1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loops should be simplified before this analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/GraphTraits.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/Config/llvm-config.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/Support/BlockFrequency.h" 22 #include "llvm/Support/BranchProbability.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ScaledNumber.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <cstddef> 31 #include <cstdint> 32 #include <iterator> 33 #include <list> 34 #include <numeric> 35 #include <utility> 36 #include <vector> 37 38 using namespace llvm; 39 using namespace llvm::bfi_detail; 40 41 #define DEBUG_TYPE "block-freq" 42 43 ScaledNumber<uint64_t> BlockMass::toScaled() const { 44 if (isFull()) 45 return ScaledNumber<uint64_t>(1, 0); 46 return ScaledNumber<uint64_t>(getMass() + 1, -64); 47 } 48 49 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 50 LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); } 51 #endif 52 53 static char getHexDigit(int N) { 54 assert(N < 16); 55 if (N < 10) 56 return '0' + N; 57 return 'a' + N - 10; 58 } 59 60 raw_ostream &BlockMass::print(raw_ostream &OS) const { 61 for (int Digits = 0; Digits < 16; ++Digits) 62 OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf); 63 return OS; 64 } 65 66 namespace { 67 68 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 69 using Distribution = BlockFrequencyInfoImplBase::Distribution; 70 using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList; 71 using Scaled64 = BlockFrequencyInfoImplBase::Scaled64; 72 using LoopData = BlockFrequencyInfoImplBase::LoopData; 73 using Weight = BlockFrequencyInfoImplBase::Weight; 74 using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData; 75 76 /// Dithering mass distributer. 77 /// 78 /// This class splits up a single mass into portions by weight, dithering to 79 /// spread out error. No mass is lost. The dithering precision depends on the 80 /// precision of the product of \a BlockMass and \a BranchProbability. 81 /// 82 /// The distribution algorithm follows. 83 /// 84 /// 1. Initialize by saving the sum of the weights in \a RemWeight and the 85 /// mass to distribute in \a RemMass. 86 /// 87 /// 2. For each portion: 88 /// 89 /// 1. Construct a branch probability, P, as the portion's weight divided 90 /// by the current value of \a RemWeight. 91 /// 2. Calculate the portion's mass as \a RemMass times P. 92 /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting 93 /// the current portion's weight and mass. 94 struct DitheringDistributer { 95 uint32_t RemWeight; 96 BlockMass RemMass; 97 98 DitheringDistributer(Distribution &Dist, const BlockMass &Mass); 99 100 BlockMass takeMass(uint32_t Weight); 101 }; 102 103 } // end anonymous namespace 104 105 DitheringDistributer::DitheringDistributer(Distribution &Dist, 106 const BlockMass &Mass) { 107 Dist.normalize(); 108 RemWeight = Dist.Total; 109 RemMass = Mass; 110 } 111 112 BlockMass DitheringDistributer::takeMass(uint32_t Weight) { 113 assert(Weight && "invalid weight"); 114 assert(Weight <= RemWeight); 115 BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight); 116 117 // Decrement totals (dither). 118 RemWeight -= Weight; 119 RemMass -= Mass; 120 return Mass; 121 } 122 123 void Distribution::add(const BlockNode &Node, uint64_t Amount, 124 Weight::DistType Type) { 125 assert(Amount && "invalid weight of 0"); 126 uint64_t NewTotal = Total + Amount; 127 128 // Check for overflow. It should be impossible to overflow twice. 129 bool IsOverflow = NewTotal < Total; 130 assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow"); 131 DidOverflow |= IsOverflow; 132 133 // Update the total. 134 Total = NewTotal; 135 136 // Save the weight. 137 Weights.push_back(Weight(Type, Node, Amount)); 138 } 139 140 static void combineWeight(Weight &W, const Weight &OtherW) { 141 assert(OtherW.TargetNode.isValid()); 142 if (!W.Amount) { 143 W = OtherW; 144 return; 145 } 146 assert(W.Type == OtherW.Type); 147 assert(W.TargetNode == OtherW.TargetNode); 148 assert(OtherW.Amount && "Expected non-zero weight"); 149 if (W.Amount > W.Amount + OtherW.Amount) 150 // Saturate on overflow. 151 W.Amount = UINT64_MAX; 152 else 153 W.Amount += OtherW.Amount; 154 } 155 156 static void combineWeightsBySorting(WeightList &Weights) { 157 // Sort so edges to the same node are adjacent. 158 llvm::sort(Weights, [](const Weight &L, const Weight &R) { 159 return L.TargetNode < R.TargetNode; 160 }); 161 162 // Combine adjacent edges. 163 WeightList::iterator O = Weights.begin(); 164 for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E; 165 ++O, (I = L)) { 166 *O = *I; 167 168 // Find the adjacent weights to the same node. 169 for (++L; L != E && I->TargetNode == L->TargetNode; ++L) 170 combineWeight(*O, *L); 171 } 172 173 // Erase extra entries. 174 Weights.erase(O, Weights.end()); 175 } 176 177 static void combineWeightsByHashing(WeightList &Weights) { 178 // Collect weights into a DenseMap. 179 using HashTable = DenseMap<BlockNode::IndexType, Weight>; 180 181 HashTable Combined(NextPowerOf2(2 * Weights.size())); 182 for (const Weight &W : Weights) 183 combineWeight(Combined[W.TargetNode.Index], W); 184 185 // Check whether anything changed. 186 if (Weights.size() == Combined.size()) 187 return; 188 189 // Fill in the new weights. 190 Weights.clear(); 191 Weights.reserve(Combined.size()); 192 for (const auto &I : Combined) 193 Weights.push_back(I.second); 194 } 195 196 static void combineWeights(WeightList &Weights) { 197 // Use a hash table for many successors to keep this linear. 198 if (Weights.size() > 128) { 199 combineWeightsByHashing(Weights); 200 return; 201 } 202 203 combineWeightsBySorting(Weights); 204 } 205 206 static uint64_t shiftRightAndRound(uint64_t N, int Shift) { 207 assert(Shift >= 0); 208 assert(Shift < 64); 209 if (!Shift) 210 return N; 211 return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1)); 212 } 213 214 void Distribution::normalize() { 215 // Early exit for termination nodes. 216 if (Weights.empty()) 217 return; 218 219 // Only bother if there are multiple successors. 220 if (Weights.size() > 1) 221 combineWeights(Weights); 222 223 // Early exit when combined into a single successor. 224 if (Weights.size() == 1) { 225 Total = 1; 226 Weights.front().Amount = 1; 227 return; 228 } 229 230 // Determine how much to shift right so that the total fits into 32-bits. 231 // 232 // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1 233 // for each weight can cause a 32-bit overflow. 234 int Shift = 0; 235 if (DidOverflow) 236 Shift = 33; 237 else if (Total > UINT32_MAX) 238 Shift = 33 - countLeadingZeros(Total); 239 240 // Early exit if nothing needs to be scaled. 241 if (!Shift) { 242 // If we didn't overflow then combineWeights() shouldn't have changed the 243 // sum of the weights, but let's double-check. 244 assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0), 245 [](uint64_t Sum, const Weight &W) { 246 return Sum + W.Amount; 247 }) && 248 "Expected total to be correct"); 249 return; 250 } 251 252 // Recompute the total through accumulation (rather than shifting it) so that 253 // it's accurate after shifting and any changes combineWeights() made above. 254 Total = 0; 255 256 // Sum the weights to each node and shift right if necessary. 257 for (Weight &W : Weights) { 258 // Scale down below UINT32_MAX. Since Shift is larger than necessary, we 259 // can round here without concern about overflow. 260 assert(W.TargetNode.isValid()); 261 W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift)); 262 assert(W.Amount <= UINT32_MAX); 263 264 // Update the total. 265 Total += W.Amount; 266 } 267 assert(Total <= UINT32_MAX); 268 } 269 270 void BlockFrequencyInfoImplBase::clear() { 271 // Swap with a default-constructed std::vector, since std::vector<>::clear() 272 // does not actually clear heap storage. 273 std::vector<FrequencyData>().swap(Freqs); 274 IsIrrLoopHeader.clear(); 275 std::vector<WorkingData>().swap(Working); 276 Loops.clear(); 277 } 278 279 /// Clear all memory not needed downstream. 280 /// 281 /// Releases all memory not used downstream. In particular, saves Freqs. 282 static void cleanup(BlockFrequencyInfoImplBase &BFI) { 283 std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs)); 284 SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader)); 285 BFI.clear(); 286 BFI.Freqs = std::move(SavedFreqs); 287 BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader); 288 } 289 290 bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist, 291 const LoopData *OuterLoop, 292 const BlockNode &Pred, 293 const BlockNode &Succ, 294 uint64_t Weight) { 295 if (!Weight) 296 Weight = 1; 297 298 auto isLoopHeader = [&OuterLoop](const BlockNode &Node) { 299 return OuterLoop && OuterLoop->isHeader(Node); 300 }; 301 302 BlockNode Resolved = Working[Succ.Index].getResolvedNode(); 303 304 #ifndef NDEBUG 305 auto debugSuccessor = [&](const char *Type) { 306 dbgs() << " =>" 307 << " [" << Type << "] weight = " << Weight; 308 if (!isLoopHeader(Resolved)) 309 dbgs() << ", succ = " << getBlockName(Succ); 310 if (Resolved != Succ) 311 dbgs() << ", resolved = " << getBlockName(Resolved); 312 dbgs() << "\n"; 313 }; 314 (void)debugSuccessor; 315 #endif 316 317 if (isLoopHeader(Resolved)) { 318 LLVM_DEBUG(debugSuccessor("backedge")); 319 Dist.addBackedge(Resolved, Weight); 320 return true; 321 } 322 323 if (Working[Resolved.Index].getContainingLoop() != OuterLoop) { 324 LLVM_DEBUG(debugSuccessor(" exit ")); 325 Dist.addExit(Resolved, Weight); 326 return true; 327 } 328 329 if (Resolved < Pred) { 330 if (!isLoopHeader(Pred)) { 331 // If OuterLoop is an irreducible loop, we can't actually handle this. 332 assert((!OuterLoop || !OuterLoop->isIrreducible()) && 333 "unhandled irreducible control flow"); 334 335 // Irreducible backedge. Abort. 336 LLVM_DEBUG(debugSuccessor("abort!!!")); 337 return false; 338 } 339 340 // If "Pred" is a loop header, then this isn't really a backedge; rather, 341 // OuterLoop must be irreducible. These false backedges can come only from 342 // secondary loop headers. 343 assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) && 344 "unhandled irreducible control flow"); 345 } 346 347 LLVM_DEBUG(debugSuccessor(" local ")); 348 Dist.addLocal(Resolved, Weight); 349 return true; 350 } 351 352 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist( 353 const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) { 354 // Copy the exit map into Dist. 355 for (const auto &I : Loop.Exits) 356 if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first, 357 I.second.getMass())) 358 // Irreducible backedge. 359 return false; 360 361 return true; 362 } 363 364 /// Compute the loop scale for a loop. 365 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) { 366 // Compute loop scale. 367 LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n"); 368 369 // Infinite loops need special handling. If we give the back edge an infinite 370 // mass, they may saturate all the other scales in the function down to 1, 371 // making all the other region temperatures look exactly the same. Choose an 372 // arbitrary scale to avoid these issues. 373 // 374 // FIXME: An alternate way would be to select a symbolic scale which is later 375 // replaced to be the maximum of all computed scales plus 1. This would 376 // appropriately describe the loop as having a large scale, without skewing 377 // the final frequency computation. 378 const Scaled64 InfiniteLoopScale(1, 12); 379 380 // LoopScale == 1 / ExitMass 381 // ExitMass == HeadMass - BackedgeMass 382 BlockMass TotalBackedgeMass; 383 for (auto &Mass : Loop.BackedgeMass) 384 TotalBackedgeMass += Mass; 385 BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass; 386 387 // Block scale stores the inverse of the scale. If this is an infinite loop, 388 // its exit mass will be zero. In this case, use an arbitrary scale for the 389 // loop scale. 390 Loop.Scale = 391 ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse(); 392 393 LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" 394 << BlockMass::getFull() << " - " << TotalBackedgeMass 395 << ")\n" 396 << " - scale = " << Loop.Scale << "\n"); 397 } 398 399 /// Package up a loop. 400 void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) { 401 LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n"); 402 403 // Clear the subloop exits to prevent quadratic memory usage. 404 for (const BlockNode &M : Loop.Nodes) { 405 if (auto *Loop = Working[M.Index].getPackagedLoop()) 406 Loop->Exits.clear(); 407 LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n"); 408 } 409 Loop.IsPackaged = true; 410 } 411 412 #ifndef NDEBUG 413 static void debugAssign(const BlockFrequencyInfoImplBase &BFI, 414 const DitheringDistributer &D, const BlockNode &T, 415 const BlockMass &M, const char *Desc) { 416 dbgs() << " => assign " << M << " (" << D.RemMass << ")"; 417 if (Desc) 418 dbgs() << " [" << Desc << "]"; 419 if (T.isValid()) 420 dbgs() << " to " << BFI.getBlockName(T); 421 dbgs() << "\n"; 422 } 423 #endif 424 425 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source, 426 LoopData *OuterLoop, 427 Distribution &Dist) { 428 BlockMass Mass = Working[Source.Index].getMass(); 429 LLVM_DEBUG(dbgs() << " => mass: " << Mass << "\n"); 430 431 // Distribute mass to successors as laid out in Dist. 432 DitheringDistributer D(Dist, Mass); 433 434 for (const Weight &W : Dist.Weights) { 435 // Check for a local edge (non-backedge and non-exit). 436 BlockMass Taken = D.takeMass(W.Amount); 437 if (W.Type == Weight::Local) { 438 Working[W.TargetNode.Index].getMass() += Taken; 439 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); 440 continue; 441 } 442 443 // Backedges and exits only make sense if we're processing a loop. 444 assert(OuterLoop && "backedge or exit outside of loop"); 445 446 // Check for a backedge. 447 if (W.Type == Weight::Backedge) { 448 OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken; 449 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back")); 450 continue; 451 } 452 453 // This must be an exit. 454 assert(W.Type == Weight::Exit); 455 OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken)); 456 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit")); 457 } 458 } 459 460 static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI, 461 const Scaled64 &Min, const Scaled64 &Max) { 462 // Scale the Factor to a size that creates integers. Ideally, integers would 463 // be scaled so that Max == UINT64_MAX so that they can be best 464 // differentiated. However, in the presence of large frequency values, small 465 // frequencies are scaled down to 1, making it impossible to differentiate 466 // small, unequal numbers. When the spread between Min and Max frequencies 467 // fits well within MaxBits, we make the scale be at least 8. 468 const unsigned MaxBits = 64; 469 const unsigned SpreadBits = (Max / Min).lg(); 470 Scaled64 ScalingFactor; 471 if (SpreadBits <= MaxBits - 3) { 472 // If the values are small enough, make the scaling factor at least 8 to 473 // allow distinguishing small values. 474 ScalingFactor = Min.inverse(); 475 ScalingFactor <<= 3; 476 } else { 477 // If the values need more than MaxBits to be represented, saturate small 478 // frequency values down to 1 by using a scaling factor that benefits large 479 // frequency values. 480 ScalingFactor = Scaled64(1, MaxBits) / Max; 481 } 482 483 // Translate the floats to integers. 484 LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max 485 << ", factor = " << ScalingFactor << "\n"); 486 for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) { 487 Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor; 488 BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>()); 489 LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = " 490 << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled 491 << ", int = " << BFI.Freqs[Index].Integer << "\n"); 492 } 493 } 494 495 /// Unwrap a loop package. 496 /// 497 /// Visits all the members of a loop, adjusting their BlockData according to 498 /// the loop's pseudo-node. 499 static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) { 500 LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop) 501 << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale 502 << "\n"); 503 Loop.Scale *= Loop.Mass.toScaled(); 504 Loop.IsPackaged = false; 505 LLVM_DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n"); 506 507 // Propagate the head scale through the loop. Since members are visited in 508 // RPO, the head scale will be updated by the loop scale first, and then the 509 // final head scale will be used for updated the rest of the members. 510 for (const BlockNode &N : Loop.Nodes) { 511 const auto &Working = BFI.Working[N.Index]; 512 Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale 513 : BFI.Freqs[N.Index].Scaled; 514 Scaled64 New = Loop.Scale * F; 515 LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " 516 << New << "\n"); 517 F = New; 518 } 519 } 520 521 void BlockFrequencyInfoImplBase::unwrapLoops() { 522 // Set initial frequencies from loop-local masses. 523 for (size_t Index = 0; Index < Working.size(); ++Index) 524 Freqs[Index].Scaled = Working[Index].Mass.toScaled(); 525 526 for (LoopData &Loop : Loops) 527 unwrapLoop(*this, Loop); 528 } 529 530 void BlockFrequencyInfoImplBase::finalizeMetrics() { 531 // Unwrap loop packages in reverse post-order, tracking min and max 532 // frequencies. 533 auto Min = Scaled64::getLargest(); 534 auto Max = Scaled64::getZero(); 535 for (size_t Index = 0; Index < Working.size(); ++Index) { 536 // Update min/max scale. 537 Min = std::min(Min, Freqs[Index].Scaled); 538 Max = std::max(Max, Freqs[Index].Scaled); 539 } 540 541 // Convert to integers. 542 convertFloatingToInteger(*this, Min, Max); 543 544 // Clean up data structures. 545 cleanup(*this); 546 547 // Print out the final stats. 548 LLVM_DEBUG(dump()); 549 } 550 551 BlockFrequency 552 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const { 553 if (!Node.isValid()) 554 return 0; 555 return Freqs[Node.Index].Integer; 556 } 557 558 Optional<uint64_t> 559 BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F, 560 const BlockNode &Node, 561 bool AllowSynthetic) const { 562 return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency(), 563 AllowSynthetic); 564 } 565 566 Optional<uint64_t> 567 BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F, 568 uint64_t Freq, 569 bool AllowSynthetic) const { 570 auto EntryCount = F.getEntryCount(AllowSynthetic); 571 if (!EntryCount) 572 return None; 573 // Use 128 bit APInt to do the arithmetic to avoid overflow. 574 APInt BlockCount(128, EntryCount.getCount()); 575 APInt BlockFreq(128, Freq); 576 APInt EntryFreq(128, getEntryFreq()); 577 BlockCount *= BlockFreq; 578 // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned 579 // lshr by 1 gives EntryFreq/2. 580 BlockCount = (BlockCount + EntryFreq.lshr(1)).udiv(EntryFreq); 581 return BlockCount.getLimitedValue(); 582 } 583 584 bool 585 BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) { 586 if (!Node.isValid()) 587 return false; 588 return IsIrrLoopHeader.test(Node.Index); 589 } 590 591 Scaled64 592 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const { 593 if (!Node.isValid()) 594 return Scaled64::getZero(); 595 return Freqs[Node.Index].Scaled; 596 } 597 598 void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node, 599 uint64_t Freq) { 600 assert(Node.isValid() && "Expected valid node"); 601 assert(Node.Index < Freqs.size() && "Expected legal index"); 602 Freqs[Node.Index].Integer = Freq; 603 } 604 605 std::string 606 BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const { 607 return {}; 608 } 609 610 std::string 611 BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const { 612 return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*"); 613 } 614 615 raw_ostream & 616 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, 617 const BlockNode &Node) const { 618 return OS << getFloatingBlockFreq(Node); 619 } 620 621 raw_ostream & 622 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, 623 const BlockFrequency &Freq) const { 624 Scaled64 Block(Freq.getFrequency(), 0); 625 Scaled64 Entry(getEntryFreq(), 0); 626 627 return OS << Block / Entry; 628 } 629 630 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) { 631 Start = OuterLoop.getHeader(); 632 Nodes.reserve(OuterLoop.Nodes.size()); 633 for (auto N : OuterLoop.Nodes) 634 addNode(N); 635 indexNodes(); 636 } 637 638 void IrreducibleGraph::addNodesInFunction() { 639 Start = 0; 640 for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) 641 if (!BFI.Working[Index].isPackaged()) 642 addNode(Index); 643 indexNodes(); 644 } 645 646 void IrreducibleGraph::indexNodes() { 647 for (auto &I : Nodes) 648 Lookup[I.Node.Index] = &I; 649 } 650 651 void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ, 652 const BFIBase::LoopData *OuterLoop) { 653 if (OuterLoop && OuterLoop->isHeader(Succ)) 654 return; 655 auto L = Lookup.find(Succ.Index); 656 if (L == Lookup.end()) 657 return; 658 IrrNode &SuccIrr = *L->second; 659 Irr.Edges.push_back(&SuccIrr); 660 SuccIrr.Edges.push_front(&Irr); 661 ++SuccIrr.NumIn; 662 } 663 664 namespace llvm { 665 666 template <> struct GraphTraits<IrreducibleGraph> { 667 using GraphT = bfi_detail::IrreducibleGraph; 668 using NodeRef = const GraphT::IrrNode *; 669 using ChildIteratorType = GraphT::IrrNode::iterator; 670 671 static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; } 672 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } 673 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } 674 }; 675 676 } // end namespace llvm 677 678 /// Find extra irreducible headers. 679 /// 680 /// Find entry blocks and other blocks with backedges, which exist when \c G 681 /// contains irreducible sub-SCCs. 682 static void findIrreducibleHeaders( 683 const BlockFrequencyInfoImplBase &BFI, 684 const IrreducibleGraph &G, 685 const std::vector<const IrreducibleGraph::IrrNode *> &SCC, 686 LoopData::NodeList &Headers, LoopData::NodeList &Others) { 687 // Map from nodes in the SCC to whether it's an entry block. 688 SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC; 689 690 // InSCC also acts the set of nodes in the graph. Seed it. 691 for (const auto *I : SCC) 692 InSCC[I] = false; 693 694 for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) { 695 auto &Irr = *I->first; 696 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { 697 if (InSCC.count(P)) 698 continue; 699 700 // This is an entry block. 701 I->second = true; 702 Headers.push_back(Irr.Node); 703 LLVM_DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node) 704 << "\n"); 705 break; 706 } 707 } 708 assert(Headers.size() >= 2 && 709 "Expected irreducible CFG; -loop-info is likely invalid"); 710 if (Headers.size() == InSCC.size()) { 711 // Every block is a header. 712 llvm::sort(Headers); 713 return; 714 } 715 716 // Look for extra headers from irreducible sub-SCCs. 717 for (const auto &I : InSCC) { 718 // Entry blocks are already headers. 719 if (I.second) 720 continue; 721 722 auto &Irr = *I.first; 723 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { 724 // Skip forward edges. 725 if (P->Node < Irr.Node) 726 continue; 727 728 // Skip predecessors from entry blocks. These can have inverted 729 // ordering. 730 if (InSCC.lookup(P)) 731 continue; 732 733 // Store the extra header. 734 Headers.push_back(Irr.Node); 735 LLVM_DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node) 736 << "\n"); 737 break; 738 } 739 if (Headers.back() == Irr.Node) 740 // Added this as a header. 741 continue; 742 743 // This is not a header. 744 Others.push_back(Irr.Node); 745 LLVM_DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n"); 746 } 747 llvm::sort(Headers); 748 llvm::sort(Others); 749 } 750 751 static void createIrreducibleLoop( 752 BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G, 753 LoopData *OuterLoop, std::list<LoopData>::iterator Insert, 754 const std::vector<const IrreducibleGraph::IrrNode *> &SCC) { 755 // Translate the SCC into RPO. 756 LLVM_DEBUG(dbgs() << " - found-scc\n"); 757 758 LoopData::NodeList Headers; 759 LoopData::NodeList Others; 760 findIrreducibleHeaders(BFI, G, SCC, Headers, Others); 761 762 auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(), 763 Headers.end(), Others.begin(), Others.end()); 764 765 // Update loop hierarchy. 766 for (const auto &N : Loop->Nodes) 767 if (BFI.Working[N.Index].isLoopHeader()) 768 BFI.Working[N.Index].Loop->Parent = &*Loop; 769 else 770 BFI.Working[N.Index].Loop = &*Loop; 771 } 772 773 iterator_range<std::list<LoopData>::iterator> 774 BlockFrequencyInfoImplBase::analyzeIrreducible( 775 const IrreducibleGraph &G, LoopData *OuterLoop, 776 std::list<LoopData>::iterator Insert) { 777 assert((OuterLoop == nullptr) == (Insert == Loops.begin())); 778 auto Prev = OuterLoop ? std::prev(Insert) : Loops.end(); 779 780 for (auto I = scc_begin(G); !I.isAtEnd(); ++I) { 781 if (I->size() < 2) 782 continue; 783 784 // Translate the SCC into RPO. 785 createIrreducibleLoop(*this, G, OuterLoop, Insert, *I); 786 } 787 788 if (OuterLoop) 789 return make_range(std::next(Prev), Insert); 790 return make_range(Loops.begin(), Insert); 791 } 792 793 void 794 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) { 795 OuterLoop.Exits.clear(); 796 for (auto &Mass : OuterLoop.BackedgeMass) 797 Mass = BlockMass::getEmpty(); 798 auto O = OuterLoop.Nodes.begin() + 1; 799 for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I) 800 if (!Working[I->Index].isPackaged()) 801 *O++ = *I; 802 OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end()); 803 } 804 805 void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) { 806 assert(Loop.isIrreducible() && "this only makes sense on irreducible loops"); 807 808 // Since the loop has more than one header block, the mass flowing back into 809 // each header will be different. Adjust the mass in each header loop to 810 // reflect the masses flowing through back edges. 811 // 812 // To do this, we distribute the initial mass using the backedge masses 813 // as weights for the distribution. 814 BlockMass LoopMass = BlockMass::getFull(); 815 Distribution Dist; 816 817 LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n"); 818 for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { 819 auto &HeaderNode = Loop.Nodes[H]; 820 auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)]; 821 LLVM_DEBUG(dbgs() << " - Add back edge mass for node " 822 << getBlockName(HeaderNode) << ": " << BackedgeMass 823 << "\n"); 824 if (BackedgeMass.getMass() > 0) 825 Dist.addLocal(HeaderNode, BackedgeMass.getMass()); 826 else 827 LLVM_DEBUG(dbgs() << " Nothing added. Back edge mass is zero\n"); 828 } 829 830 DitheringDistributer D(Dist, LoopMass); 831 832 LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass 833 << " to headers using above weights\n"); 834 for (const Weight &W : Dist.Weights) { 835 BlockMass Taken = D.takeMass(W.Amount); 836 assert(W.Type == Weight::Local && "all weights should be local"); 837 Working[W.TargetNode.Index].getMass() = Taken; 838 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); 839 } 840 } 841 842 void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) { 843 BlockMass LoopMass = BlockMass::getFull(); 844 DitheringDistributer D(Dist, LoopMass); 845 for (const Weight &W : Dist.Weights) { 846 BlockMass Taken = D.takeMass(W.Amount); 847 assert(W.Type == Weight::Local && "all weights should be local"); 848 Working[W.TargetNode.Index].getMass() = Taken; 849 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); 850 } 851 } 852