xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/BlockFrequencyInfoImpl.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/Support/BlockFrequency.h"
22 #include "llvm/Support/BranchProbability.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ScaledNumber.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <iterator>
33 #include <list>
34 #include <numeric>
35 #include <utility>
36 #include <vector>
37 
38 using namespace llvm;
39 using namespace llvm::bfi_detail;
40 
41 #define DEBUG_TYPE "block-freq"
42 
43 cl::opt<bool> CheckBFIUnknownBlockQueries(
44     "check-bfi-unknown-block-queries",
45     cl::init(false), cl::Hidden,
46     cl::desc("Check if block frequency is queried for an unknown block "
47              "for debugging missed BFI updates"));
48 
49 ScaledNumber<uint64_t> BlockMass::toScaled() const {
50   if (isFull())
51     return ScaledNumber<uint64_t>(1, 0);
52   return ScaledNumber<uint64_t>(getMass() + 1, -64);
53 }
54 
55 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
56 LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); }
57 #endif
58 
59 static char getHexDigit(int N) {
60   assert(N < 16);
61   if (N < 10)
62     return '0' + N;
63   return 'a' + N - 10;
64 }
65 
66 raw_ostream &BlockMass::print(raw_ostream &OS) const {
67   for (int Digits = 0; Digits < 16; ++Digits)
68     OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
69   return OS;
70 }
71 
72 namespace {
73 
74 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
75 using Distribution = BlockFrequencyInfoImplBase::Distribution;
76 using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList;
77 using Scaled64 = BlockFrequencyInfoImplBase::Scaled64;
78 using LoopData = BlockFrequencyInfoImplBase::LoopData;
79 using Weight = BlockFrequencyInfoImplBase::Weight;
80 using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData;
81 
82 /// Dithering mass distributer.
83 ///
84 /// This class splits up a single mass into portions by weight, dithering to
85 /// spread out error.  No mass is lost.  The dithering precision depends on the
86 /// precision of the product of \a BlockMass and \a BranchProbability.
87 ///
88 /// The distribution algorithm follows.
89 ///
90 ///  1. Initialize by saving the sum of the weights in \a RemWeight and the
91 ///     mass to distribute in \a RemMass.
92 ///
93 ///  2. For each portion:
94 ///
95 ///      1. Construct a branch probability, P, as the portion's weight divided
96 ///         by the current value of \a RemWeight.
97 ///      2. Calculate the portion's mass as \a RemMass times P.
98 ///      3. Update \a RemWeight and \a RemMass at each portion by subtracting
99 ///         the current portion's weight and mass.
100 struct DitheringDistributer {
101   uint32_t RemWeight;
102   BlockMass RemMass;
103 
104   DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
105 
106   BlockMass takeMass(uint32_t Weight);
107 };
108 
109 } // end anonymous namespace
110 
111 DitheringDistributer::DitheringDistributer(Distribution &Dist,
112                                            const BlockMass &Mass) {
113   Dist.normalize();
114   RemWeight = Dist.Total;
115   RemMass = Mass;
116 }
117 
118 BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
119   assert(Weight && "invalid weight");
120   assert(Weight <= RemWeight);
121   BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
122 
123   // Decrement totals (dither).
124   RemWeight -= Weight;
125   RemMass -= Mass;
126   return Mass;
127 }
128 
129 void Distribution::add(const BlockNode &Node, uint64_t Amount,
130                        Weight::DistType Type) {
131   assert(Amount && "invalid weight of 0");
132   uint64_t NewTotal = Total + Amount;
133 
134   // Check for overflow.  It should be impossible to overflow twice.
135   bool IsOverflow = NewTotal < Total;
136   assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
137   DidOverflow |= IsOverflow;
138 
139   // Update the total.
140   Total = NewTotal;
141 
142   // Save the weight.
143   Weights.push_back(Weight(Type, Node, Amount));
144 }
145 
146 static void combineWeight(Weight &W, const Weight &OtherW) {
147   assert(OtherW.TargetNode.isValid());
148   if (!W.Amount) {
149     W = OtherW;
150     return;
151   }
152   assert(W.Type == OtherW.Type);
153   assert(W.TargetNode == OtherW.TargetNode);
154   assert(OtherW.Amount && "Expected non-zero weight");
155   if (W.Amount > W.Amount + OtherW.Amount)
156     // Saturate on overflow.
157     W.Amount = UINT64_MAX;
158   else
159     W.Amount += OtherW.Amount;
160 }
161 
162 static void combineWeightsBySorting(WeightList &Weights) {
163   // Sort so edges to the same node are adjacent.
164   llvm::sort(Weights, [](const Weight &L, const Weight &R) {
165     return L.TargetNode < R.TargetNode;
166   });
167 
168   // Combine adjacent edges.
169   WeightList::iterator O = Weights.begin();
170   for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
171        ++O, (I = L)) {
172     *O = *I;
173 
174     // Find the adjacent weights to the same node.
175     for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
176       combineWeight(*O, *L);
177   }
178 
179   // Erase extra entries.
180   Weights.erase(O, Weights.end());
181 }
182 
183 static void combineWeightsByHashing(WeightList &Weights) {
184   // Collect weights into a DenseMap.
185   using HashTable = DenseMap<BlockNode::IndexType, Weight>;
186 
187   HashTable Combined(NextPowerOf2(2 * Weights.size()));
188   for (const Weight &W : Weights)
189     combineWeight(Combined[W.TargetNode.Index], W);
190 
191   // Check whether anything changed.
192   if (Weights.size() == Combined.size())
193     return;
194 
195   // Fill in the new weights.
196   Weights.clear();
197   Weights.reserve(Combined.size());
198   for (const auto &I : Combined)
199     Weights.push_back(I.second);
200 }
201 
202 static void combineWeights(WeightList &Weights) {
203   // Use a hash table for many successors to keep this linear.
204   if (Weights.size() > 128) {
205     combineWeightsByHashing(Weights);
206     return;
207   }
208 
209   combineWeightsBySorting(Weights);
210 }
211 
212 static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
213   assert(Shift >= 0);
214   assert(Shift < 64);
215   if (!Shift)
216     return N;
217   return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
218 }
219 
220 void Distribution::normalize() {
221   // Early exit for termination nodes.
222   if (Weights.empty())
223     return;
224 
225   // Only bother if there are multiple successors.
226   if (Weights.size() > 1)
227     combineWeights(Weights);
228 
229   // Early exit when combined into a single successor.
230   if (Weights.size() == 1) {
231     Total = 1;
232     Weights.front().Amount = 1;
233     return;
234   }
235 
236   // Determine how much to shift right so that the total fits into 32-bits.
237   //
238   // If we shift at all, shift by 1 extra.  Otherwise, the lower limit of 1
239   // for each weight can cause a 32-bit overflow.
240   int Shift = 0;
241   if (DidOverflow)
242     Shift = 33;
243   else if (Total > UINT32_MAX)
244     Shift = 33 - countLeadingZeros(Total);
245 
246   // Early exit if nothing needs to be scaled.
247   if (!Shift) {
248     // If we didn't overflow then combineWeights() shouldn't have changed the
249     // sum of the weights, but let's double-check.
250     assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0),
251                                     [](uint64_t Sum, const Weight &W) {
252                       return Sum + W.Amount;
253                     }) &&
254            "Expected total to be correct");
255     return;
256   }
257 
258   // Recompute the total through accumulation (rather than shifting it) so that
259   // it's accurate after shifting and any changes combineWeights() made above.
260   Total = 0;
261 
262   // Sum the weights to each node and shift right if necessary.
263   for (Weight &W : Weights) {
264     // Scale down below UINT32_MAX.  Since Shift is larger than necessary, we
265     // can round here without concern about overflow.
266     assert(W.TargetNode.isValid());
267     W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
268     assert(W.Amount <= UINT32_MAX);
269 
270     // Update the total.
271     Total += W.Amount;
272   }
273   assert(Total <= UINT32_MAX);
274 }
275 
276 void BlockFrequencyInfoImplBase::clear() {
277   // Swap with a default-constructed std::vector, since std::vector<>::clear()
278   // does not actually clear heap storage.
279   std::vector<FrequencyData>().swap(Freqs);
280   IsIrrLoopHeader.clear();
281   std::vector<WorkingData>().swap(Working);
282   Loops.clear();
283 }
284 
285 /// Clear all memory not needed downstream.
286 ///
287 /// Releases all memory not used downstream.  In particular, saves Freqs.
288 static void cleanup(BlockFrequencyInfoImplBase &BFI) {
289   std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
290   SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader));
291   BFI.clear();
292   BFI.Freqs = std::move(SavedFreqs);
293   BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader);
294 }
295 
296 bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
297                                            const LoopData *OuterLoop,
298                                            const BlockNode &Pred,
299                                            const BlockNode &Succ,
300                                            uint64_t Weight) {
301   if (!Weight)
302     Weight = 1;
303 
304   auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
305     return OuterLoop && OuterLoop->isHeader(Node);
306   };
307 
308   BlockNode Resolved = Working[Succ.Index].getResolvedNode();
309 
310 #ifndef NDEBUG
311   auto debugSuccessor = [&](const char *Type) {
312     dbgs() << "  =>"
313            << " [" << Type << "] weight = " << Weight;
314     if (!isLoopHeader(Resolved))
315       dbgs() << ", succ = " << getBlockName(Succ);
316     if (Resolved != Succ)
317       dbgs() << ", resolved = " << getBlockName(Resolved);
318     dbgs() << "\n";
319   };
320   (void)debugSuccessor;
321 #endif
322 
323   if (isLoopHeader(Resolved)) {
324     LLVM_DEBUG(debugSuccessor("backedge"));
325     Dist.addBackedge(Resolved, Weight);
326     return true;
327   }
328 
329   if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
330     LLVM_DEBUG(debugSuccessor("  exit  "));
331     Dist.addExit(Resolved, Weight);
332     return true;
333   }
334 
335   if (Resolved < Pred) {
336     if (!isLoopHeader(Pred)) {
337       // If OuterLoop is an irreducible loop, we can't actually handle this.
338       assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
339              "unhandled irreducible control flow");
340 
341       // Irreducible backedge.  Abort.
342       LLVM_DEBUG(debugSuccessor("abort!!!"));
343       return false;
344     }
345 
346     // If "Pred" is a loop header, then this isn't really a backedge; rather,
347     // OuterLoop must be irreducible.  These false backedges can come only from
348     // secondary loop headers.
349     assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
350            "unhandled irreducible control flow");
351   }
352 
353   LLVM_DEBUG(debugSuccessor(" local  "));
354   Dist.addLocal(Resolved, Weight);
355   return true;
356 }
357 
358 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
359     const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
360   // Copy the exit map into Dist.
361   for (const auto &I : Loop.Exits)
362     if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
363                    I.second.getMass()))
364       // Irreducible backedge.
365       return false;
366 
367   return true;
368 }
369 
370 /// Compute the loop scale for a loop.
371 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
372   // Compute loop scale.
373   LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
374 
375   // Infinite loops need special handling. If we give the back edge an infinite
376   // mass, they may saturate all the other scales in the function down to 1,
377   // making all the other region temperatures look exactly the same. Choose an
378   // arbitrary scale to avoid these issues.
379   //
380   // FIXME: An alternate way would be to select a symbolic scale which is later
381   // replaced to be the maximum of all computed scales plus 1. This would
382   // appropriately describe the loop as having a large scale, without skewing
383   // the final frequency computation.
384   const Scaled64 InfiniteLoopScale(1, 12);
385 
386   // LoopScale == 1 / ExitMass
387   // ExitMass == HeadMass - BackedgeMass
388   BlockMass TotalBackedgeMass;
389   for (auto &Mass : Loop.BackedgeMass)
390     TotalBackedgeMass += Mass;
391   BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass;
392 
393   // Block scale stores the inverse of the scale. If this is an infinite loop,
394   // its exit mass will be zero. In this case, use an arbitrary scale for the
395   // loop scale.
396   Loop.Scale =
397       ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse();
398 
399   LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " ("
400                     << BlockMass::getFull() << " - " << TotalBackedgeMass
401                     << ")\n"
402                     << " - scale = " << Loop.Scale << "\n");
403 }
404 
405 /// Package up a loop.
406 void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
407   LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
408 
409   // Clear the subloop exits to prevent quadratic memory usage.
410   for (const BlockNode &M : Loop.Nodes) {
411     if (auto *Loop = Working[M.Index].getPackagedLoop())
412       Loop->Exits.clear();
413     LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
414   }
415   Loop.IsPackaged = true;
416 }
417 
418 #ifndef NDEBUG
419 static void debugAssign(const BlockFrequencyInfoImplBase &BFI,
420                         const DitheringDistributer &D, const BlockNode &T,
421                         const BlockMass &M, const char *Desc) {
422   dbgs() << "  => assign " << M << " (" << D.RemMass << ")";
423   if (Desc)
424     dbgs() << " [" << Desc << "]";
425   if (T.isValid())
426     dbgs() << " to " << BFI.getBlockName(T);
427   dbgs() << "\n";
428 }
429 #endif
430 
431 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
432                                                 LoopData *OuterLoop,
433                                                 Distribution &Dist) {
434   BlockMass Mass = Working[Source.Index].getMass();
435   LLVM_DEBUG(dbgs() << "  => mass:  " << Mass << "\n");
436 
437   // Distribute mass to successors as laid out in Dist.
438   DitheringDistributer D(Dist, Mass);
439 
440   for (const Weight &W : Dist.Weights) {
441     // Check for a local edge (non-backedge and non-exit).
442     BlockMass Taken = D.takeMass(W.Amount);
443     if (W.Type == Weight::Local) {
444       Working[W.TargetNode.Index].getMass() += Taken;
445       LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
446       continue;
447     }
448 
449     // Backedges and exits only make sense if we're processing a loop.
450     assert(OuterLoop && "backedge or exit outside of loop");
451 
452     // Check for a backedge.
453     if (W.Type == Weight::Backedge) {
454       OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken;
455       LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back"));
456       continue;
457     }
458 
459     // This must be an exit.
460     assert(W.Type == Weight::Exit);
461     OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
462     LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit"));
463   }
464 }
465 
466 static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
467                                      const Scaled64 &Min, const Scaled64 &Max) {
468   // Scale the Factor to a size that creates integers.  Ideally, integers would
469   // be scaled so that Max == UINT64_MAX so that they can be best
470   // differentiated.  However, in the presence of large frequency values, small
471   // frequencies are scaled down to 1, making it impossible to differentiate
472   // small, unequal numbers. When the spread between Min and Max frequencies
473   // fits well within MaxBits, we make the scale be at least 8.
474   const unsigned MaxBits = 64;
475   const unsigned SpreadBits = (Max / Min).lg();
476   Scaled64 ScalingFactor;
477   if (SpreadBits <= MaxBits - 3) {
478     // If the values are small enough, make the scaling factor at least 8 to
479     // allow distinguishing small values.
480     ScalingFactor = Min.inverse();
481     ScalingFactor <<= 3;
482   } else {
483     // If the values need more than MaxBits to be represented, saturate small
484     // frequency values down to 1 by using a scaling factor that benefits large
485     // frequency values.
486     ScalingFactor = Scaled64(1, MaxBits) / Max;
487   }
488 
489   // Translate the floats to integers.
490   LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
491                     << ", factor = " << ScalingFactor << "\n");
492   for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
493     Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor;
494     BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
495     LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
496                       << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled
497                       << ", int = " << BFI.Freqs[Index].Integer << "\n");
498   }
499 }
500 
501 /// Unwrap a loop package.
502 ///
503 /// Visits all the members of a loop, adjusting their BlockData according to
504 /// the loop's pseudo-node.
505 static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
506   LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
507                     << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
508                     << "\n");
509   Loop.Scale *= Loop.Mass.toScaled();
510   Loop.IsPackaged = false;
511   LLVM_DEBUG(dbgs() << "  => combined-scale = " << Loop.Scale << "\n");
512 
513   // Propagate the head scale through the loop.  Since members are visited in
514   // RPO, the head scale will be updated by the loop scale first, and then the
515   // final head scale will be used for updated the rest of the members.
516   for (const BlockNode &N : Loop.Nodes) {
517     const auto &Working = BFI.Working[N.Index];
518     Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
519                                        : BFI.Freqs[N.Index].Scaled;
520     Scaled64 New = Loop.Scale * F;
521     LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => "
522                       << New << "\n");
523     F = New;
524   }
525 }
526 
527 void BlockFrequencyInfoImplBase::unwrapLoops() {
528   // Set initial frequencies from loop-local masses.
529   for (size_t Index = 0; Index < Working.size(); ++Index)
530     Freqs[Index].Scaled = Working[Index].Mass.toScaled();
531 
532   for (LoopData &Loop : Loops)
533     unwrapLoop(*this, Loop);
534 }
535 
536 void BlockFrequencyInfoImplBase::finalizeMetrics() {
537   // Unwrap loop packages in reverse post-order, tracking min and max
538   // frequencies.
539   auto Min = Scaled64::getLargest();
540   auto Max = Scaled64::getZero();
541   for (size_t Index = 0; Index < Working.size(); ++Index) {
542     // Update min/max scale.
543     Min = std::min(Min, Freqs[Index].Scaled);
544     Max = std::max(Max, Freqs[Index].Scaled);
545   }
546 
547   // Convert to integers.
548   convertFloatingToInteger(*this, Min, Max);
549 
550   // Clean up data structures.
551   cleanup(*this);
552 
553   // Print out the final stats.
554   LLVM_DEBUG(dump());
555 }
556 
557 BlockFrequency
558 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
559   if (!Node.isValid()) {
560 #ifndef NDEBUG
561     if (CheckBFIUnknownBlockQueries) {
562       SmallString<256> Msg;
563       raw_svector_ostream OS(Msg);
564       OS << "*** Detected BFI query for unknown block " << getBlockName(Node);
565       report_fatal_error(OS.str());
566     }
567 #endif
568     return 0;
569   }
570   return Freqs[Node.Index].Integer;
571 }
572 
573 Optional<uint64_t>
574 BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F,
575                                                  const BlockNode &Node,
576                                                  bool AllowSynthetic) const {
577   return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency(),
578                                  AllowSynthetic);
579 }
580 
581 Optional<uint64_t>
582 BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F,
583                                                     uint64_t Freq,
584                                                     bool AllowSynthetic) const {
585   auto EntryCount = F.getEntryCount(AllowSynthetic);
586   if (!EntryCount)
587     return None;
588   // Use 128 bit APInt to do the arithmetic to avoid overflow.
589   APInt BlockCount(128, EntryCount.getCount());
590   APInt BlockFreq(128, Freq);
591   APInt EntryFreq(128, getEntryFreq());
592   BlockCount *= BlockFreq;
593   // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned
594   // lshr by 1 gives EntryFreq/2.
595   BlockCount = (BlockCount + EntryFreq.lshr(1)).udiv(EntryFreq);
596   return BlockCount.getLimitedValue();
597 }
598 
599 bool
600 BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) {
601   if (!Node.isValid())
602     return false;
603   return IsIrrLoopHeader.test(Node.Index);
604 }
605 
606 Scaled64
607 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
608   if (!Node.isValid())
609     return Scaled64::getZero();
610   return Freqs[Node.Index].Scaled;
611 }
612 
613 void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node,
614                                               uint64_t Freq) {
615   assert(Node.isValid() && "Expected valid node");
616   assert(Node.Index < Freqs.size() && "Expected legal index");
617   Freqs[Node.Index].Integer = Freq;
618 }
619 
620 std::string
621 BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
622   return {};
623 }
624 
625 std::string
626 BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
627   return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
628 }
629 
630 raw_ostream &
631 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
632                                            const BlockNode &Node) const {
633   return OS << getFloatingBlockFreq(Node);
634 }
635 
636 raw_ostream &
637 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
638                                            const BlockFrequency &Freq) const {
639   Scaled64 Block(Freq.getFrequency(), 0);
640   Scaled64 Entry(getEntryFreq(), 0);
641 
642   return OS << Block / Entry;
643 }
644 
645 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
646   Start = OuterLoop.getHeader();
647   Nodes.reserve(OuterLoop.Nodes.size());
648   for (auto N : OuterLoop.Nodes)
649     addNode(N);
650   indexNodes();
651 }
652 
653 void IrreducibleGraph::addNodesInFunction() {
654   Start = 0;
655   for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
656     if (!BFI.Working[Index].isPackaged())
657       addNode(Index);
658   indexNodes();
659 }
660 
661 void IrreducibleGraph::indexNodes() {
662   for (auto &I : Nodes)
663     Lookup[I.Node.Index] = &I;
664 }
665 
666 void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
667                                const BFIBase::LoopData *OuterLoop) {
668   if (OuterLoop && OuterLoop->isHeader(Succ))
669     return;
670   auto L = Lookup.find(Succ.Index);
671   if (L == Lookup.end())
672     return;
673   IrrNode &SuccIrr = *L->second;
674   Irr.Edges.push_back(&SuccIrr);
675   SuccIrr.Edges.push_front(&Irr);
676   ++SuccIrr.NumIn;
677 }
678 
679 namespace llvm {
680 
681 template <> struct GraphTraits<IrreducibleGraph> {
682   using GraphT = bfi_detail::IrreducibleGraph;
683   using NodeRef = const GraphT::IrrNode *;
684   using ChildIteratorType = GraphT::IrrNode::iterator;
685 
686   static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; }
687   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
688   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
689 };
690 
691 } // end namespace llvm
692 
693 /// Find extra irreducible headers.
694 ///
695 /// Find entry blocks and other blocks with backedges, which exist when \c G
696 /// contains irreducible sub-SCCs.
697 static void findIrreducibleHeaders(
698     const BlockFrequencyInfoImplBase &BFI,
699     const IrreducibleGraph &G,
700     const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
701     LoopData::NodeList &Headers, LoopData::NodeList &Others) {
702   // Map from nodes in the SCC to whether it's an entry block.
703   SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
704 
705   // InSCC also acts the set of nodes in the graph.  Seed it.
706   for (const auto *I : SCC)
707     InSCC[I] = false;
708 
709   for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
710     auto &Irr = *I->first;
711     for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
712       if (InSCC.count(P))
713         continue;
714 
715       // This is an entry block.
716       I->second = true;
717       Headers.push_back(Irr.Node);
718       LLVM_DEBUG(dbgs() << "  => entry = " << BFI.getBlockName(Irr.Node)
719                         << "\n");
720       break;
721     }
722   }
723   assert(Headers.size() >= 2 &&
724          "Expected irreducible CFG; -loop-info is likely invalid");
725   if (Headers.size() == InSCC.size()) {
726     // Every block is a header.
727     llvm::sort(Headers);
728     return;
729   }
730 
731   // Look for extra headers from irreducible sub-SCCs.
732   for (const auto &I : InSCC) {
733     // Entry blocks are already headers.
734     if (I.second)
735       continue;
736 
737     auto &Irr = *I.first;
738     for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
739       // Skip forward edges.
740       if (P->Node < Irr.Node)
741         continue;
742 
743       // Skip predecessors from entry blocks.  These can have inverted
744       // ordering.
745       if (InSCC.lookup(P))
746         continue;
747 
748       // Store the extra header.
749       Headers.push_back(Irr.Node);
750       LLVM_DEBUG(dbgs() << "  => extra = " << BFI.getBlockName(Irr.Node)
751                         << "\n");
752       break;
753     }
754     if (Headers.back() == Irr.Node)
755       // Added this as a header.
756       continue;
757 
758     // This is not a header.
759     Others.push_back(Irr.Node);
760     LLVM_DEBUG(dbgs() << "  => other = " << BFI.getBlockName(Irr.Node) << "\n");
761   }
762   llvm::sort(Headers);
763   llvm::sort(Others);
764 }
765 
766 static void createIrreducibleLoop(
767     BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
768     LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
769     const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
770   // Translate the SCC into RPO.
771   LLVM_DEBUG(dbgs() << " - found-scc\n");
772 
773   LoopData::NodeList Headers;
774   LoopData::NodeList Others;
775   findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
776 
777   auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
778                                 Headers.end(), Others.begin(), Others.end());
779 
780   // Update loop hierarchy.
781   for (const auto &N : Loop->Nodes)
782     if (BFI.Working[N.Index].isLoopHeader())
783       BFI.Working[N.Index].Loop->Parent = &*Loop;
784     else
785       BFI.Working[N.Index].Loop = &*Loop;
786 }
787 
788 iterator_range<std::list<LoopData>::iterator>
789 BlockFrequencyInfoImplBase::analyzeIrreducible(
790     const IrreducibleGraph &G, LoopData *OuterLoop,
791     std::list<LoopData>::iterator Insert) {
792   assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
793   auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
794 
795   for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
796     if (I->size() < 2)
797       continue;
798 
799     // Translate the SCC into RPO.
800     createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
801   }
802 
803   if (OuterLoop)
804     return make_range(std::next(Prev), Insert);
805   return make_range(Loops.begin(), Insert);
806 }
807 
808 void
809 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
810   OuterLoop.Exits.clear();
811   for (auto &Mass : OuterLoop.BackedgeMass)
812     Mass = BlockMass::getEmpty();
813   auto O = OuterLoop.Nodes.begin() + 1;
814   for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
815     if (!Working[I->Index].isPackaged())
816       *O++ = *I;
817   OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
818 }
819 
820 void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) {
821   assert(Loop.isIrreducible() && "this only makes sense on irreducible loops");
822 
823   // Since the loop has more than one header block, the mass flowing back into
824   // each header will be different. Adjust the mass in each header loop to
825   // reflect the masses flowing through back edges.
826   //
827   // To do this, we distribute the initial mass using the backedge masses
828   // as weights for the distribution.
829   BlockMass LoopMass = BlockMass::getFull();
830   Distribution Dist;
831 
832   LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n");
833   for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
834     auto &HeaderNode = Loop.Nodes[H];
835     auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)];
836     LLVM_DEBUG(dbgs() << " - Add back edge mass for node "
837                       << getBlockName(HeaderNode) << ": " << BackedgeMass
838                       << "\n");
839     if (BackedgeMass.getMass() > 0)
840       Dist.addLocal(HeaderNode, BackedgeMass.getMass());
841     else
842       LLVM_DEBUG(dbgs() << "   Nothing added. Back edge mass is zero\n");
843   }
844 
845   DitheringDistributer D(Dist, LoopMass);
846 
847   LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass
848                     << " to headers using above weights\n");
849   for (const Weight &W : Dist.Weights) {
850     BlockMass Taken = D.takeMass(W.Amount);
851     assert(W.Type == Weight::Local && "all weights should be local");
852     Working[W.TargetNode.Index].getMass() = Taken;
853     LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
854   }
855 }
856 
857 void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) {
858   BlockMass LoopMass = BlockMass::getFull();
859   DitheringDistributer D(Dist, LoopMass);
860   for (const Weight &W : Dist.Weights) {
861     BlockMass Taken = D.takeMass(W.Amount);
862     assert(W.Type == Weight::Local && "all weights should be local");
863     Working[W.TargetNode.Index].getMass() = Taken;
864     LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
865   }
866 }
867