Andric // | 840b57cec5SDimitry Andric // V 850b57cec5SDimitry Andric // BB1<-+ 860b57cec5SDimitry Andric // | | 870b57cec5SDimitry Andric // | | (Weight = 124) 880b57cec5SDimitry Andric // V | 890b57cec5SDimitry Andric // BB2--+ 900b57cec5SDimitry Andric // | 910b57cec5SDimitry Andric // | (Weight = 4) 920b57cec5SDimitry Andric // V 930b57cec5SDimitry Andric // BB3 940b57cec5SDimitry Andric // 950b57cec5SDimitry Andric // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875 960b57cec5SDimitry Andric // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125 970b57cec5SDimitry Andric static const uint32_t LBH_TAKEN_WEIGHT = 124; 980b57cec5SDimitry Andric static const uint32_t LBH_NONTAKEN_WEIGHT = 4; 990b57cec5SDimitry Andric 1000b57cec5SDimitry Andric /// Unreachable-terminating branch taken probability. 1010b57cec5SDimitry Andric /// 1020b57cec5SDimitry Andric /// This is the probability for a branch being taken to a block that terminates 1030b57cec5SDimitry Andric /// (eventually) in unreachable. These are predicted as unlikely as possible. 1045ffd83dbSDimitry Andric /// All reachable probability will proportionally share the remaining part. 1050b57cec5SDimitry Andric static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1); 1060b57cec5SDimitry Andric 107*4824e7fdSDimitry Andric /// Heuristics and lookup tables for non-loop branches: 108*4824e7fdSDimitry Andric /// Pointer Heuristics (PH) 1090b57cec5SDimitry Andric static const uint32_t PH_TAKEN_WEIGHT = 20; 1100b57cec5SDimitry Andric static const uint32_t PH_NONTAKEN_WEIGHT = 12; 111*4824e7fdSDimitry Andric static const BranchProbability 112*4824e7fdSDimitry Andric PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT); 113*4824e7fdSDimitry Andric static const BranchProbability 114*4824e7fdSDimitry Andric PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT); 1150b57cec5SDimitry Andric 116*4824e7fdSDimitry Andric using ProbabilityList = SmallVector<BranchProbability>; 117*4824e7fdSDimitry Andric using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>; 118*4824e7fdSDimitry Andric 119*4824e7fdSDimitry Andric /// Pointer comparisons: 120*4824e7fdSDimitry Andric static const ProbabilityTable PointerTable{ 121*4824e7fdSDimitry Andric {ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely 122*4824e7fdSDimitry Andric {ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely 123*4824e7fdSDimitry Andric }; 124*4824e7fdSDimitry Andric 125*4824e7fdSDimitry Andric /// Zero Heuristics (ZH) 1260b57cec5SDimitry Andric static const uint32_t ZH_TAKEN_WEIGHT = 20; 1270b57cec5SDimitry Andric static const uint32_t ZH_NONTAKEN_WEIGHT = 12; 128*4824e7fdSDimitry Andric static const BranchProbability 129*4824e7fdSDimitry Andric ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT); 130*4824e7fdSDimitry Andric static const BranchProbability 131*4824e7fdSDimitry Andric ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT); 1320b57cec5SDimitry Andric 133*4824e7fdSDimitry Andric /// Integer compares with 0: 134*4824e7fdSDimitry Andric static const ProbabilityTable ICmpWithZeroTable{ 135*4824e7fdSDimitry Andric {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == 0 -> Unlikely 136*4824e7fdSDimitry Andric {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != 0 -> Likely 137*4824e7fdSDimitry Andric {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0 -> Unlikely 138*4824e7fdSDimitry Andric {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0 -> Likely 139*4824e7fdSDimitry Andric }; 140*4824e7fdSDimitry Andric 141*4824e7fdSDimitry Andric /// Integer compares with -1: 142*4824e7fdSDimitry Andric static const ProbabilityTable ICmpWithMinusOneTable{ 143*4824e7fdSDimitry Andric {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == -1 -> Unlikely 144*4824e7fdSDimitry Andric {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != -1 -> Likely 145*4824e7fdSDimitry Andric // InstCombine canonicalizes X >= 0 into X > -1 146*4824e7fdSDimitry Andric {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0 -> Likely 147*4824e7fdSDimitry Andric }; 148*4824e7fdSDimitry Andric 149*4824e7fdSDimitry Andric /// Integer compares with 1: 150*4824e7fdSDimitry Andric static const ProbabilityTable ICmpWithOneTable{ 151*4824e7fdSDimitry Andric // InstCombine canonicalizes X <= 0 into X < 1 152*4824e7fdSDimitry Andric {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely 153*4824e7fdSDimitry Andric }; 154*4824e7fdSDimitry Andric 155*4824e7fdSDimitry Andric /// strcmp and similar functions return zero, negative, or positive, if the 156*4824e7fdSDimitry Andric /// first string is equal, less, or greater than the second. We consider it 157*4824e7fdSDimitry Andric /// likely that the strings are not equal, so a comparison with zero is 158*4824e7fdSDimitry Andric /// probably false, but also a comparison with any other number is also 159*4824e7fdSDimitry Andric /// probably false given that what exactly is returned for nonzero values is 160*4824e7fdSDimitry Andric /// not specified. Any kind of comparison other than equality we know 161*4824e7fdSDimitry Andric /// nothing about. 162*4824e7fdSDimitry Andric static const ProbabilityTable ICmpWithLibCallTable{ 163*4824e7fdSDimitry Andric {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, 164*4824e7fdSDimitry Andric {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, 165*4824e7fdSDimitry Andric }; 166*4824e7fdSDimitry Andric 167*4824e7fdSDimitry Andric // Floating-Point Heuristics (FPH) 1680b57cec5SDimitry Andric static const uint32_t FPH_TAKEN_WEIGHT = 20; 1690b57cec5SDimitry Andric static const uint32_t FPH_NONTAKEN_WEIGHT = 12; 1700b57cec5SDimitry Andric 1718bcb0991SDimitry Andric /// This is the probability for an ordered floating point comparison. 1728bcb0991SDimitry Andric static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1; 1738bcb0991SDimitry Andric /// This is the probability for an unordered floating point comparison, it means 1748bcb0991SDimitry Andric /// one or two of the operands are NaN. Usually it is used to test for an 1758bcb0991SDimitry Andric /// exceptional case, so the result is unlikely. 1768bcb0991SDimitry Andric static const uint32_t FPH_UNO_WEIGHT = 1; 1778bcb0991SDimitry Andric 178*4824e7fdSDimitry Andric static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT, 179*4824e7fdSDimitry Andric FPH_ORD_WEIGHT + FPH_UNO_WEIGHT); 180*4824e7fdSDimitry Andric static const BranchProbability 181*4824e7fdSDimitry Andric FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT); 182*4824e7fdSDimitry Andric static const BranchProbability 183*4824e7fdSDimitry Andric FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT); 184*4824e7fdSDimitry Andric static const BranchProbability 185*4824e7fdSDimitry Andric FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT); 186*4824e7fdSDimitry Andric 187*4824e7fdSDimitry Andric /// Floating-Point compares: 188*4824e7fdSDimitry Andric static const ProbabilityTable FCmpTable{ 189*4824e7fdSDimitry Andric {FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely 190*4824e7fdSDimitry Andric {FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely 191*4824e7fdSDimitry Andric }; 192*4824e7fdSDimitry Andric 193e8d8bef9SDimitry Andric /// Set of dedicated "absolute" execution weights for a block. These weights are 194e8d8bef9SDimitry Andric /// meaningful relative to each other and their derivatives only. 195e8d8bef9SDimitry Andric enum class BlockExecWeight : std::uint32_t { 196e8d8bef9SDimitry Andric /// Special weight used for cases with exact zero probability. 197e8d8bef9SDimitry Andric ZERO = 0x0, 198e8d8bef9SDimitry Andric /// Minimal possible non zero weight. 199e8d8bef9SDimitry Andric LOWEST_NON_ZERO = 0x1, 200e8d8bef9SDimitry Andric /// Weight to an 'unreachable' block. 201e8d8bef9SDimitry Andric UNREACHABLE = ZERO, 202e8d8bef9SDimitry Andric /// Weight to a block containing non returning call. 203e8d8bef9SDimitry Andric NORETURN = LOWEST_NON_ZERO, 204e8d8bef9SDimitry Andric /// Weight to 'unwind' block of an invoke instruction. 205e8d8bef9SDimitry Andric UNWIND = LOWEST_NON_ZERO, 206e8d8bef9SDimitry Andric /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked 207e8d8bef9SDimitry Andric /// with attribute 'cold'. 208e8d8bef9SDimitry Andric COLD = 0xffff, 209e8d8bef9SDimitry Andric /// Default weight is used in cases when there is no dedicated execution 210e8d8bef9SDimitry Andric /// weight set. It is not propagated through the domination line either. 211e8d8bef9SDimitry Andric DEFAULT = 0xfffff 212e8d8bef9SDimitry Andric }; 2130b57cec5SDimitry Andric 214e8d8bef9SDimitry Andric BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) { 215e8d8bef9SDimitry Andric // Record SCC numbers of blocks in the CFG to identify irreducible loops. 216e8d8bef9SDimitry Andric // FIXME: We could only calculate this if the CFG is known to be irreducible 217e8d8bef9SDimitry Andric // (perhaps cache this info in LoopInfo if we can easily calculate it there?). 218e8d8bef9SDimitry Andric int SccNum = 0; 219e8d8bef9SDimitry Andric for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd(); 220e8d8bef9SDimitry Andric ++It, ++SccNum) { 221e8d8bef9SDimitry Andric // Ignore single-block SCCs since they either aren't loops or LoopInfo will 222e8d8bef9SDimitry Andric // catch them. 223e8d8bef9SDimitry Andric const std::vector<const BasicBlock *> &Scc = *It; 224e8d8bef9SDimitry Andric if (Scc.size() == 1) 225480093f4SDimitry Andric continue; 226e8d8bef9SDimitry Andric 227e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":"); 228e8d8bef9SDimitry Andric for (const auto *BB : Scc) { 229e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << " " << BB->getName()); 230e8d8bef9SDimitry Andric SccNums[BB] = SccNum; 231e8d8bef9SDimitry Andric calculateSccBlockType(BB, SccNum); 232480093f4SDimitry Andric } 233e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "\n"); 234e8d8bef9SDimitry Andric } 235e8d8bef9SDimitry Andric } 236e8d8bef9SDimitry Andric 237e8d8bef9SDimitry Andric int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const { 238e8d8bef9SDimitry Andric auto SccIt = SccNums.find(BB); 239e8d8bef9SDimitry Andric if (SccIt == SccNums.end()) 240e8d8bef9SDimitry Andric return -1; 241e8d8bef9SDimitry Andric return SccIt->second; 242e8d8bef9SDimitry Andric } 243e8d8bef9SDimitry Andric 244e8d8bef9SDimitry Andric void BranchProbabilityInfo::SccInfo::getSccEnterBlocks( 245e8d8bef9SDimitry Andric int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const { 246e8d8bef9SDimitry Andric 247e8d8bef9SDimitry Andric for (auto MapIt : SccBlocks[SccNum]) { 248e8d8bef9SDimitry Andric const auto *BB = MapIt.first; 249e8d8bef9SDimitry Andric if (isSCCHeader(BB, SccNum)) 250e8d8bef9SDimitry Andric for (const auto *Pred : predecessors(BB)) 251e8d8bef9SDimitry Andric if (getSCCNum(Pred) != SccNum) 252e8d8bef9SDimitry Andric Enters.push_back(const_cast<BasicBlock *>(BB)); 253e8d8bef9SDimitry Andric } 254e8d8bef9SDimitry Andric } 255e8d8bef9SDimitry Andric 256e8d8bef9SDimitry Andric void BranchProbabilityInfo::SccInfo::getSccExitBlocks( 257e8d8bef9SDimitry Andric int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const { 258e8d8bef9SDimitry Andric for (auto MapIt : SccBlocks[SccNum]) { 259e8d8bef9SDimitry Andric const auto *BB = MapIt.first; 260e8d8bef9SDimitry Andric if (isSCCExitingBlock(BB, SccNum)) 261e8d8bef9SDimitry Andric for (const auto *Succ : successors(BB)) 262e8d8bef9SDimitry Andric if (getSCCNum(Succ) != SccNum) 263349cc55cSDimitry Andric Exits.push_back(const_cast<BasicBlock *>(Succ)); 264e8d8bef9SDimitry Andric } 265e8d8bef9SDimitry Andric } 266e8d8bef9SDimitry Andric 267e8d8bef9SDimitry Andric uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB, 268e8d8bef9SDimitry Andric int SccNum) const { 269e8d8bef9SDimitry Andric assert(getSCCNum(BB) == SccNum); 270e8d8bef9SDimitry Andric 271e8d8bef9SDimitry Andric assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC"); 272e8d8bef9SDimitry Andric const auto &SccBlockTypes = SccBlocks[SccNum]; 273e8d8bef9SDimitry Andric 274e8d8bef9SDimitry Andric auto It = SccBlockTypes.find(BB); 275e8d8bef9SDimitry Andric if (It != SccBlockTypes.end()) { 276e8d8bef9SDimitry Andric return It->second; 277e8d8bef9SDimitry Andric } 278e8d8bef9SDimitry Andric return Inner; 279e8d8bef9SDimitry Andric } 280e8d8bef9SDimitry Andric 281e8d8bef9SDimitry Andric void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB, 282e8d8bef9SDimitry Andric int SccNum) { 283e8d8bef9SDimitry Andric assert(getSCCNum(BB) == SccNum); 284e8d8bef9SDimitry Andric uint32_t BlockType = Inner; 285e8d8bef9SDimitry Andric 286e8d8bef9SDimitry Andric if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) { 287e8d8bef9SDimitry Andric // Consider any block that is an entry point to the SCC as 288e8d8bef9SDimitry Andric // a header. 289e8d8bef9SDimitry Andric return getSCCNum(Pred) != SccNum; 290480093f4SDimitry Andric })) 291e8d8bef9SDimitry Andric BlockType |= Header; 2920b57cec5SDimitry Andric 293e8d8bef9SDimitry Andric if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) { 294e8d8bef9SDimitry Andric return getSCCNum(Succ) != SccNum; 295480093f4SDimitry Andric })) 296e8d8bef9SDimitry Andric BlockType |= Exiting; 297e8d8bef9SDimitry Andric 298e8d8bef9SDimitry Andric // Lazily compute the set of headers for a given SCC and cache the results 299e8d8bef9SDimitry Andric // in the SccHeaderMap. 300e8d8bef9SDimitry Andric if (SccBlocks.size() <= static_cast<unsigned>(SccNum)) 301e8d8bef9SDimitry Andric SccBlocks.resize(SccNum + 1); 302e8d8bef9SDimitry Andric auto &SccBlockTypes = SccBlocks[SccNum]; 303e8d8bef9SDimitry Andric 304e8d8bef9SDimitry Andric if (BlockType != Inner) { 305e8d8bef9SDimitry Andric bool IsInserted; 306e8d8bef9SDimitry Andric std::tie(std::ignore, IsInserted) = 307e8d8bef9SDimitry Andric SccBlockTypes.insert(std::make_pair(BB, BlockType)); 308e8d8bef9SDimitry Andric assert(IsInserted && "Duplicated block in SCC"); 3090b57cec5SDimitry Andric } 3100b57cec5SDimitry Andric } 3110b57cec5SDimitry Andric 312e8d8bef9SDimitry Andric BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB, 313e8d8bef9SDimitry Andric const LoopInfo &LI, 314e8d8bef9SDimitry Andric const SccInfo &SccI) 315e8d8bef9SDimitry Andric : BB(BB) { 316e8d8bef9SDimitry Andric LD.first = LI.getLoopFor(BB); 317e8d8bef9SDimitry Andric if (!LD.first) { 318e8d8bef9SDimitry Andric LD.second = SccI.getSCCNum(BB); 319e8d8bef9SDimitry Andric } 3200b57cec5SDimitry Andric } 3210b57cec5SDimitry Andric 322e8d8bef9SDimitry Andric bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const { 323e8d8bef9SDimitry Andric const auto &SrcBlock = Edge.first; 324e8d8bef9SDimitry Andric const auto &DstBlock = Edge.second; 325e8d8bef9SDimitry Andric return (DstBlock.getLoop() && 326e8d8bef9SDimitry Andric !DstBlock.getLoop()->contains(SrcBlock.getLoop())) || 327e8d8bef9SDimitry Andric // Assume that SCCs can't be nested. 328e8d8bef9SDimitry Andric (DstBlock.getSccNum() != -1 && 329e8d8bef9SDimitry Andric SrcBlock.getSccNum() != DstBlock.getSccNum()); 330e8d8bef9SDimitry Andric } 3310b57cec5SDimitry Andric 332e8d8bef9SDimitry Andric bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const { 333e8d8bef9SDimitry Andric return isLoopEnteringEdge({Edge.second, Edge.first}); 334e8d8bef9SDimitry Andric } 3350b57cec5SDimitry Andric 336e8d8bef9SDimitry Andric bool BranchProbabilityInfo::isLoopEnteringExitingEdge( 337e8d8bef9SDimitry Andric const LoopEdge &Edge) const { 338e8d8bef9SDimitry Andric return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge); 339e8d8bef9SDimitry Andric } 340e8d8bef9SDimitry Andric 341e8d8bef9SDimitry Andric bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const { 342e8d8bef9SDimitry Andric const auto &SrcBlock = Edge.first; 343e8d8bef9SDimitry Andric const auto &DstBlock = Edge.second; 344e8d8bef9SDimitry Andric return SrcBlock.belongsToSameLoop(DstBlock) && 345e8d8bef9SDimitry Andric ((DstBlock.getLoop() && 346e8d8bef9SDimitry Andric DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) || 347e8d8bef9SDimitry Andric (DstBlock.getSccNum() != -1 && 348e8d8bef9SDimitry Andric SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum()))); 349e8d8bef9SDimitry Andric } 350e8d8bef9SDimitry Andric 351e8d8bef9SDimitry Andric void BranchProbabilityInfo::getLoopEnterBlocks( 352e8d8bef9SDimitry Andric const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const { 353e8d8bef9SDimitry Andric if (LB.getLoop()) { 354e8d8bef9SDimitry Andric auto *Header = LB.getLoop()->getHeader(); 355e8d8bef9SDimitry Andric Enters.append(pred_begin(Header), pred_end(Header)); 356e8d8bef9SDimitry Andric } else { 357e8d8bef9SDimitry Andric assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?"); 358e8d8bef9SDimitry Andric SccI->getSccEnterBlocks(LB.getSccNum(), Enters); 359e8d8bef9SDimitry Andric } 360e8d8bef9SDimitry Andric } 361e8d8bef9SDimitry Andric 362e8d8bef9SDimitry Andric void BranchProbabilityInfo::getLoopExitBlocks( 363e8d8bef9SDimitry Andric const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const { 364e8d8bef9SDimitry Andric if (LB.getLoop()) { 365e8d8bef9SDimitry Andric LB.getLoop()->getExitBlocks(Exits); 366e8d8bef9SDimitry Andric } else { 367e8d8bef9SDimitry Andric assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?"); 368e8d8bef9SDimitry Andric SccI->getSccExitBlocks(LB.getSccNum(), Exits); 369e8d8bef9SDimitry Andric } 3700b57cec5SDimitry Andric } 3710b57cec5SDimitry Andric 3720b57cec5SDimitry Andric // Propagate existing explicit probabilities from either profile data or 3730b57cec5SDimitry Andric // 'expect' intrinsic processing. Examine metadata against unreachable 3740b57cec5SDimitry Andric // heuristic. The probability of the edge coming to unreachable block is 3750b57cec5SDimitry Andric // set to min of metadata and unreachable heuristic. 3760b57cec5SDimitry Andric bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) { 3770b57cec5SDimitry Andric const Instruction *TI = BB->getTerminator(); 3780b57cec5SDimitry Andric assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); 3795ffd83dbSDimitry Andric if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) || 3805ffd83dbSDimitry Andric isa<InvokeInst>(TI))) 3810b57cec5SDimitry Andric return false; 3820b57cec5SDimitry Andric 3830b57cec5SDimitry Andric MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 3840b57cec5SDimitry Andric if (!WeightsNode) 3850b57cec5SDimitry Andric return false; 3860b57cec5SDimitry Andric 3870b57cec5SDimitry Andric // Check that the number of successors is manageable. 3880b57cec5SDimitry Andric assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors"); 3890b57cec5SDimitry Andric 3900b57cec5SDimitry Andric // Ensure there are weights for all of the successors. Note that the first 3910b57cec5SDimitry Andric // operand to the metadata node is a name, not a weight. 3920b57cec5SDimitry Andric if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1) 3930b57cec5SDimitry Andric return false; 3940b57cec5SDimitry Andric 3950b57cec5SDimitry Andric // Build up the final weights that will be used in a temporary buffer. 3960b57cec5SDimitry Andric // Compute the sum of all weights to later decide whether they need to 3970b57cec5SDimitry Andric // be scaled to fit in 32 bits. 3980b57cec5SDimitry Andric uint64_t WeightSum = 0; 3990b57cec5SDimitry Andric SmallVector<uint32_t, 2> Weights; 4000b57cec5SDimitry Andric SmallVector<unsigned, 2> UnreachableIdxs; 4010b57cec5SDimitry Andric SmallVector<unsigned, 2> ReachableIdxs; 4020b57cec5SDimitry Andric Weights.reserve(TI->getNumSuccessors()); 4035ffd83dbSDimitry Andric for (unsigned I = 1, E = WeightsNode->getNumOperands(); I != E; ++I) { 4040b57cec5SDimitry Andric ConstantInt *Weight = 4055ffd83dbSDimitry Andric mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(I)); 4060b57cec5SDimitry Andric if (!Weight) 4070b57cec5SDimitry Andric return false; 4080b57cec5SDimitry Andric assert(Weight->getValue().getActiveBits() <= 32 && 4090b57cec5SDimitry Andric "Too many bits for uint32_t"); 4100b57cec5SDimitry Andric Weights.push_back(Weight->getZExtValue()); 4110b57cec5SDimitry Andric WeightSum += Weights.back(); 412e8d8bef9SDimitry Andric const LoopBlock SrcLoopBB = getLoopBlock(BB); 413e8d8bef9SDimitry Andric const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I - 1)); 414e8d8bef9SDimitry Andric auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB}); 415e8d8bef9SDimitry Andric if (EstimatedWeight && 416e8d8bef9SDimitry Andric EstimatedWeight.getValue() <= 417e8d8bef9SDimitry Andric static_cast<uint32_t>(BlockExecWeight::UNREACHABLE)) 4185ffd83dbSDimitry Andric UnreachableIdxs.push_back(I - 1); 4190b57cec5SDimitry Andric else 4205ffd83dbSDimitry Andric ReachableIdxs.push_back(I - 1); 4210b57cec5SDimitry Andric } 4220b57cec5SDimitry Andric assert(Weights.size() == TI->getNumSuccessors() && "Checked above"); 4230b57cec5SDimitry Andric 4240b57cec5SDimitry Andric // If the sum of weights does not fit in 32 bits, scale every weight down 4250b57cec5SDimitry Andric // accordingly. 4260b57cec5SDimitry Andric uint64_t ScalingFactor = 4270b57cec5SDimitry Andric (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1; 4280b57cec5SDimitry Andric 4290b57cec5SDimitry Andric if (ScalingFactor > 1) { 4300b57cec5SDimitry Andric WeightSum = 0; 4315ffd83dbSDimitry Andric for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { 4325ffd83dbSDimitry Andric Weights[I] /= ScalingFactor; 4335ffd83dbSDimitry Andric WeightSum += Weights[I]; 4340b57cec5SDimitry Andric } 4350b57cec5SDimitry Andric } 4360b57cec5SDimitry Andric assert(WeightSum <= UINT32_MAX && 4370b57cec5SDimitry Andric "Expected weights to scale down to 32 bits"); 4380b57cec5SDimitry Andric 4390b57cec5SDimitry Andric if (WeightSum == 0 || ReachableIdxs.size() == 0) { 4405ffd83dbSDimitry Andric for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) 4415ffd83dbSDimitry Andric Weights[I] = 1; 4420b57cec5SDimitry Andric WeightSum = TI->getNumSuccessors(); 4430b57cec5SDimitry Andric } 4440b57cec5SDimitry Andric 4450b57cec5SDimitry Andric // Set the probability. 4460b57cec5SDimitry Andric SmallVector<BranchProbability, 2> BP; 4475ffd83dbSDimitry Andric for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) 4485ffd83dbSDimitry Andric BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) }); 4490b57cec5SDimitry Andric 4500b57cec5SDimitry Andric // Examine the metadata against unreachable heuristic. 4510b57cec5SDimitry Andric // If the unreachable heuristic is more strong then we use it for this edge. 4525ffd83dbSDimitry Andric if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) { 4535ffd83dbSDimitry Andric setEdgeProbability(BB, BP); 4545ffd83dbSDimitry Andric return true; 4555ffd83dbSDimitry Andric } 4565ffd83dbSDimitry Andric 4570b57cec5SDimitry Andric auto UnreachableProb = UR_TAKEN_PROB; 4585ffd83dbSDimitry Andric for (auto I : UnreachableIdxs) 4595ffd83dbSDimitry Andric if (UnreachableProb < BP[I]) { 4605ffd83dbSDimitry Andric BP[I] = UnreachableProb; 4610b57cec5SDimitry Andric } 4620b57cec5SDimitry Andric 4635ffd83dbSDimitry Andric // Sum of all edge probabilities must be 1.0. If we modified the probability 4645ffd83dbSDimitry Andric // of some edges then we must distribute the introduced difference over the 4655ffd83dbSDimitry Andric // reachable blocks. 4665ffd83dbSDimitry Andric // 4675ffd83dbSDimitry Andric // Proportional distribution: the relation between probabilities of the 4685ffd83dbSDimitry Andric // reachable edges is kept unchanged. That is for any reachable edges i and j: 4695ffd83dbSDimitry Andric // newBP[i] / newBP[j] == oldBP[i] / oldBP[j] => 4705ffd83dbSDimitry Andric // newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K 4715ffd83dbSDimitry Andric // Where K is independent of i,j. 4725ffd83dbSDimitry Andric // newBP[i] == oldBP[i] * K 4735ffd83dbSDimitry Andric // We need to find K. 4745ffd83dbSDimitry Andric // Make sum of all reachables of the left and right parts: 4755ffd83dbSDimitry Andric // sum_of_reachable(newBP) == K * sum_of_reachable(oldBP) 4765ffd83dbSDimitry Andric // Sum of newBP must be equal to 1.0: 4775ffd83dbSDimitry Andric // sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 => 4785ffd83dbSDimitry Andric // sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP) 4795ffd83dbSDimitry Andric // Where sum_of_unreachable(newBP) is what has been just changed. 4805ffd83dbSDimitry Andric // Finally: 4815ffd83dbSDimitry Andric // K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) => 4825ffd83dbSDimitry Andric // K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP) 4835ffd83dbSDimitry Andric BranchProbability NewUnreachableSum = BranchProbability::getZero(); 4845ffd83dbSDimitry Andric for (auto I : UnreachableIdxs) 4855ffd83dbSDimitry Andric NewUnreachableSum += BP[I]; 4865ffd83dbSDimitry Andric 4875ffd83dbSDimitry Andric BranchProbability NewReachableSum = 4885ffd83dbSDimitry Andric BranchProbability::getOne() - NewUnreachableSum; 4895ffd83dbSDimitry Andric 4905ffd83dbSDimitry Andric BranchProbability OldReachableSum = BranchProbability::getZero(); 4915ffd83dbSDimitry Andric for (auto I : ReachableIdxs) 4925ffd83dbSDimitry Andric OldReachableSum += BP[I]; 4935ffd83dbSDimitry Andric 4945ffd83dbSDimitry Andric if (OldReachableSum != NewReachableSum) { // Anything to dsitribute? 4955ffd83dbSDimitry Andric if (OldReachableSum.isZero()) { 4965ffd83dbSDimitry Andric // If all oldBP[i] are zeroes then the proportional distribution results 4975ffd83dbSDimitry Andric // in all zero probabilities and the error stays big. In this case we 4985ffd83dbSDimitry Andric // evenly spread NewReachableSum over the reachable edges. 4995ffd83dbSDimitry Andric BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size(); 5005ffd83dbSDimitry Andric for (auto I : ReachableIdxs) 5015ffd83dbSDimitry Andric BP[I] = PerEdge; 5025ffd83dbSDimitry Andric } else { 5035ffd83dbSDimitry Andric for (auto I : ReachableIdxs) { 5045ffd83dbSDimitry Andric // We use uint64_t to avoid double rounding error of the following 5055ffd83dbSDimitry Andric // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum 5065ffd83dbSDimitry Andric // The formula is taken from the private constructor 5075ffd83dbSDimitry Andric // BranchProbability(uint32_t Numerator, uint32_t Denominator) 5085ffd83dbSDimitry Andric uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) * 5095ffd83dbSDimitry Andric BP[I].getNumerator(); 5105ffd83dbSDimitry Andric uint32_t Div = static_cast<uint32_t>( 5115ffd83dbSDimitry Andric divideNearest(Mul, OldReachableSum.getNumerator())); 5125ffd83dbSDimitry Andric BP[I] = BranchProbability::getRaw(Div); 5135ffd83dbSDimitry Andric } 5140b57cec5SDimitry Andric } 5150b57cec5SDimitry Andric } 5160b57cec5SDimitry Andric 5175ffd83dbSDimitry Andric setEdgeProbability(BB, BP); 5180b57cec5SDimitry Andric 5190b57cec5SDimitry Andric return true; 5200b57cec5SDimitry Andric } 5210b57cec5SDimitry Andric 5220b57cec5SDimitry Andric // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison 5230b57cec5SDimitry Andric // between two pointer or pointer and NULL will fail. 5240b57cec5SDimitry Andric bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) { 5250b57cec5SDimitry Andric const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 5260b57cec5SDimitry Andric if (!BI || !BI->isConditional()) 5270b57cec5SDimitry Andric return false; 5280b57cec5SDimitry Andric 5290b57cec5SDimitry Andric Value *Cond = BI->getCondition(); 5300b57cec5SDimitry Andric ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 5310b57cec5SDimitry Andric if (!CI || !CI->isEquality()) 5320b57cec5SDimitry Andric return false; 5330b57cec5SDimitry Andric 5340b57cec5SDimitry Andric Value *LHS = CI->getOperand(0); 5350b57cec5SDimitry Andric 5360b57cec5SDimitry Andric if (!LHS->getType()->isPointerTy()) 5370b57cec5SDimitry Andric return false; 5380b57cec5SDimitry Andric 5390b57cec5SDimitry Andric assert(CI->getOperand(1)->getType()->isPointerTy()); 5400b57cec5SDimitry Andric 541*4824e7fdSDimitry Andric auto Search = PointerTable.find(CI->getPredicate()); 542*4824e7fdSDimitry Andric if (Search == PointerTable.end()) 543*4824e7fdSDimitry Andric return false; 544*4824e7fdSDimitry Andric setEdgeProbability(BB, Search->second); 5450b57cec5SDimitry Andric return true; 5460b57cec5SDimitry Andric } 5470b57cec5SDimitry Andric 5480b57cec5SDimitry Andric // Compute the unlikely successors to the block BB in the loop L, specifically 5490b57cec5SDimitry Andric // those that are unlikely because this is a loop, and add them to the 5500b57cec5SDimitry Andric // UnlikelyBlocks set. 5510b57cec5SDimitry Andric static void 5520b57cec5SDimitry Andric computeUnlikelySuccessors(const BasicBlock *BB, Loop *L, 5530b57cec5SDimitry Andric SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) { 5540b57cec5SDimitry Andric // Sometimes in a loop we have a branch whose condition is made false by 5550b57cec5SDimitry Andric // taking it. This is typically something like 5560b57cec5SDimitry Andric // int n = 0; 5570b57cec5SDimitry Andric // while (...) { 5580b57cec5SDimitry Andric // if (++n >= MAX) { 5590b57cec5SDimitry Andric // n = 0; 5600b57cec5SDimitry Andric // } 5610b57cec5SDimitry Andric // } 5620b57cec5SDimitry Andric // In this sort of situation taking the branch means that at the very least it 5630b57cec5SDimitry Andric // won't be taken again in the next iteration of the loop, so we should 5640b57cec5SDimitry Andric // consider it less likely than a typical branch. 5650b57cec5SDimitry Andric // 5660b57cec5SDimitry Andric // We detect this by looking back through the graph of PHI nodes that sets the 5670b57cec5SDimitry Andric // value that the condition depends on, and seeing if we can reach a successor 5680b57cec5SDimitry Andric // block which can be determined to make the condition false. 5690b57cec5SDimitry Andric // 5700b57cec5SDimitry Andric // FIXME: We currently consider unlikely blocks to be half as likely as other 5710b57cec5SDimitry Andric // blocks, but if we consider the example above the likelyhood is actually 5720b57cec5SDimitry Andric // 1/MAX. We could therefore be more precise in how unlikely we consider 5730b57cec5SDimitry Andric // blocks to be, but it would require more careful examination of the form 5740b57cec5SDimitry Andric // of the comparison expression. 5750b57cec5SDimitry Andric const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 5760b57cec5SDimitry Andric if (!BI || !BI->isConditional()) 5770b57cec5SDimitry Andric return; 5780b57cec5SDimitry Andric 5790b57cec5SDimitry Andric // Check if the branch is based on an instruction compared with a constant 5800b57cec5SDimitry Andric CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 5810b57cec5SDimitry Andric if (!CI || !isa<Instruction>(CI->getOperand(0)) || 5820b57cec5SDimitry Andric !isa<Constant>(CI->getOperand(1))) 5830b57cec5SDimitry Andric return; 5840b57cec5SDimitry Andric 5850b57cec5SDimitry Andric // Either the instruction must be a PHI, or a chain of operations involving 5860b57cec5SDimitry Andric // constants that ends in a PHI which we can then collapse into a single value 5870b57cec5SDimitry Andric // if the PHI value is known. 5880b57cec5SDimitry Andric Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0)); 5890b57cec5SDimitry Andric PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS); 5900b57cec5SDimitry Andric Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1)); 5910b57cec5SDimitry Andric // Collect the instructions until we hit a PHI 5920b57cec5SDimitry Andric SmallVector<BinaryOperator *, 1> InstChain; 5930b57cec5SDimitry Andric while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) && 5940b57cec5SDimitry Andric isa<Constant>(CmpLHS->getOperand(1))) { 5950b57cec5SDimitry Andric // Stop if the chain extends outside of the loop 5960b57cec5SDimitry Andric if (!L->contains(CmpLHS)) 5970b57cec5SDimitry Andric return; 5980b57cec5SDimitry Andric InstChain.push_back(cast<BinaryOperator>(CmpLHS)); 5990b57cec5SDimitry Andric CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0)); 6000b57cec5SDimitry Andric if (CmpLHS) 6010b57cec5SDimitry Andric CmpPHI = dyn_cast<PHINode>(CmpLHS); 6020b57cec5SDimitry Andric } 6030b57cec5SDimitry Andric if (!CmpPHI || !L->contains(CmpPHI)) 6040b57cec5SDimitry Andric return; 6050b57cec5SDimitry Andric 6060b57cec5SDimitry Andric // Trace the phi node to find all values that come from successors of BB 6070b57cec5SDimitry Andric SmallPtrSet<PHINode*, 8> VisitedInsts; 6080b57cec5SDimitry Andric SmallVector<PHINode*, 8> WorkList; 6090b57cec5SDimitry Andric WorkList.push_back(CmpPHI); 6100b57cec5SDimitry Andric VisitedInsts.insert(CmpPHI); 6110b57cec5SDimitry Andric while (!WorkList.empty()) { 612fe6060f1SDimitry Andric PHINode *P = WorkList.pop_back_val(); 6130b57cec5SDimitry Andric for (BasicBlock *B : P->blocks()) { 6140b57cec5SDimitry Andric // Skip blocks that aren't part of the loop 6150b57cec5SDimitry Andric if (!L->contains(B)) 6160b57cec5SDimitry Andric continue; 6170b57cec5SDimitry Andric Value *V = P->getIncomingValueForBlock(B); 6180b57cec5SDimitry Andric // If the source is a PHI add it to the work list if we haven't 6190b57cec5SDimitry Andric // already visited it. 6200b57cec5SDimitry Andric if (PHINode *PN = dyn_cast<PHINode>(V)) { 6210b57cec5SDimitry Andric if (VisitedInsts.insert(PN).second) 6220b57cec5SDimitry Andric WorkList.push_back(PN); 6230b57cec5SDimitry Andric continue; 6240b57cec5SDimitry Andric } 6250b57cec5SDimitry Andric // If this incoming value is a constant and B is a successor of BB, then 6260b57cec5SDimitry Andric // we can constant-evaluate the compare to see if it makes the branch be 6270b57cec5SDimitry Andric // taken or not. 6280b57cec5SDimitry Andric Constant *CmpLHSConst = dyn_cast<Constant>(V); 629e8d8bef9SDimitry Andric if (!CmpLHSConst || !llvm::is_contained(successors(BB), B)) 6300b57cec5SDimitry Andric continue; 6310b57cec5SDimitry Andric // First collapse InstChain 6320b57cec5SDimitry Andric for (Instruction *I : llvm::reverse(InstChain)) { 6330b57cec5SDimitry Andric CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst, 6340b57cec5SDimitry Andric cast<Constant>(I->getOperand(1)), true); 6350b57cec5SDimitry Andric if (!CmpLHSConst) 6360b57cec5SDimitry Andric break; 6370b57cec5SDimitry Andric } 6380b57cec5SDimitry Andric if (!CmpLHSConst) 6390b57cec5SDimitry Andric continue; 6400b57cec5SDimitry Andric // Now constant-evaluate the compare 6410b57cec5SDimitry Andric Constant *Result = ConstantExpr::getCompare(CI->getPredicate(), 6420b57cec5SDimitry Andric CmpLHSConst, CmpConst, true); 6430b57cec5SDimitry Andric // If the result means we don't branch to the block then that block is 6440b57cec5SDimitry Andric // unlikely. 6450b57cec5SDimitry Andric if (Result && 6460b57cec5SDimitry Andric ((Result->isZeroValue() && B == BI->getSuccessor(0)) || 6470b57cec5SDimitry Andric (Result->isOneValue() && B == BI->getSuccessor(1)))) 6480b57cec5SDimitry Andric UnlikelyBlocks.insert(B); 6490b57cec5SDimitry Andric } 6500b57cec5SDimitry Andric } 6510b57cec5SDimitry Andric } 6520b57cec5SDimitry Andric 653e8d8bef9SDimitry Andric Optional<uint32_t> 654e8d8bef9SDimitry Andric BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const { 655e8d8bef9SDimitry Andric auto WeightIt = EstimatedBlockWeight.find(BB); 656e8d8bef9SDimitry Andric if (WeightIt == EstimatedBlockWeight.end()) 657e8d8bef9SDimitry Andric return None; 658e8d8bef9SDimitry Andric return WeightIt->second; 6590b57cec5SDimitry Andric } 6600b57cec5SDimitry Andric 661e8d8bef9SDimitry Andric Optional<uint32_t> 662e8d8bef9SDimitry Andric BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const { 663e8d8bef9SDimitry Andric auto WeightIt = EstimatedLoopWeight.find(L); 664e8d8bef9SDimitry Andric if (WeightIt == EstimatedLoopWeight.end()) 665e8d8bef9SDimitry Andric return None; 666e8d8bef9SDimitry Andric return WeightIt->second; 667e8d8bef9SDimitry Andric } 668e8d8bef9SDimitry Andric 669e8d8bef9SDimitry Andric Optional<uint32_t> 670e8d8bef9SDimitry Andric BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const { 671e8d8bef9SDimitry Andric // For edges entering a loop take weight of a loop rather than an individual 672e8d8bef9SDimitry Andric // block in the loop. 673e8d8bef9SDimitry Andric return isLoopEnteringEdge(Edge) 674e8d8bef9SDimitry Andric ? getEstimatedLoopWeight(Edge.second.getLoopData()) 675e8d8bef9SDimitry Andric : getEstimatedBlockWeight(Edge.second.getBlock()); 676e8d8bef9SDimitry Andric } 677e8d8bef9SDimitry Andric 678e8d8bef9SDimitry Andric template <class IterT> 679e8d8bef9SDimitry Andric Optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight( 680e8d8bef9SDimitry Andric const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const { 681e8d8bef9SDimitry Andric SmallVector<uint32_t, 4> Weights; 682e8d8bef9SDimitry Andric Optional<uint32_t> MaxWeight; 683e8d8bef9SDimitry Andric for (const BasicBlock *DstBB : Successors) { 684e8d8bef9SDimitry Andric const LoopBlock DstLoopBB = getLoopBlock(DstBB); 685e8d8bef9SDimitry Andric auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB}); 686e8d8bef9SDimitry Andric 687e8d8bef9SDimitry Andric if (!Weight) 688e8d8bef9SDimitry Andric return None; 689e8d8bef9SDimitry Andric 690e8d8bef9SDimitry Andric if (!MaxWeight || MaxWeight.getValue() < Weight.getValue()) 691e8d8bef9SDimitry Andric MaxWeight = Weight; 692e8d8bef9SDimitry Andric } 693e8d8bef9SDimitry Andric 694e8d8bef9SDimitry Andric return MaxWeight; 695e8d8bef9SDimitry Andric } 696e8d8bef9SDimitry Andric 697e8d8bef9SDimitry Andric // Updates \p LoopBB's weight and returns true. If \p LoopBB has already 698e8d8bef9SDimitry Andric // an associated weight it is unchanged and false is returned. 699e8d8bef9SDimitry Andric // 700e8d8bef9SDimitry Andric // Please note by the algorithm the weight is not expected to change once set 701e8d8bef9SDimitry Andric // thus 'false' status is used to track visited blocks. 702e8d8bef9SDimitry Andric bool BranchProbabilityInfo::updateEstimatedBlockWeight( 703e8d8bef9SDimitry Andric LoopBlock &LoopBB, uint32_t BBWeight, 704e8d8bef9SDimitry Andric SmallVectorImpl<BasicBlock *> &BlockWorkList, 705e8d8bef9SDimitry Andric SmallVectorImpl<LoopBlock> &LoopWorkList) { 706e8d8bef9SDimitry Andric BasicBlock *BB = LoopBB.getBlock(); 707e8d8bef9SDimitry Andric 708e8d8bef9SDimitry Andric // In general, weight is assigned to a block when it has final value and 709e8d8bef9SDimitry Andric // can't/shouldn't be changed. However, there are cases when a block 710e8d8bef9SDimitry Andric // inherently has several (possibly "contradicting") weights. For example, 711e8d8bef9SDimitry Andric // "unwind" block may also contain "cold" call. In that case the first 712e8d8bef9SDimitry Andric // set weight is favored and all consequent weights are ignored. 713e8d8bef9SDimitry Andric if (!EstimatedBlockWeight.insert({BB, BBWeight}).second) 714e8d8bef9SDimitry Andric return false; 715e8d8bef9SDimitry Andric 716e8d8bef9SDimitry Andric for (BasicBlock *PredBlock : predecessors(BB)) { 717e8d8bef9SDimitry Andric LoopBlock PredLoop = getLoopBlock(PredBlock); 718e8d8bef9SDimitry Andric // Add affected block/loop to a working list. 719e8d8bef9SDimitry Andric if (isLoopExitingEdge({PredLoop, LoopBB})) { 720e8d8bef9SDimitry Andric if (!EstimatedLoopWeight.count(PredLoop.getLoopData())) 721e8d8bef9SDimitry Andric LoopWorkList.push_back(PredLoop); 722e8d8bef9SDimitry Andric } else if (!EstimatedBlockWeight.count(PredBlock)) 723e8d8bef9SDimitry Andric BlockWorkList.push_back(PredBlock); 724e8d8bef9SDimitry Andric } 725e8d8bef9SDimitry Andric return true; 726e8d8bef9SDimitry Andric } 727e8d8bef9SDimitry Andric 728e8d8bef9SDimitry Andric // Starting from \p BB traverse through dominator blocks and assign \p BBWeight 729e8d8bef9SDimitry Andric // to all such blocks that are post dominated by \BB. In other words to all 730e8d8bef9SDimitry Andric // blocks that the one is executed if and only if another one is executed. 731e8d8bef9SDimitry Andric // Importantly, we skip loops here for two reasons. First weights of blocks in 732e8d8bef9SDimitry Andric // a loop should be scaled by trip count (yet possibly unknown). Second there is 733e8d8bef9SDimitry Andric // no any value in doing that because that doesn't give any additional 734e8d8bef9SDimitry Andric // information regarding distribution of probabilities inside the loop. 735e8d8bef9SDimitry Andric // Exception is loop 'enter' and 'exit' edges that are handled in a special way 736e8d8bef9SDimitry Andric // at calcEstimatedHeuristics. 737e8d8bef9SDimitry Andric // 738e8d8bef9SDimitry Andric // In addition, \p WorkList is populated with basic blocks if at leas one 739e8d8bef9SDimitry Andric // successor has updated estimated weight. 740e8d8bef9SDimitry Andric void BranchProbabilityInfo::propagateEstimatedBlockWeight( 741e8d8bef9SDimitry Andric const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT, 742e8d8bef9SDimitry Andric uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList, 743e8d8bef9SDimitry Andric SmallVectorImpl<LoopBlock> &LoopWorkList) { 744e8d8bef9SDimitry Andric const BasicBlock *BB = LoopBB.getBlock(); 745e8d8bef9SDimitry Andric const auto *DTStartNode = DT->getNode(BB); 746e8d8bef9SDimitry Andric const auto *PDTStartNode = PDT->getNode(BB); 747e8d8bef9SDimitry Andric 748e8d8bef9SDimitry Andric // TODO: Consider propagating weight down the domination line as well. 749e8d8bef9SDimitry Andric for (const auto *DTNode = DTStartNode; DTNode != nullptr; 750e8d8bef9SDimitry Andric DTNode = DTNode->getIDom()) { 751e8d8bef9SDimitry Andric auto *DomBB = DTNode->getBlock(); 752e8d8bef9SDimitry Andric // Consider blocks which lie on one 'line'. 753e8d8bef9SDimitry Andric if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB))) 754e8d8bef9SDimitry Andric // If BB doesn't post dominate DomBB it will not post dominate dominators 755e8d8bef9SDimitry Andric // of DomBB as well. 756e8d8bef9SDimitry Andric break; 757e8d8bef9SDimitry Andric 758e8d8bef9SDimitry Andric LoopBlock DomLoopBB = getLoopBlock(DomBB); 759e8d8bef9SDimitry Andric const LoopEdge Edge{DomLoopBB, LoopBB}; 760e8d8bef9SDimitry Andric // Don't propagate weight to blocks belonging to different loops. 761e8d8bef9SDimitry Andric if (!isLoopEnteringExitingEdge(Edge)) { 762e8d8bef9SDimitry Andric if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList, 763e8d8bef9SDimitry Andric LoopWorkList)) 764e8d8bef9SDimitry Andric // If DomBB has weight set then all it's predecessors are already 765e8d8bef9SDimitry Andric // processed (since we propagate weight up to the top of IR each time). 766e8d8bef9SDimitry Andric break; 767e8d8bef9SDimitry Andric } else if (isLoopExitingEdge(Edge)) { 768e8d8bef9SDimitry Andric LoopWorkList.push_back(DomLoopBB); 769e8d8bef9SDimitry Andric } 770e8d8bef9SDimitry Andric } 771e8d8bef9SDimitry Andric } 772e8d8bef9SDimitry Andric 773e8d8bef9SDimitry Andric Optional<uint32_t> BranchProbabilityInfo::getInitialEstimatedBlockWeight( 774e8d8bef9SDimitry Andric const BasicBlock *BB) { 775e8d8bef9SDimitry Andric // Returns true if \p BB has call marked with "NoReturn" attribute. 776e8d8bef9SDimitry Andric auto hasNoReturn = [&](const BasicBlock *BB) { 777e8d8bef9SDimitry Andric for (const auto &I : reverse(*BB)) 778e8d8bef9SDimitry Andric if (const CallInst *CI = dyn_cast<CallInst>(&I)) 779e8d8bef9SDimitry Andric if (CI->hasFnAttr(Attribute::NoReturn)) 780e8d8bef9SDimitry Andric return true; 781e8d8bef9SDimitry Andric 782e8d8bef9SDimitry Andric return false; 783e8d8bef9SDimitry Andric }; 784e8d8bef9SDimitry Andric 785e8d8bef9SDimitry Andric // Important note regarding the order of checks. They are ordered by weight 786e8d8bef9SDimitry Andric // from lowest to highest. Doing that allows to avoid "unstable" results 787e8d8bef9SDimitry Andric // when several conditions heuristics can be applied simultaneously. 788e8d8bef9SDimitry Andric if (isa<UnreachableInst>(BB->getTerminator()) || 789e8d8bef9SDimitry Andric // If this block is terminated by a call to 790e8d8bef9SDimitry Andric // @llvm.experimental.deoptimize then treat it like an unreachable 791e8d8bef9SDimitry Andric // since it is expected to practically never execute. 792e8d8bef9SDimitry Andric // TODO: Should we actually treat as never returning call? 793e8d8bef9SDimitry Andric BB->getTerminatingDeoptimizeCall()) 794e8d8bef9SDimitry Andric return hasNoReturn(BB) 795e8d8bef9SDimitry Andric ? static_cast<uint32_t>(BlockExecWeight::NORETURN) 796e8d8bef9SDimitry Andric : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE); 797e8d8bef9SDimitry Andric 798e8d8bef9SDimitry Andric // Check if the block is 'unwind' handler of some invoke instruction. 799e8d8bef9SDimitry Andric for (const auto *Pred : predecessors(BB)) 800e8d8bef9SDimitry Andric if (Pred) 801e8d8bef9SDimitry Andric if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator())) 802e8d8bef9SDimitry Andric if (II->getUnwindDest() == BB) 803e8d8bef9SDimitry Andric return static_cast<uint32_t>(BlockExecWeight::UNWIND); 804e8d8bef9SDimitry Andric 805e8d8bef9SDimitry Andric // Check if the block contains 'cold' call. 806e8d8bef9SDimitry Andric for (const auto &I : *BB) 807e8d8bef9SDimitry Andric if (const CallInst *CI = dyn_cast<CallInst>(&I)) 808e8d8bef9SDimitry Andric if (CI->hasFnAttr(Attribute::Cold)) 809e8d8bef9SDimitry Andric return static_cast<uint32_t>(BlockExecWeight::COLD); 810e8d8bef9SDimitry Andric 811e8d8bef9SDimitry Andric return None; 812e8d8bef9SDimitry Andric } 813e8d8bef9SDimitry Andric 814e8d8bef9SDimitry Andric // Does RPO traversal over all blocks in \p F and assigns weights to 815e8d8bef9SDimitry Andric // 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its 816e8d8bef9SDimitry Andric // best to propagate the weight to up/down the IR. 817e8d8bef9SDimitry Andric void BranchProbabilityInfo::computeEestimateBlockWeight( 818e8d8bef9SDimitry Andric const Function &F, DominatorTree *DT, PostDominatorTree *PDT) { 819e8d8bef9SDimitry Andric SmallVector<BasicBlock *, 8> BlockWorkList; 820e8d8bef9SDimitry Andric SmallVector<LoopBlock, 8> LoopWorkList; 821e8d8bef9SDimitry Andric 822e8d8bef9SDimitry Andric // By doing RPO we make sure that all predecessors already have weights 823e8d8bef9SDimitry Andric // calculated before visiting theirs successors. 824e8d8bef9SDimitry Andric ReversePostOrderTraversal<const Function *> RPOT(&F); 825e8d8bef9SDimitry Andric for (const auto *BB : RPOT) 826e8d8bef9SDimitry Andric if (auto BBWeight = getInitialEstimatedBlockWeight(BB)) 827e8d8bef9SDimitry Andric // If we were able to find estimated weight for the block set it to this 828e8d8bef9SDimitry Andric // block and propagate up the IR. 829e8d8bef9SDimitry Andric propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT, 830e8d8bef9SDimitry Andric BBWeight.getValue(), BlockWorkList, 831e8d8bef9SDimitry Andric LoopWorkList); 832e8d8bef9SDimitry Andric 833e8d8bef9SDimitry Andric // BlockWorklist/LoopWorkList contains blocks/loops with at least one 834e8d8bef9SDimitry Andric // successor/exit having estimated weight. Try to propagate weight to such 835e8d8bef9SDimitry Andric // blocks/loops from successors/exits. 836e8d8bef9SDimitry Andric // Process loops and blocks. Order is not important. 837e8d8bef9SDimitry Andric do { 838e8d8bef9SDimitry Andric while (!LoopWorkList.empty()) { 839e8d8bef9SDimitry Andric const LoopBlock LoopBB = LoopWorkList.pop_back_val(); 840e8d8bef9SDimitry Andric 841e8d8bef9SDimitry Andric if (EstimatedLoopWeight.count(LoopBB.getLoopData())) 842e8d8bef9SDimitry Andric continue; 843e8d8bef9SDimitry Andric 844e8d8bef9SDimitry Andric SmallVector<BasicBlock *, 4> Exits; 845e8d8bef9SDimitry Andric getLoopExitBlocks(LoopBB, Exits); 846e8d8bef9SDimitry Andric auto LoopWeight = getMaxEstimatedEdgeWeight( 847e8d8bef9SDimitry Andric LoopBB, make_range(Exits.begin(), Exits.end())); 848e8d8bef9SDimitry Andric 849e8d8bef9SDimitry Andric if (LoopWeight) { 850e8d8bef9SDimitry Andric // If we never exit the loop then we can enter it once at maximum. 851e8d8bef9SDimitry Andric if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE)) 852e8d8bef9SDimitry Andric LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO); 853e8d8bef9SDimitry Andric 854e8d8bef9SDimitry Andric EstimatedLoopWeight.insert( 855e8d8bef9SDimitry Andric {LoopBB.getLoopData(), LoopWeight.getValue()}); 856e8d8bef9SDimitry Andric // Add all blocks entering the loop into working list. 857e8d8bef9SDimitry Andric getLoopEnterBlocks(LoopBB, BlockWorkList); 858e8d8bef9SDimitry Andric } 859e8d8bef9SDimitry Andric } 860e8d8bef9SDimitry Andric 861e8d8bef9SDimitry Andric while (!BlockWorkList.empty()) { 862e8d8bef9SDimitry Andric // We can reach here only if BlockWorkList is not empty. 863e8d8bef9SDimitry Andric const BasicBlock *BB = BlockWorkList.pop_back_val(); 864e8d8bef9SDimitry Andric if (EstimatedBlockWeight.count(BB)) 865e8d8bef9SDimitry Andric continue; 866e8d8bef9SDimitry Andric 867e8d8bef9SDimitry Andric // We take maximum over all weights of successors. In other words we take 868e8d8bef9SDimitry Andric // weight of "hot" path. In theory we can probably find a better function 869e8d8bef9SDimitry Andric // which gives higher accuracy results (comparing to "maximum") but I 870e8d8bef9SDimitry Andric // can't 871e8d8bef9SDimitry Andric // think of any right now. And I doubt it will make any difference in 872e8d8bef9SDimitry Andric // practice. 873e8d8bef9SDimitry Andric const LoopBlock LoopBB = getLoopBlock(BB); 874e8d8bef9SDimitry Andric auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB)); 875e8d8bef9SDimitry Andric 876e8d8bef9SDimitry Andric if (MaxWeight) 877e8d8bef9SDimitry Andric propagateEstimatedBlockWeight(LoopBB, DT, PDT, MaxWeight.getValue(), 878e8d8bef9SDimitry Andric BlockWorkList, LoopWorkList); 879e8d8bef9SDimitry Andric } 880e8d8bef9SDimitry Andric } while (!BlockWorkList.empty() || !LoopWorkList.empty()); 881e8d8bef9SDimitry Andric } 882e8d8bef9SDimitry Andric 883e8d8bef9SDimitry Andric // Calculate edge probabilities based on block's estimated weight. 884e8d8bef9SDimitry Andric // Note that gathered weights were not scaled for loops. Thus edges entering 885e8d8bef9SDimitry Andric // and exiting loops requires special processing. 886e8d8bef9SDimitry Andric bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) { 887e8d8bef9SDimitry Andric assert(BB->getTerminator()->getNumSuccessors() > 1 && 888e8d8bef9SDimitry Andric "expected more than one successor!"); 889e8d8bef9SDimitry Andric 890e8d8bef9SDimitry Andric const LoopBlock LoopBB = getLoopBlock(BB); 891e8d8bef9SDimitry Andric 8920b57cec5SDimitry Andric SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks; 893e8d8bef9SDimitry Andric uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT; 894e8d8bef9SDimitry Andric if (LoopBB.getLoop()) 895e8d8bef9SDimitry Andric computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks); 8960b57cec5SDimitry Andric 897e8d8bef9SDimitry Andric // Changed to 'true' if at least one successor has estimated weight. 898e8d8bef9SDimitry Andric bool FoundEstimatedWeight = false; 899e8d8bef9SDimitry Andric SmallVector<uint32_t, 4> SuccWeights; 900e8d8bef9SDimitry Andric uint64_t TotalWeight = 0; 901e8d8bef9SDimitry Andric // Go over all successors of BB and put their weights into SuccWeights. 902fe6060f1SDimitry Andric for (const BasicBlock *SuccBB : successors(BB)) { 903e8d8bef9SDimitry Andric Optional<uint32_t> Weight; 904e8d8bef9SDimitry Andric const LoopBlock SuccLoopBB = getLoopBlock(SuccBB); 905e8d8bef9SDimitry Andric const LoopEdge Edge{LoopBB, SuccLoopBB}; 906e8d8bef9SDimitry Andric 907e8d8bef9SDimitry Andric Weight = getEstimatedEdgeWeight(Edge); 908e8d8bef9SDimitry Andric 909e8d8bef9SDimitry Andric if (isLoopExitingEdge(Edge) && 910e8d8bef9SDimitry Andric // Avoid adjustment of ZERO weight since it should remain unchanged. 911e8d8bef9SDimitry Andric Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) { 912e8d8bef9SDimitry Andric // Scale down loop exiting weight by trip count. 913e8d8bef9SDimitry Andric Weight = std::max( 914e8d8bef9SDimitry Andric static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO), 915e8d8bef9SDimitry Andric Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) / 916e8d8bef9SDimitry Andric TC); 9170b57cec5SDimitry Andric } 918e8d8bef9SDimitry Andric bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB); 919e8d8bef9SDimitry Andric if (IsUnlikelyEdge && 920e8d8bef9SDimitry Andric // Avoid adjustment of ZERO weight since it should remain unchanged. 921e8d8bef9SDimitry Andric Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) { 922e8d8bef9SDimitry Andric // 'Unlikely' blocks have twice lower weight. 923e8d8bef9SDimitry Andric Weight = std::max( 924e8d8bef9SDimitry Andric static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO), 925e8d8bef9SDimitry Andric Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) / 926e8d8bef9SDimitry Andric 2); 9270b57cec5SDimitry Andric } 9280b57cec5SDimitry Andric 929e8d8bef9SDimitry Andric if (Weight) 930e8d8bef9SDimitry Andric FoundEstimatedWeight = true; 931e8d8bef9SDimitry Andric 932e8d8bef9SDimitry Andric auto WeightVal = 933e8d8bef9SDimitry Andric Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)); 934e8d8bef9SDimitry Andric TotalWeight += WeightVal; 935e8d8bef9SDimitry Andric SuccWeights.push_back(WeightVal); 936e8d8bef9SDimitry Andric } 937e8d8bef9SDimitry Andric 938e8d8bef9SDimitry Andric // If non of blocks have estimated weight bail out. 939e8d8bef9SDimitry Andric // If TotalWeight is 0 that means weight of each successor is 0 as well and 940e8d8bef9SDimitry Andric // equally likely. Bail out early to not deal with devision by zero. 941e8d8bef9SDimitry Andric if (!FoundEstimatedWeight || TotalWeight == 0) 9420b57cec5SDimitry Andric return false; 9430b57cec5SDimitry Andric 944e8d8bef9SDimitry Andric assert(SuccWeights.size() == succ_size(BB) && "Missed successor?"); 945e8d8bef9SDimitry Andric const unsigned SuccCount = SuccWeights.size(); 9460b57cec5SDimitry Andric 947e8d8bef9SDimitry Andric // If the sum of weights does not fit in 32 bits, scale every weight down 948e8d8bef9SDimitry Andric // accordingly. 949e8d8bef9SDimitry Andric if (TotalWeight > UINT32_MAX) { 950e8d8bef9SDimitry Andric uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1; 951e8d8bef9SDimitry Andric TotalWeight = 0; 952e8d8bef9SDimitry Andric for (unsigned Idx = 0; Idx < SuccCount; ++Idx) { 953e8d8bef9SDimitry Andric SuccWeights[Idx] /= ScalingFactor; 954e8d8bef9SDimitry Andric if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO)) 955e8d8bef9SDimitry Andric SuccWeights[Idx] = 956e8d8bef9SDimitry Andric static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO); 957e8d8bef9SDimitry Andric TotalWeight += SuccWeights[Idx]; 958e8d8bef9SDimitry Andric } 959e8d8bef9SDimitry Andric assert(TotalWeight <= UINT32_MAX && "Total weight overflows"); 960e8d8bef9SDimitry Andric } 961e8d8bef9SDimitry Andric 962e8d8bef9SDimitry Andric // Finally set probabilities to edges according to estimated block weights. 9635ffd83dbSDimitry Andric SmallVector<BranchProbability, 4> EdgeProbabilities( 964e8d8bef9SDimitry Andric SuccCount, BranchProbability::getUnknown()); 9650b57cec5SDimitry Andric 966e8d8bef9SDimitry Andric for (unsigned Idx = 0; Idx < SuccCount; ++Idx) { 967e8d8bef9SDimitry Andric EdgeProbabilities[Idx] = 968e8d8bef9SDimitry Andric BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight); 9690b57cec5SDimitry Andric } 9705ffd83dbSDimitry Andric setEdgeProbability(BB, EdgeProbabilities); 9710b57cec5SDimitry Andric return true; 9720b57cec5SDimitry Andric } 9730b57cec5SDimitry Andric 9740b57cec5SDimitry Andric bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB, 9750b57cec5SDimitry Andric const TargetLibraryInfo *TLI) { 9760b57cec5SDimitry Andric const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 9770b57cec5SDimitry Andric if (!BI || !BI->isConditional()) 9780b57cec5SDimitry Andric return false; 9790b57cec5SDimitry Andric 9800b57cec5SDimitry Andric Value *Cond = BI->getCondition(); 9810b57cec5SDimitry Andric ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 9820b57cec5SDimitry Andric if (!CI) 9830b57cec5SDimitry Andric return false; 9840b57cec5SDimitry Andric 9850b57cec5SDimitry Andric auto GetConstantInt = [](Value *V) { 9860b57cec5SDimitry Andric if (auto *I = dyn_cast<BitCastInst>(V)) 9870b57cec5SDimitry Andric return dyn_cast<ConstantInt>(I->getOperand(0)); 9880b57cec5SDimitry Andric return dyn_cast<ConstantInt>(V); 9890b57cec5SDimitry Andric }; 9900b57cec5SDimitry Andric 9910b57cec5SDimitry Andric Value *RHS = CI->getOperand(1); 9920b57cec5SDimitry Andric ConstantInt *CV = GetConstantInt(RHS); 9930b57cec5SDimitry Andric if (!CV) 9940b57cec5SDimitry Andric return false; 9950b57cec5SDimitry Andric 9960b57cec5SDimitry Andric // If the LHS is the result of AND'ing a value with a single bit bitmask, 9970b57cec5SDimitry Andric // we don't have information about probabilities. 9980b57cec5SDimitry Andric if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0))) 9990b57cec5SDimitry Andric if (LHS->getOpcode() == Instruction::And) 1000e8d8bef9SDimitry Andric if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1))) 10010b57cec5SDimitry Andric if (AndRHS->getValue().isPowerOf2()) 10020b57cec5SDimitry Andric return false; 10030b57cec5SDimitry Andric 10040b57cec5SDimitry Andric // Check if the LHS is the return value of a library function 10050b57cec5SDimitry Andric LibFunc Func = NumLibFuncs; 10060b57cec5SDimitry Andric if (TLI) 10070b57cec5SDimitry Andric if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0))) 10080b57cec5SDimitry Andric if (Function *CalledFn = Call->getCalledFunction()) 10090b57cec5SDimitry Andric TLI->getLibFunc(*CalledFn, Func); 10100b57cec5SDimitry Andric 1011*4824e7fdSDimitry Andric ProbabilityTable::const_iterator Search; 10120b57cec5SDimitry Andric if (Func == LibFunc_strcasecmp || 10130b57cec5SDimitry Andric Func == LibFunc_strcmp || 10140b57cec5SDimitry Andric Func == LibFunc_strncasecmp || 10150b57cec5SDimitry Andric Func == LibFunc_strncmp || 1016e8d8bef9SDimitry Andric Func == LibFunc_memcmp || 1017e8d8bef9SDimitry Andric Func == LibFunc_bcmp) { 1018*4824e7fdSDimitry Andric Search = ICmpWithLibCallTable.find(CI->getPredicate()); 1019*4824e7fdSDimitry Andric if (Search == ICmpWithLibCallTable.end()) 10200b57cec5SDimitry Andric return false; 10210b57cec5SDimitry Andric } else if (CV->isZero()) { 1022*4824e7fdSDimitry Andric Search = ICmpWithZeroTable.find(CI->getPredicate()); 1023*4824e7fdSDimitry Andric if (Search == ICmpWithZeroTable.end()) 10240b57cec5SDimitry Andric return false; 1025*4824e7fdSDimitry Andric } else if (CV->isOne()) { 1026*4824e7fdSDimitry Andric Search = ICmpWithOneTable.find(CI->getPredicate()); 1027*4824e7fdSDimitry Andric if (Search == ICmpWithOneTable.end()) 1028*4824e7fdSDimitry Andric return false; 10290b57cec5SDimitry Andric } else if (CV->isMinusOne()) { 1030*4824e7fdSDimitry Andric Search = ICmpWithMinusOneTable.find(CI->getPredicate()); 1031*4824e7fdSDimitry Andric if (Search == ICmpWithMinusOneTable.end()) 10320b57cec5SDimitry Andric return false; 10330b57cec5SDimitry Andric } else { 10340b57cec5SDimitry Andric return false; 10350b57cec5SDimitry Andric } 10360b57cec5SDimitry Andric 1037*4824e7fdSDimitry Andric setEdgeProbability(BB, Search->second); 10380b57cec5SDimitry Andric return true; 10390b57cec5SDimitry Andric } 10400b57cec5SDimitry Andric 10410b57cec5SDimitry Andric bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) { 10420b57cec5SDimitry Andric const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 10430b57cec5SDimitry Andric if (!BI || !BI->isConditional()) 10440b57cec5SDimitry Andric return false; 10450b57cec5SDimitry Andric 10460b57cec5SDimitry Andric Value *Cond = BI->getCondition(); 10470b57cec5SDimitry Andric FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond); 10480b57cec5SDimitry Andric if (!FCmp) 10490b57cec5SDimitry Andric return false; 10500b57cec5SDimitry Andric 1051*4824e7fdSDimitry Andric ProbabilityList ProbList; 10520b57cec5SDimitry Andric if (FCmp->isEquality()) { 1053*4824e7fdSDimitry Andric ProbList = !FCmp->isTrueWhenEqual() ? 10540b57cec5SDimitry Andric // f1 == f2 -> Unlikely 1055*4824e7fdSDimitry Andric ProbabilityList({FPTakenProb, FPUntakenProb}) : 10560b57cec5SDimitry Andric // f1 != f2 -> Likely 1057*4824e7fdSDimitry Andric ProbabilityList({FPUntakenProb, FPTakenProb}); 10580b57cec5SDimitry Andric } else { 1059*4824e7fdSDimitry Andric auto Search = FCmpTable.find(FCmp->getPredicate()); 1060*4824e7fdSDimitry Andric if (Search == FCmpTable.end()) 10610b57cec5SDimitry Andric return false; 1062*4824e7fdSDimitry Andric ProbList = Search->second; 10630b57cec5SDimitry Andric } 10640b57cec5SDimitry Andric 1065*4824e7fdSDimitry Andric setEdgeProbability(BB, ProbList); 10660b57cec5SDimitry Andric return true; 10670b57cec5SDimitry Andric } 10680b57cec5SDimitry Andric 10690b57cec5SDimitry Andric void BranchProbabilityInfo::releaseMemory() { 10700b57cec5SDimitry Andric Probs.clear(); 10715ffd83dbSDimitry Andric Handles.clear(); 10725ffd83dbSDimitry Andric } 10735ffd83dbSDimitry Andric 10745ffd83dbSDimitry Andric bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA, 10755ffd83dbSDimitry Andric FunctionAnalysisManager::Invalidator &) { 10765ffd83dbSDimitry Andric // Check whether the analysis, all analyses on functions, or the function's 10775ffd83dbSDimitry Andric // CFG have been preserved. 10785ffd83dbSDimitry Andric auto PAC = PA.getChecker<BranchProbabilityAnalysis>(); 10795ffd83dbSDimitry Andric return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 10805ffd83dbSDimitry Andric PAC.preservedSet<CFGAnalyses>()); 10810b57cec5SDimitry Andric } 10820b57cec5SDimitry Andric 10830b57cec5SDimitry Andric void BranchProbabilityInfo::print(raw_ostream &OS) const { 10840b57cec5SDimitry Andric OS << "---- Branch Probabilities ----\n"; 10850b57cec5SDimitry Andric // We print the probabilities from the last function the analysis ran over, 10860b57cec5SDimitry Andric // or the function it is currently running over. 10870b57cec5SDimitry Andric assert(LastF && "Cannot print prior to running over a function"); 10880b57cec5SDimitry Andric for (const auto &BI : *LastF) { 1089fe6060f1SDimitry Andric for (const BasicBlock *Succ : successors(&BI)) 1090fe6060f1SDimitry Andric printEdgeProbability(OS << " ", &BI, Succ); 10910b57cec5SDimitry Andric } 10920b57cec5SDimitry Andric } 10930b57cec5SDimitry Andric 10940b57cec5SDimitry Andric bool BranchProbabilityInfo:: 10950b57cec5SDimitry Andric isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const { 10960b57cec5SDimitry Andric // Hot probability is at least 4/5 = 80% 10970b57cec5SDimitry Andric // FIXME: Compare against a static "hot" BranchProbability. 10980b57cec5SDimitry Andric return getEdgeProbability(Src, Dst) > BranchProbability(4, 5); 10990b57cec5SDimitry Andric } 11000b57cec5SDimitry Andric 11010b57cec5SDimitry Andric /// Get the raw edge probability for the edge. If can't find it, return a 11020b57cec5SDimitry Andric /// default probability 1/N where N is the number of successors. Here an edge is 11030b57cec5SDimitry Andric /// specified using PredBlock and an 11040b57cec5SDimitry Andric /// index to the successors. 11050b57cec5SDimitry Andric BranchProbability 11060b57cec5SDimitry Andric BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 11070b57cec5SDimitry Andric unsigned IndexInSuccessors) const { 11080b57cec5SDimitry Andric auto I = Probs.find(std::make_pair(Src, IndexInSuccessors)); 1109e8d8bef9SDimitry Andric assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) == 1110e8d8bef9SDimitry Andric (Probs.end() == I) && 1111e8d8bef9SDimitry Andric "Probability for I-th successor must always be defined along with the " 1112e8d8bef9SDimitry Andric "probability for the first successor"); 11130b57cec5SDimitry Andric 11140b57cec5SDimitry Andric if (I != Probs.end()) 11150b57cec5SDimitry Andric return I->second; 11160b57cec5SDimitry Andric 11170b57cec5SDimitry Andric return {1, static_cast<uint32_t>(succ_size(Src))}; 11180b57cec5SDimitry Andric } 11190b57cec5SDimitry Andric 11200b57cec5SDimitry Andric BranchProbability 11210b57cec5SDimitry Andric BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 11225ffd83dbSDimitry Andric const_succ_iterator Dst) const { 11230b57cec5SDimitry Andric return getEdgeProbability(Src, Dst.getSuccessorIndex()); 11240b57cec5SDimitry Andric } 11250b57cec5SDimitry Andric 11260b57cec5SDimitry Andric /// Get the raw edge probability calculated for the block pair. This returns the 11270b57cec5SDimitry Andric /// sum of all raw edge probabilities from Src to Dst. 11280b57cec5SDimitry Andric BranchProbability 11290b57cec5SDimitry Andric BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 11300b57cec5SDimitry Andric const BasicBlock *Dst) const { 1131e8d8bef9SDimitry Andric if (!Probs.count(std::make_pair(Src, 0))) 1132e8d8bef9SDimitry Andric return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src)); 11330b57cec5SDimitry Andric 1134e8d8bef9SDimitry Andric auto Prob = BranchProbability::getZero(); 1135e8d8bef9SDimitry Andric for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I) 1136e8d8bef9SDimitry Andric if (*I == Dst) 1137e8d8bef9SDimitry Andric Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second; 1138e8d8bef9SDimitry Andric 1139e8d8bef9SDimitry Andric return Prob; 11400b57cec5SDimitry Andric } 11410b57cec5SDimitry Andric 11425ffd83dbSDimitry Andric /// Set the edge probability for all edges at once. 11435ffd83dbSDimitry Andric void BranchProbabilityInfo::setEdgeProbability( 11445ffd83dbSDimitry Andric const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) { 11455ffd83dbSDimitry Andric assert(Src->getTerminator()->getNumSuccessors() == Probs.size()); 1146e8d8bef9SDimitry Andric eraseBlock(Src); // Erase stale data if any. 11475ffd83dbSDimitry Andric if (Probs.size() == 0) 11485ffd83dbSDimitry Andric return; // Nothing to set. 11495ffd83dbSDimitry Andric 1150e8d8bef9SDimitry Andric Handles.insert(BasicBlockCallbackVH(Src, this)); 11515ffd83dbSDimitry Andric uint64_t TotalNumerator = 0; 11525ffd83dbSDimitry Andric for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) { 1153e8d8bef9SDimitry Andric this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx]; 1154e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx 1155e8d8bef9SDimitry Andric << " successor probability to " << Probs[SuccIdx] 1156e8d8bef9SDimitry Andric << "\n"); 11575ffd83dbSDimitry Andric TotalNumerator += Probs[SuccIdx].getNumerator(); 11585ffd83dbSDimitry Andric } 11595ffd83dbSDimitry Andric 11605ffd83dbSDimitry Andric // Because of rounding errors the total probability cannot be checked to be 11615ffd83dbSDimitry Andric // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator. 11625ffd83dbSDimitry Andric // Instead, every single probability in Probs must be as accurate as possible. 11635ffd83dbSDimitry Andric // This results in error 1/denominator at most, thus the total absolute error 11645ffd83dbSDimitry Andric // should be within Probs.size / BranchProbability::getDenominator. 11655ffd83dbSDimitry Andric assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size()); 11665ffd83dbSDimitry Andric assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size()); 1167fe6060f1SDimitry Andric (void)TotalNumerator; 11685ffd83dbSDimitry Andric } 11695ffd83dbSDimitry Andric 1170e8d8bef9SDimitry Andric void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src, 1171e8d8bef9SDimitry Andric BasicBlock *Dst) { 1172e8d8bef9SDimitry Andric eraseBlock(Dst); // Erase stale data if any. 1173e8d8bef9SDimitry Andric unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors(); 1174e8d8bef9SDimitry Andric assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors()); 1175e8d8bef9SDimitry Andric if (NumSuccessors == 0) 1176e8d8bef9SDimitry Andric return; // Nothing to set. 1177e8d8bef9SDimitry Andric if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end()) 1178e8d8bef9SDimitry Andric return; // No probability is set for edges from Src. Keep the same for Dst. 1179e8d8bef9SDimitry Andric 1180e8d8bef9SDimitry Andric Handles.insert(BasicBlockCallbackVH(Dst, this)); 1181e8d8bef9SDimitry Andric for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) { 1182e8d8bef9SDimitry Andric auto Prob = this->Probs[std::make_pair(Src, SuccIdx)]; 1183e8d8bef9SDimitry Andric this->Probs[std::make_pair(Dst, SuccIdx)] = Prob; 1184e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx 1185e8d8bef9SDimitry Andric << " successor probability to " << Prob << "\n"); 1186e8d8bef9SDimitry Andric } 1187e8d8bef9SDimitry Andric } 1188e8d8bef9SDimitry Andric 11890b57cec5SDimitry Andric raw_ostream & 11900b57cec5SDimitry Andric BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, 11910b57cec5SDimitry Andric const BasicBlock *Src, 11920b57cec5SDimitry Andric const BasicBlock *Dst) const { 11930b57cec5SDimitry Andric const BranchProbability Prob = getEdgeProbability(Src, Dst); 11940b57cec5SDimitry Andric OS << "edge " << Src->getName() << " -> " << Dst->getName() 11950b57cec5SDimitry Andric << " probability is " << Prob 11960b57cec5SDimitry Andric << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n"); 11970b57cec5SDimitry Andric 11980b57cec5SDimitry Andric return OS; 11990b57cec5SDimitry Andric } 12000b57cec5SDimitry Andric 12010b57cec5SDimitry Andric void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) { 1202e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n"); 1203e8d8bef9SDimitry Andric 1204e8d8bef9SDimitry Andric // Note that we cannot use successors of BB because the terminator of BB may 1205e8d8bef9SDimitry Andric // have changed when eraseBlock is called as a BasicBlockCallbackVH callback. 1206e8d8bef9SDimitry Andric // Instead we remove prob data for the block by iterating successors by their 1207e8d8bef9SDimitry Andric // indices from 0 till the last which exists. There could not be prob data for 1208e8d8bef9SDimitry Andric // a pair (BB, N) if there is no data for (BB, N-1) because the data is always 1209e8d8bef9SDimitry Andric // set for all successors from 0 to M at once by the method 1210e8d8bef9SDimitry Andric // setEdgeProbability(). 1211e8d8bef9SDimitry Andric Handles.erase(BasicBlockCallbackVH(BB, this)); 1212e8d8bef9SDimitry Andric for (unsigned I = 0;; ++I) { 1213e8d8bef9SDimitry Andric auto MapI = Probs.find(std::make_pair(BB, I)); 1214e8d8bef9SDimitry Andric if (MapI == Probs.end()) { 1215e8d8bef9SDimitry Andric assert(Probs.count(std::make_pair(BB, I + 1)) == 0 && 1216e8d8bef9SDimitry Andric "Must be no more successors"); 1217e8d8bef9SDimitry Andric return; 1218e8d8bef9SDimitry Andric } 12195ffd83dbSDimitry Andric Probs.erase(MapI); 12200b57cec5SDimitry Andric } 12210b57cec5SDimitry Andric } 12220b57cec5SDimitry Andric 1223e8d8bef9SDimitry Andric void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI, 12245ffd83dbSDimitry Andric const TargetLibraryInfo *TLI, 1225e8d8bef9SDimitry Andric DominatorTree *DT, 12265ffd83dbSDimitry Andric PostDominatorTree *PDT) { 12270b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName() 12280b57cec5SDimitry Andric << " ----\n\n"); 12290b57cec5SDimitry Andric LastF = &F; // Store the last function we ran on for printing. 1230e8d8bef9SDimitry Andric LI = &LoopI; 12310b57cec5SDimitry Andric 1232e8d8bef9SDimitry Andric SccI = std::make_unique<SccInfo>(F); 12330b57cec5SDimitry Andric 1234e8d8bef9SDimitry Andric assert(EstimatedBlockWeight.empty()); 1235e8d8bef9SDimitry Andric assert(EstimatedLoopWeight.empty()); 12360b57cec5SDimitry Andric 1237e8d8bef9SDimitry Andric std::unique_ptr<DominatorTree> DTPtr; 12385ffd83dbSDimitry Andric std::unique_ptr<PostDominatorTree> PDTPtr; 12395ffd83dbSDimitry Andric 1240e8d8bef9SDimitry Andric if (!DT) { 1241e8d8bef9SDimitry Andric DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F)); 1242e8d8bef9SDimitry Andric DT = DTPtr.get(); 1243e8d8bef9SDimitry Andric } 1244e8d8bef9SDimitry Andric 12455ffd83dbSDimitry Andric if (!PDT) { 12465ffd83dbSDimitry Andric PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F)); 12475ffd83dbSDimitry Andric PDT = PDTPtr.get(); 12485ffd83dbSDimitry Andric } 12495ffd83dbSDimitry Andric 1250e8d8bef9SDimitry Andric computeEestimateBlockWeight(F, DT, PDT); 1251480093f4SDimitry Andric 12520b57cec5SDimitry Andric // Walk the basic blocks in post-order so that we can build up state about 12530b57cec5SDimitry Andric // the successors of a block iteratively. 12540b57cec5SDimitry Andric for (auto BB : post_order(&F.getEntryBlock())) { 12550b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName() 12560b57cec5SDimitry Andric << "\n"); 12570b57cec5SDimitry Andric // If there is no at least two successors, no sense to set probability. 12580b57cec5SDimitry Andric if (BB->getTerminator()->getNumSuccessors() < 2) 12590b57cec5SDimitry Andric continue; 12600b57cec5SDimitry Andric if (calcMetadataWeights(BB)) 12610b57cec5SDimitry Andric continue; 1262e8d8bef9SDimitry Andric if (calcEstimatedHeuristics(BB)) 12630b57cec5SDimitry Andric continue; 12640b57cec5SDimitry Andric if (calcPointerHeuristics(BB)) 12650b57cec5SDimitry Andric continue; 12660b57cec5SDimitry Andric if (calcZeroHeuristics(BB, TLI)) 12670b57cec5SDimitry Andric continue; 12680b57cec5SDimitry Andric if (calcFloatingPointHeuristics(BB)) 12690b57cec5SDimitry Andric continue; 12700b57cec5SDimitry Andric } 12710b57cec5SDimitry Andric 1272e8d8bef9SDimitry Andric EstimatedLoopWeight.clear(); 1273e8d8bef9SDimitry Andric EstimatedBlockWeight.clear(); 1274e8d8bef9SDimitry Andric SccI.reset(); 12750b57cec5SDimitry Andric 12760b57cec5SDimitry Andric if (PrintBranchProb && 12770b57cec5SDimitry Andric (PrintBranchProbFuncName.empty() || 12780b57cec5SDimitry Andric F.getName().equals(PrintBranchProbFuncName))) { 12790b57cec5SDimitry Andric print(dbgs()); 12800b57cec5SDimitry Andric } 12810b57cec5SDimitry Andric } 12820b57cec5SDimitry Andric 12830b57cec5SDimitry Andric void BranchProbabilityInfoWrapperPass::getAnalysisUsage( 12840b57cec5SDimitry Andric AnalysisUsage &AU) const { 12850b57cec5SDimitry Andric // We require DT so it's available when LI is available. The LI updating code 12860b57cec5SDimitry Andric // asserts that DT is also present so if we don't make sure that we have DT 12870b57cec5SDimitry Andric // here, that assert will trigger. 12880b57cec5SDimitry Andric AU.addRequired<DominatorTreeWrapperPass>(); 12890b57cec5SDimitry Andric AU.addRequired<LoopInfoWrapperPass>(); 12900b57cec5SDimitry Andric AU.addRequired<TargetLibraryInfoWrapperPass>(); 1291e8d8bef9SDimitry Andric AU.addRequired<DominatorTreeWrapperPass>(); 12925ffd83dbSDimitry Andric AU.addRequired<PostDominatorTreeWrapperPass>(); 12930b57cec5SDimitry Andric AU.setPreservesAll(); 12940b57cec5SDimitry Andric } 12950b57cec5SDimitry Andric 12960b57cec5SDimitry Andric bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) { 12970b57cec5SDimitry Andric const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 12988bcb0991SDimitry Andric const TargetLibraryInfo &TLI = 12998bcb0991SDimitry Andric getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1300e8d8bef9SDimitry Andric DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 13015ffd83dbSDimitry Andric PostDominatorTree &PDT = 13025ffd83dbSDimitry Andric getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1303e8d8bef9SDimitry Andric BPI.calculate(F, LI, &TLI, &DT, &PDT); 13040b57cec5SDimitry Andric return false; 13050b57cec5SDimitry Andric } 13060b57cec5SDimitry Andric 13070b57cec5SDimitry Andric void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); } 13080b57cec5SDimitry Andric 13090b57cec5SDimitry Andric void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS, 13100b57cec5SDimitry Andric const Module *) const { 13110b57cec5SDimitry Andric BPI.print(OS); 13120b57cec5SDimitry Andric } 13130b57cec5SDimitry Andric 13140b57cec5SDimitry Andric AnalysisKey BranchProbabilityAnalysis::Key; 13150b57cec5SDimitry Andric BranchProbabilityInfo 13160b57cec5SDimitry Andric BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 13170b57cec5SDimitry Andric BranchProbabilityInfo BPI; 13185ffd83dbSDimitry Andric BPI.calculate(F, AM.getResult<LoopAnalysis>(F), 13195ffd83dbSDimitry Andric &AM.getResult<TargetLibraryAnalysis>(F), 1320e8d8bef9SDimitry Andric &AM.getResult<DominatorTreeAnalysis>(F), 13215ffd83dbSDimitry Andric &AM.getResult<PostDominatorTreeAnalysis>(F)); 13220b57cec5SDimitry Andric return BPI; 13230b57cec5SDimitry Andric } 13240b57cec5SDimitry Andric 13250b57cec5SDimitry Andric PreservedAnalyses 13260b57cec5SDimitry Andric BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13270b57cec5SDimitry Andric OS << "Printing analysis results of BPI for function " 13280b57cec5SDimitry Andric << "'" << F.getName() << "':" 13290b57cec5SDimitry Andric << "\n"; 13300b57cec5SDimitry Andric AM.getResult<BranchProbabilityAnalysis>(F).print(OS); 13310b57cec5SDimitry Andric return PreservedAnalyses::all(); 13320b57cec5SDimitry Andric } 1333