xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/BlockFrequencyInfoImpl.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/Support/BlockFrequency.h"
22 #include "llvm/Support/BranchProbability.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ScaledNumber.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <iterator>
33 #include <list>
34 #include <numeric>
35 #include <utility>
36 #include <vector>
37 
38 using namespace llvm;
39 using namespace llvm::bfi_detail;
40 
41 #define DEBUG_TYPE "block-freq"
42 
43 ScaledNumber<uint64_t> BlockMass::toScaled() const {
44   if (isFull())
45     return ScaledNumber<uint64_t>(1, 0);
46   return ScaledNumber<uint64_t>(getMass() + 1, -64);
47 }
48 
49 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
50 LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); }
51 #endif
52 
53 static char getHexDigit(int N) {
54   assert(N < 16);
55   if (N < 10)
56     return '0' + N;
57   return 'a' + N - 10;
58 }
59 
60 raw_ostream &BlockMass::print(raw_ostream &OS) const {
61   for (int Digits = 0; Digits < 16; ++Digits)
62     OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
63   return OS;
64 }
65 
66 namespace {
67 
68 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
69 using Distribution = BlockFrequencyInfoImplBase::Distribution;
70 using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList;
71 using Scaled64 = BlockFrequencyInfoImplBase::Scaled64;
72 using LoopData = BlockFrequencyInfoImplBase::LoopData;
73 using Weight = BlockFrequencyInfoImplBase::Weight;
74 using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData;
75 
76 /// Dithering mass distributer.
77 ///
78 /// This class splits up a single mass into portions by weight, dithering to
79 /// spread out error.  No mass is lost.  The dithering precision depends on the
80 /// precision of the product of \a BlockMass and \a BranchProbability.
81 ///
82 /// The distribution algorithm follows.
83 ///
84 ///  1. Initialize by saving the sum of the weights in \a RemWeight and the
85 ///     mass to distribute in \a RemMass.
86 ///
87 ///  2. For each portion:
88 ///
89 ///      1. Construct a branch probability, P, as the portion's weight divided
90 ///         by the current value of \a RemWeight.
91 ///      2. Calculate the portion's mass as \a RemMass times P.
92 ///      3. Update \a RemWeight and \a RemMass at each portion by subtracting
93 ///         the current portion's weight and mass.
94 struct DitheringDistributer {
95   uint32_t RemWeight;
96   BlockMass RemMass;
97 
98   DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
99 
100   BlockMass takeMass(uint32_t Weight);
101 };
102 
103 } // end anonymous namespace
104 
105 DitheringDistributer::DitheringDistributer(Distribution &Dist,
106                                            const BlockMass &Mass) {
107   Dist.normalize();
108   RemWeight = Dist.Total;
109   RemMass = Mass;
110 }
111 
112 BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
113   assert(Weight && "invalid weight");
114   assert(Weight <= RemWeight);
115   BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
116 
117   // Decrement totals (dither).
118   RemWeight -= Weight;
119   RemMass -= Mass;
120   return Mass;
121 }
122 
123 void Distribution::add(const BlockNode &Node, uint64_t Amount,
124                        Weight::DistType Type) {
125   assert(Amount && "invalid weight of 0");
126   uint64_t NewTotal = Total + Amount;
127 
128   // Check for overflow.  It should be impossible to overflow twice.
129   bool IsOverflow = NewTotal < Total;
130   assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
131   DidOverflow |= IsOverflow;
132 
133   // Update the total.
134   Total = NewTotal;
135 
136   // Save the weight.
137   Weights.push_back(Weight(Type, Node, Amount));
138 }
139 
140 static void combineWeight(Weight &W, const Weight &OtherW) {
141   assert(OtherW.TargetNode.isValid());
142   if (!W.Amount) {
143     W = OtherW;
144     return;
145   }
146   assert(W.Type == OtherW.Type);
147   assert(W.TargetNode == OtherW.TargetNode);
148   assert(OtherW.Amount && "Expected non-zero weight");
149   if (W.Amount > W.Amount + OtherW.Amount)
150     // Saturate on overflow.
151     W.Amount = UINT64_MAX;
152   else
153     W.Amount += OtherW.Amount;
154 }
155 
156 static void combineWeightsBySorting(WeightList &Weights) {
157   // Sort so edges to the same node are adjacent.
158   llvm::sort(Weights, [](const Weight &L, const Weight &R) {
159     return L.TargetNode < R.TargetNode;
160   });
161 
162   // Combine adjacent edges.
163   WeightList::iterator O = Weights.begin();
164   for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
165        ++O, (I = L)) {
166     *O = *I;
167 
168     // Find the adjacent weights to the same node.
169     for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
170       combineWeight(*O, *L);
171   }
172 
173   // Erase extra entries.
174   Weights.erase(O, Weights.end());
175 }
176 
177 static void combineWeightsByHashing(WeightList &Weights) {
178   // Collect weights into a DenseMap.
179   using HashTable = DenseMap<BlockNode::IndexType, Weight>;
180 
181   HashTable Combined(NextPowerOf2(2 * Weights.size()));
182   for (const Weight &W : Weights)
183     combineWeight(Combined[W.TargetNode.Index], W);
184 
185   // Check whether anything changed.
186   if (Weights.size() == Combined.size())
187     return;
188 
189   // Fill in the new weights.
190   Weights.clear();
191   Weights.reserve(Combined.size());
192   for (const auto &I : Combined)
193     Weights.push_back(I.second);
194 }
195 
196 static void combineWeights(WeightList &Weights) {
197   // Use a hash table for many successors to keep this linear.
198   if (Weights.size() > 128) {
199     combineWeightsByHashing(Weights);
200     return;
201   }
202 
203   combineWeightsBySorting(Weights);
204 }
205 
206 static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
207   assert(Shift >= 0);
208   assert(Shift < 64);
209   if (!Shift)
210     return N;
211   return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
212 }
213 
214 void Distribution::normalize() {
215   // Early exit for termination nodes.
216   if (Weights.empty())
217     return;
218 
219   // Only bother if there are multiple successors.
220   if (Weights.size() > 1)
221     combineWeights(Weights);
222 
223   // Early exit when combined into a single successor.
224   if (Weights.size() == 1) {
225     Total = 1;
226     Weights.front().Amount = 1;
227     return;
228   }
229 
230   // Determine how much to shift right so that the total fits into 32-bits.
231   //
232   // If we shift at all, shift by 1 extra.  Otherwise, the lower limit of 1
233   // for each weight can cause a 32-bit overflow.
234   int Shift = 0;
235   if (DidOverflow)
236     Shift = 33;
237   else if (Total > UINT32_MAX)
238     Shift = 33 - countLeadingZeros(Total);
239 
240   // Early exit if nothing needs to be scaled.
241   if (!Shift) {
242     // If we didn't overflow then combineWeights() shouldn't have changed the
243     // sum of the weights, but let's double-check.
244     assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0),
245                                     [](uint64_t Sum, const Weight &W) {
246                       return Sum + W.Amount;
247                     }) &&
248            "Expected total to be correct");
249     return;
250   }
251 
252   // Recompute the total through accumulation (rather than shifting it) so that
253   // it's accurate after shifting and any changes combineWeights() made above.
254   Total = 0;
255 
256   // Sum the weights to each node and shift right if necessary.
257   for (Weight &W : Weights) {
258     // Scale down below UINT32_MAX.  Since Shift is larger than necessary, we
259     // can round here without concern about overflow.
260     assert(W.TargetNode.isValid());
261     W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
262     assert(W.Amount <= UINT32_MAX);
263 
264     // Update the total.
265     Total += W.Amount;
266   }
267   assert(Total <= UINT32_MAX);
268 }
269 
270 void BlockFrequencyInfoImplBase::clear() {
271   // Swap with a default-constructed std::vector, since std::vector<>::clear()
272   // does not actually clear heap storage.
273   std::vector<FrequencyData>().swap(Freqs);
274   IsIrrLoopHeader.clear();
275   std::vector<WorkingData>().swap(Working);
276   Loops.clear();
277 }
278 
279 /// Clear all memory not needed downstream.
280 ///
281 /// Releases all memory not used downstream.  In particular, saves Freqs.
282 static void cleanup(BlockFrequencyInfoImplBase &BFI) {
283   std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
284   SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader));
285   BFI.clear();
286   BFI.Freqs = std::move(SavedFreqs);
287   BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader);
288 }
289 
290 bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
291                                            const LoopData *OuterLoop,
292                                            const BlockNode &Pred,
293                                            const BlockNode &Succ,
294                                            uint64_t Weight) {
295   if (!Weight)
296     Weight = 1;
297 
298   auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
299     return OuterLoop && OuterLoop->isHeader(Node);
300   };
301 
302   BlockNode Resolved = Working[Succ.Index].getResolvedNode();
303 
304 #ifndef NDEBUG
305   auto debugSuccessor = [&](const char *Type) {
306     dbgs() << "  =>"
307            << " [" << Type << "] weight = " << Weight;
308     if (!isLoopHeader(Resolved))
309       dbgs() << ", succ = " << getBlockName(Succ);
310     if (Resolved != Succ)
311       dbgs() << ", resolved = " << getBlockName(Resolved);
312     dbgs() << "\n";
313   };
314   (void)debugSuccessor;
315 #endif
316 
317   if (isLoopHeader(Resolved)) {
318     LLVM_DEBUG(debugSuccessor("backedge"));
319     Dist.addBackedge(Resolved, Weight);
320     return true;
321   }
322 
323   if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
324     LLVM_DEBUG(debugSuccessor("  exit  "));
325     Dist.addExit(Resolved, Weight);
326     return true;
327   }
328 
329   if (Resolved < Pred) {
330     if (!isLoopHeader(Pred)) {
331       // If OuterLoop is an irreducible loop, we can't actually handle this.
332       assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
333              "unhandled irreducible control flow");
334 
335       // Irreducible backedge.  Abort.
336       LLVM_DEBUG(debugSuccessor("abort!!!"));
337       return false;
338     }
339 
340     // If "Pred" is a loop header, then this isn't really a backedge; rather,
341     // OuterLoop must be irreducible.  These false backedges can come only from
342     // secondary loop headers.
343     assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
344            "unhandled irreducible control flow");
345   }
346 
347   LLVM_DEBUG(debugSuccessor(" local  "));
348   Dist.addLocal(Resolved, Weight);
349   return true;
350 }
351 
352 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
353     const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
354   // Copy the exit map into Dist.
355   for (const auto &I : Loop.Exits)
356     if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
357                    I.second.getMass()))
358       // Irreducible backedge.
359       return false;
360 
361   return true;
362 }
363 
364 /// Compute the loop scale for a loop.
365 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
366   // Compute loop scale.
367   LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
368 
369   // Infinite loops need special handling. If we give the back edge an infinite
370   // mass, they may saturate all the other scales in the function down to 1,
371   // making all the other region temperatures look exactly the same. Choose an
372   // arbitrary scale to avoid these issues.
373   //
374   // FIXME: An alternate way would be to select a symbolic scale which is later
375   // replaced to be the maximum of all computed scales plus 1. This would
376   // appropriately describe the loop as having a large scale, without skewing
377   // the final frequency computation.
378   const Scaled64 InfiniteLoopScale(1, 12);
379 
380   // LoopScale == 1 / ExitMass
381   // ExitMass == HeadMass - BackedgeMass
382   BlockMass TotalBackedgeMass;
383   for (auto &Mass : Loop.BackedgeMass)
384     TotalBackedgeMass += Mass;
385   BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass;
386 
387   // Block scale stores the inverse of the scale. If this is an infinite loop,
388   // its exit mass will be zero. In this case, use an arbitrary scale for the
389   // loop scale.
390   Loop.Scale =
391       ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse();
392 
393   LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " ("
394                     << BlockMass::getFull() << " - " << TotalBackedgeMass
395                     << ")\n"
396                     << " - scale = " << Loop.Scale << "\n");
397 }
398 
399 /// Package up a loop.
400 void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
401   LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
402 
403   // Clear the subloop exits to prevent quadratic memory usage.
404   for (const BlockNode &M : Loop.Nodes) {
405     if (auto *Loop = Working[M.Index].getPackagedLoop())
406       Loop->Exits.clear();
407     LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
408   }
409   Loop.IsPackaged = true;
410 }
411 
412 #ifndef NDEBUG
413 static void debugAssign(const BlockFrequencyInfoImplBase &BFI,
414                         const DitheringDistributer &D, const BlockNode &T,
415                         const BlockMass &M, const char *Desc) {
416   dbgs() << "  => assign " << M << " (" << D.RemMass << ")";
417   if (Desc)
418     dbgs() << " [" << Desc << "]";
419   if (T.isValid())
420     dbgs() << " to " << BFI.getBlockName(T);
421   dbgs() << "\n";
422 }
423 #endif
424 
425 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
426                                                 LoopData *OuterLoop,
427                                                 Distribution &Dist) {
428   BlockMass Mass = Working[Source.Index].getMass();
429   LLVM_DEBUG(dbgs() << "  => mass:  " << Mass << "\n");
430 
431   // Distribute mass to successors as laid out in Dist.
432   DitheringDistributer D(Dist, Mass);
433 
434   for (const Weight &W : Dist.Weights) {
435     // Check for a local edge (non-backedge and non-exit).
436     BlockMass Taken = D.takeMass(W.Amount);
437     if (W.Type == Weight::Local) {
438       Working[W.TargetNode.Index].getMass() += Taken;
439       LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
440       continue;
441     }
442 
443     // Backedges and exits only make sense if we're processing a loop.
444     assert(OuterLoop && "backedge or exit outside of loop");
445 
446     // Check for a backedge.
447     if (W.Type == Weight::Backedge) {
448       OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken;
449       LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back"));
450       continue;
451     }
452 
453     // This must be an exit.
454     assert(W.Type == Weight::Exit);
455     OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
456     LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit"));
457   }
458 }
459 
460 static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
461                                      const Scaled64 &Min, const Scaled64 &Max) {
462   // Scale the Factor to a size that creates integers.  Ideally, integers would
463   // be scaled so that Max == UINT64_MAX so that they can be best
464   // differentiated.  However, in the presence of large frequency values, small
465   // frequencies are scaled down to 1, making it impossible to differentiate
466   // small, unequal numbers. When the spread between Min and Max frequencies
467   // fits well within MaxBits, we make the scale be at least 8.
468   const unsigned MaxBits = 64;
469   const unsigned SpreadBits = (Max / Min).lg();
470   Scaled64 ScalingFactor;
471   if (SpreadBits <= MaxBits - 3) {
472     // If the values are small enough, make the scaling factor at least 8 to
473     // allow distinguishing small values.
474     ScalingFactor = Min.inverse();
475     ScalingFactor <<= 3;
476   } else {
477     // If the values need more than MaxBits to be represented, saturate small
478     // frequency values down to 1 by using a scaling factor that benefits large
479     // frequency values.
480     ScalingFactor = Scaled64(1, MaxBits) / Max;
481   }
482 
483   // Translate the floats to integers.
484   LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
485                     << ", factor = " << ScalingFactor << "\n");
486   for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
487     Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor;
488     BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
489     LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
490                       << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled
491                       << ", int = " << BFI.Freqs[Index].Integer << "\n");
492   }
493 }
494 
495 /// Unwrap a loop package.
496 ///
497 /// Visits all the members of a loop, adjusting their BlockData according to
498 /// the loop's pseudo-node.
499 static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
500   LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
501                     << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
502                     << "\n");
503   Loop.Scale *= Loop.Mass.toScaled();
504   Loop.IsPackaged = false;
505   LLVM_DEBUG(dbgs() << "  => combined-scale = " << Loop.Scale << "\n");
506 
507   // Propagate the head scale through the loop.  Since members are visited in
508   // RPO, the head scale will be updated by the loop scale first, and then the
509   // final head scale will be used for updated the rest of the members.
510   for (const BlockNode &N : Loop.Nodes) {
511     const auto &Working = BFI.Working[N.Index];
512     Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
513                                        : BFI.Freqs[N.Index].Scaled;
514     Scaled64 New = Loop.Scale * F;
515     LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => "
516                       << New << "\n");
517     F = New;
518   }
519 }
520 
521 void BlockFrequencyInfoImplBase::unwrapLoops() {
522   // Set initial frequencies from loop-local masses.
523   for (size_t Index = 0; Index < Working.size(); ++Index)
524     Freqs[Index].Scaled = Working[Index].Mass.toScaled();
525 
526   for (LoopData &Loop : Loops)
527     unwrapLoop(*this, Loop);
528 }
529 
530 void BlockFrequencyInfoImplBase::finalizeMetrics() {
531   // Unwrap loop packages in reverse post-order, tracking min and max
532   // frequencies.
533   auto Min = Scaled64::getLargest();
534   auto Max = Scaled64::getZero();
535   for (size_t Index = 0; Index < Working.size(); ++Index) {
536     // Update min/max scale.
537     Min = std::min(Min, Freqs[Index].Scaled);
538     Max = std::max(Max, Freqs[Index].Scaled);
539   }
540 
541   // Convert to integers.
542   convertFloatingToInteger(*this, Min, Max);
543 
544   // Clean up data structures.
545   cleanup(*this);
546 
547   // Print out the final stats.
548   LLVM_DEBUG(dump());
549 }
550 
551 BlockFrequency
552 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
553   if (!Node.isValid())
554     return 0;
555   return Freqs[Node.Index].Integer;
556 }
557 
558 Optional<uint64_t>
559 BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F,
560                                                  const BlockNode &Node,
561                                                  bool AllowSynthetic) const {
562   return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency(),
563                                  AllowSynthetic);
564 }
565 
566 Optional<uint64_t>
567 BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F,
568                                                     uint64_t Freq,
569                                                     bool AllowSynthetic) const {
570   auto EntryCount = F.getEntryCount(AllowSynthetic);
571   if (!EntryCount)
572     return None;
573   // Use 128 bit APInt to do the arithmetic to avoid overflow.
574   APInt BlockCount(128, EntryCount.getCount());
575   APInt BlockFreq(128, Freq);
576   APInt EntryFreq(128, getEntryFreq());
577   BlockCount *= BlockFreq;
578   // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned
579   // lshr by 1 gives EntryFreq/2.
580   BlockCount = (BlockCount + EntryFreq.lshr(1)).udiv(EntryFreq);
581   return BlockCount.getLimitedValue();
582 }
583 
584 bool
585 BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) {
586   if (!Node.isValid())
587     return false;
588   return IsIrrLoopHeader.test(Node.Index);
589 }
590 
591 Scaled64
592 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
593   if (!Node.isValid())
594     return Scaled64::getZero();
595   return Freqs[Node.Index].Scaled;
596 }
597 
598 void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node,
599                                               uint64_t Freq) {
600   assert(Node.isValid() && "Expected valid node");
601   assert(Node.Index < Freqs.size() && "Expected legal index");
602   Freqs[Node.Index].Integer = Freq;
603 }
604 
605 std::string
606 BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
607   return {};
608 }
609 
610 std::string
611 BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
612   return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
613 }
614 
615 raw_ostream &
616 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
617                                            const BlockNode &Node) const {
618   return OS << getFloatingBlockFreq(Node);
619 }
620 
621 raw_ostream &
622 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
623                                            const BlockFrequency &Freq) const {
624   Scaled64 Block(Freq.getFrequency(), 0);
625   Scaled64 Entry(getEntryFreq(), 0);
626 
627   return OS << Block / Entry;
628 }
629 
630 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
631   Start = OuterLoop.getHeader();
632   Nodes.reserve(OuterLoop.Nodes.size());
633   for (auto N : OuterLoop.Nodes)
634     addNode(N);
635   indexNodes();
636 }
637 
638 void IrreducibleGraph::addNodesInFunction() {
639   Start = 0;
640   for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
641     if (!BFI.Working[Index].isPackaged())
642       addNode(Index);
643   indexNodes();
644 }
645 
646 void IrreducibleGraph::indexNodes() {
647   for (auto &I : Nodes)
648     Lookup[I.Node.Index] = &I;
649 }
650 
651 void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
652                                const BFIBase::LoopData *OuterLoop) {
653   if (OuterLoop && OuterLoop->isHeader(Succ))
654     return;
655   auto L = Lookup.find(Succ.Index);
656   if (L == Lookup.end())
657     return;
658   IrrNode &SuccIrr = *L->second;
659   Irr.Edges.push_back(&SuccIrr);
660   SuccIrr.Edges.push_front(&Irr);
661   ++SuccIrr.NumIn;
662 }
663 
664 namespace llvm {
665 
666 template <> struct GraphTraits<IrreducibleGraph> {
667   using GraphT = bfi_detail::IrreducibleGraph;
668   using NodeRef = const GraphT::IrrNode *;
669   using ChildIteratorType = GraphT::IrrNode::iterator;
670 
671   static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; }
672   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
673   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
674 };
675 
676 } // end namespace llvm
677 
678 /// Find extra irreducible headers.
679 ///
680 /// Find entry blocks and other blocks with backedges, which exist when \c G
681 /// contains irreducible sub-SCCs.
682 static void findIrreducibleHeaders(
683     const BlockFrequencyInfoImplBase &BFI,
684     const IrreducibleGraph &G,
685     const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
686     LoopData::NodeList &Headers, LoopData::NodeList &Others) {
687   // Map from nodes in the SCC to whether it's an entry block.
688   SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
689 
690   // InSCC also acts the set of nodes in the graph.  Seed it.
691   for (const auto *I : SCC)
692     InSCC[I] = false;
693 
694   for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
695     auto &Irr = *I->first;
696     for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
697       if (InSCC.count(P))
698         continue;
699 
700       // This is an entry block.
701       I->second = true;
702       Headers.push_back(Irr.Node);
703       LLVM_DEBUG(dbgs() << "  => entry = " << BFI.getBlockName(Irr.Node)
704                         << "\n");
705       break;
706     }
707   }
708   assert(Headers.size() >= 2 &&
709          "Expected irreducible CFG; -loop-info is likely invalid");
710   if (Headers.size() == InSCC.size()) {
711     // Every block is a header.
712     llvm::sort(Headers);
713     return;
714   }
715 
716   // Look for extra headers from irreducible sub-SCCs.
717   for (const auto &I : InSCC) {
718     // Entry blocks are already headers.
719     if (I.second)
720       continue;
721 
722     auto &Irr = *I.first;
723     for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
724       // Skip forward edges.
725       if (P->Node < Irr.Node)
726         continue;
727 
728       // Skip predecessors from entry blocks.  These can have inverted
729       // ordering.
730       if (InSCC.lookup(P))
731         continue;
732 
733       // Store the extra header.
734       Headers.push_back(Irr.Node);
735       LLVM_DEBUG(dbgs() << "  => extra = " << BFI.getBlockName(Irr.Node)
736                         << "\n");
737       break;
738     }
739     if (Headers.back() == Irr.Node)
740       // Added this as a header.
741       continue;
742 
743     // This is not a header.
744     Others.push_back(Irr.Node);
745     LLVM_DEBUG(dbgs() << "  => other = " << BFI.getBlockName(Irr.Node) << "\n");
746   }
747   llvm::sort(Headers);
748   llvm::sort(Others);
749 }
750 
751 static void createIrreducibleLoop(
752     BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
753     LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
754     const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
755   // Translate the SCC into RPO.
756   LLVM_DEBUG(dbgs() << " - found-scc\n");
757 
758   LoopData::NodeList Headers;
759   LoopData::NodeList Others;
760   findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
761 
762   auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
763                                 Headers.end(), Others.begin(), Others.end());
764 
765   // Update loop hierarchy.
766   for (const auto &N : Loop->Nodes)
767     if (BFI.Working[N.Index].isLoopHeader())
768       BFI.Working[N.Index].Loop->Parent = &*Loop;
769     else
770       BFI.Working[N.Index].Loop = &*Loop;
771 }
772 
773 iterator_range<std::list<LoopData>::iterator>
774 BlockFrequencyInfoImplBase::analyzeIrreducible(
775     const IrreducibleGraph &G, LoopData *OuterLoop,
776     std::list<LoopData>::iterator Insert) {
777   assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
778   auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
779 
780   for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
781     if (I->size() < 2)
782       continue;
783 
784     // Translate the SCC into RPO.
785     createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
786   }
787 
788   if (OuterLoop)
789     return make_range(std::next(Prev), Insert);
790   return make_range(Loops.begin(), Insert);
791 }
792 
793 void
794 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
795   OuterLoop.Exits.clear();
796   for (auto &Mass : OuterLoop.BackedgeMass)
797     Mass = BlockMass::getEmpty();
798   auto O = OuterLoop.Nodes.begin() + 1;
799   for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
800     if (!Working[I->Index].isPackaged())
801       *O++ = *I;
802   OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
803 }
804 
805 void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) {
806   assert(Loop.isIrreducible() && "this only makes sense on irreducible loops");
807 
808   // Since the loop has more than one header block, the mass flowing back into
809   // each header will be different. Adjust the mass in each header loop to
810   // reflect the masses flowing through back edges.
811   //
812   // To do this, we distribute the initial mass using the backedge masses
813   // as weights for the distribution.
814   BlockMass LoopMass = BlockMass::getFull();
815   Distribution Dist;
816 
817   LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n");
818   for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
819     auto &HeaderNode = Loop.Nodes[H];
820     auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)];
821     LLVM_DEBUG(dbgs() << " - Add back edge mass for node "
822                       << getBlockName(HeaderNode) << ": " << BackedgeMass
823                       << "\n");
824     if (BackedgeMass.getMass() > 0)
825       Dist.addLocal(HeaderNode, BackedgeMass.getMass());
826     else
827       LLVM_DEBUG(dbgs() << "   Nothing added. Back edge mass is zero\n");
828   }
829 
830   DitheringDistributer D(Dist, LoopMass);
831 
832   LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass
833                     << " to headers using above weights\n");
834   for (const Weight &W : Dist.Weights) {
835     BlockMass Taken = D.takeMass(W.Amount);
836     assert(W.Type == Weight::Local && "all weights should be local");
837     Working[W.TargetNode.Index].getMass() = Taken;
838     LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
839   }
840 }
841 
842 void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) {
843   BlockMass LoopMass = BlockMass::getFull();
844   DitheringDistributer D(Dist, LoopMass);
845   for (const Weight &W : Dist.Weights) {
846     BlockMass Taken = D.takeMass(W.Amount);
847     assert(W.Type == Weight::Local && "all weights should be local");
848     Working[W.TargetNode.Index].getMass() = Taken;
849     LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
850   }
851 }
852