xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/BasicAliasAnalysis.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Argument.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/ConstantRange.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalAlias.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/KnownBits.h"
57 #include "llvm/Support/SaveAndRestore.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <cstdlib>
61 #include <optional>
62 #include <utility>
63 
64 #define DEBUG_TYPE "basicaa"
65 
66 using namespace llvm;
67 
68 /// Enable analysis of recursive PHI nodes.
69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
70                                           cl::init(true));
71 
72 static cl::opt<bool> EnableSeparateStorageAnalysis("basic-aa-separate-storage",
73                                                    cl::Hidden, cl::init(true));
74 
75 /// SearchLimitReached / SearchTimes shows how often the limit of
76 /// to decompose GEPs is reached. It will affect the precision
77 /// of basic alias analysis.
78 STATISTIC(SearchLimitReached, "Number of times the limit to "
79                               "decompose GEPs is reached");
80 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
81 
82 // The max limit of the search depth in DecomposeGEPExpression() and
83 // getUnderlyingObject().
84 static const unsigned MaxLookupSearchDepth = 6;
85 
86 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
87                                FunctionAnalysisManager::Invalidator &Inv) {
88   // We don't care if this analysis itself is preserved, it has no state. But
89   // we need to check that the analyses it depends on have been. Note that we
90   // may be created without handles to some analyses and in that case don't
91   // depend on them.
92   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
93       (DT_ && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)))
94     return true;
95 
96   // Otherwise this analysis result remains valid.
97   return false;
98 }
99 
100 //===----------------------------------------------------------------------===//
101 // Useful predicates
102 //===----------------------------------------------------------------------===//
103 
104 /// Returns the size of the object specified by V or UnknownSize if unknown.
105 static std::optional<TypeSize> getObjectSize(const Value *V,
106                                              const DataLayout &DL,
107                                              const TargetLibraryInfo &TLI,
108                                              bool NullIsValidLoc,
109                                              bool RoundToAlign = false) {
110   uint64_t Size;
111   ObjectSizeOpts Opts;
112   Opts.RoundToAlign = RoundToAlign;
113   Opts.NullIsUnknownSize = NullIsValidLoc;
114   if (getObjectSize(V, Size, DL, &TLI, Opts))
115     return TypeSize::getFixed(Size);
116   return std::nullopt;
117 }
118 
119 /// Returns true if we can prove that the object specified by V is smaller than
120 /// Size.
121 static bool isObjectSmallerThan(const Value *V, TypeSize Size,
122                                 const DataLayout &DL,
123                                 const TargetLibraryInfo &TLI,
124                                 bool NullIsValidLoc) {
125   // Note that the meanings of the "object" are slightly different in the
126   // following contexts:
127   //    c1: llvm::getObjectSize()
128   //    c2: llvm.objectsize() intrinsic
129   //    c3: isObjectSmallerThan()
130   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
131   // refers to the "entire object".
132   //
133   //  Consider this example:
134   //     char *p = (char*)malloc(100)
135   //     char *q = p+80;
136   //
137   //  In the context of c1 and c2, the "object" pointed by q refers to the
138   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
139   //
140   //  However, in the context of c3, the "object" refers to the chunk of memory
141   // being allocated. So, the "object" has 100 bytes, and q points to the middle
142   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
143   // parameter, before the llvm::getObjectSize() is called to get the size of
144   // entire object, we should:
145   //    - either rewind the pointer q to the base-address of the object in
146   //      question (in this case rewind to p), or
147   //    - just give up. It is up to caller to make sure the pointer is pointing
148   //      to the base address the object.
149   //
150   // We go for 2nd option for simplicity.
151   if (!isIdentifiedObject(V))
152     return false;
153 
154   // This function needs to use the aligned object size because we allow
155   // reads a bit past the end given sufficient alignment.
156   std::optional<TypeSize> ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
157                                                      /*RoundToAlign*/ true);
158 
159   return ObjectSize && TypeSize::isKnownLT(*ObjectSize, Size);
160 }
161 
162 /// Return the minimal extent from \p V to the end of the underlying object,
163 /// assuming the result is used in an aliasing query. E.g., we do use the query
164 /// location size and the fact that null pointers cannot alias here.
165 static TypeSize getMinimalExtentFrom(const Value &V,
166                                      const LocationSize &LocSize,
167                                      const DataLayout &DL,
168                                      bool NullIsValidLoc) {
169   // If we have dereferenceability information we know a lower bound for the
170   // extent as accesses for a lower offset would be valid. We need to exclude
171   // the "or null" part if null is a valid pointer. We can ignore frees, as an
172   // access after free would be undefined behavior.
173   bool CanBeNull, CanBeFreed;
174   uint64_t DerefBytes =
175     V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
176   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
177   // If queried with a precise location size, we assume that location size to be
178   // accessed, thus valid.
179   if (LocSize.isPrecise())
180     DerefBytes = std::max(DerefBytes, LocSize.getValue().getKnownMinValue());
181   return TypeSize::getFixed(DerefBytes);
182 }
183 
184 /// Returns true if we can prove that the object specified by V has size Size.
185 static bool isObjectSize(const Value *V, TypeSize Size, const DataLayout &DL,
186                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
187   std::optional<TypeSize> ObjectSize =
188       getObjectSize(V, DL, TLI, NullIsValidLoc);
189   return ObjectSize && *ObjectSize == Size;
190 }
191 
192 /// Return true if both V1 and V2 are VScale
193 static bool areBothVScale(const Value *V1, const Value *V2) {
194   return PatternMatch::match(V1, PatternMatch::m_VScale()) &&
195          PatternMatch::match(V2, PatternMatch::m_VScale());
196 }
197 
198 //===----------------------------------------------------------------------===//
199 // CaptureInfo implementations
200 //===----------------------------------------------------------------------===//
201 
202 CaptureInfo::~CaptureInfo() = default;
203 
204 bool SimpleCaptureInfo::isNotCapturedBefore(const Value *Object,
205                                             const Instruction *I, bool OrAt) {
206   return isNonEscapingLocalObject(Object, &IsCapturedCache);
207 }
208 
209 static bool isNotInCycle(const Instruction *I, const DominatorTree *DT,
210                          const LoopInfo *LI) {
211   BasicBlock *BB = const_cast<BasicBlock *>(I->getParent());
212   SmallVector<BasicBlock *> Succs(successors(BB));
213   return Succs.empty() ||
214          !isPotentiallyReachableFromMany(Succs, BB, nullptr, DT, LI);
215 }
216 
217 bool EarliestEscapeInfo::isNotCapturedBefore(const Value *Object,
218                                              const Instruction *I, bool OrAt) {
219   if (!isIdentifiedFunctionLocal(Object))
220     return false;
221 
222   auto Iter = EarliestEscapes.insert({Object, nullptr});
223   if (Iter.second) {
224     Instruction *EarliestCapture = FindEarliestCapture(
225         Object, *const_cast<Function *>(DT.getRoot()->getParent()),
226         /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT);
227     if (EarliestCapture) {
228       auto Ins = Inst2Obj.insert({EarliestCapture, {}});
229       Ins.first->second.push_back(Object);
230     }
231     Iter.first->second = EarliestCapture;
232   }
233 
234   // No capturing instruction.
235   if (!Iter.first->second)
236     return true;
237 
238   // No context instruction means any use is capturing.
239   if (!I)
240     return false;
241 
242   if (I == Iter.first->second) {
243     if (OrAt)
244       return false;
245     return isNotInCycle(I, &DT, LI);
246   }
247 
248   return !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, LI);
249 }
250 
251 void EarliestEscapeInfo::removeInstruction(Instruction *I) {
252   auto Iter = Inst2Obj.find(I);
253   if (Iter != Inst2Obj.end()) {
254     for (const Value *Obj : Iter->second)
255       EarliestEscapes.erase(Obj);
256     Inst2Obj.erase(I);
257   }
258 }
259 
260 //===----------------------------------------------------------------------===//
261 // GetElementPtr Instruction Decomposition and Analysis
262 //===----------------------------------------------------------------------===//
263 
264 namespace {
265 /// Represents zext(sext(trunc(V))).
266 struct CastedValue {
267   const Value *V;
268   unsigned ZExtBits = 0;
269   unsigned SExtBits = 0;
270   unsigned TruncBits = 0;
271   /// Whether trunc(V) is non-negative.
272   bool IsNonNegative = false;
273 
274   explicit CastedValue(const Value *V) : V(V) {}
275   explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits,
276                        unsigned TruncBits, bool IsNonNegative)
277       : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits),
278         IsNonNegative(IsNonNegative) {}
279 
280   unsigned getBitWidth() const {
281     return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits +
282            SExtBits;
283   }
284 
285   CastedValue withValue(const Value *NewV, bool PreserveNonNeg) const {
286     return CastedValue(NewV, ZExtBits, SExtBits, TruncBits,
287                        IsNonNegative && PreserveNonNeg);
288   }
289 
290   /// Replace V with zext(NewV)
291   CastedValue withZExtOfValue(const Value *NewV, bool ZExtNonNegative) const {
292     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
293                         NewV->getType()->getPrimitiveSizeInBits();
294     if (ExtendBy <= TruncBits)
295       // zext<nneg>(trunc(zext(NewV))) == zext<nneg>(trunc(NewV))
296       // The nneg can be preserved on the outer zext here.
297       return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy,
298                          IsNonNegative);
299 
300     // zext(sext(zext(NewV))) == zext(zext(zext(NewV)))
301     ExtendBy -= TruncBits;
302     // zext<nneg>(zext(NewV)) == zext(NewV)
303     // zext(zext<nneg>(NewV)) == zext<nneg>(NewV)
304     // The nneg can be preserved from the inner zext here but must be dropped
305     // from the outer.
306     return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0,
307                        ZExtNonNegative);
308   }
309 
310   /// Replace V with sext(NewV)
311   CastedValue withSExtOfValue(const Value *NewV) const {
312     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
313                         NewV->getType()->getPrimitiveSizeInBits();
314     if (ExtendBy <= TruncBits)
315       // zext<nneg>(trunc(sext(NewV))) == zext<nneg>(trunc(NewV))
316       // The nneg can be preserved on the outer zext here
317       return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy,
318                          IsNonNegative);
319 
320     // zext(sext(sext(NewV)))
321     ExtendBy -= TruncBits;
322     // zext<nneg>(sext(sext(NewV))) = zext<nneg>(sext(NewV))
323     // The nneg can be preserved on the outer zext here
324     return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0, IsNonNegative);
325   }
326 
327   APInt evaluateWith(APInt N) const {
328     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
329            "Incompatible bit width");
330     if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits);
331     if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
332     if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
333     return N;
334   }
335 
336   ConstantRange evaluateWith(ConstantRange N) const {
337     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
338            "Incompatible bit width");
339     if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits);
340     if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits);
341     if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits);
342     return N;
343   }
344 
345   bool canDistributeOver(bool NUW, bool NSW) const {
346     // zext(x op<nuw> y) == zext(x) op<nuw> zext(y)
347     // sext(x op<nsw> y) == sext(x) op<nsw> sext(y)
348     // trunc(x op y) == trunc(x) op trunc(y)
349     return (!ZExtBits || NUW) && (!SExtBits || NSW);
350   }
351 
352   bool hasSameCastsAs(const CastedValue &Other) const {
353     if (ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits &&
354         TruncBits == Other.TruncBits)
355       return true;
356     // If either CastedValue has a nneg zext then the sext/zext bits are
357     // interchangable for that value.
358     if (IsNonNegative || Other.IsNonNegative)
359       return (ZExtBits + SExtBits == Other.ZExtBits + Other.SExtBits &&
360               TruncBits == Other.TruncBits);
361     return false;
362   }
363 };
364 
365 /// Represents zext(sext(trunc(V))) * Scale + Offset.
366 struct LinearExpression {
367   CastedValue Val;
368   APInt Scale;
369   APInt Offset;
370 
371   /// True if all operations in this expression are NSW.
372   bool IsNSW;
373 
374   LinearExpression(const CastedValue &Val, const APInt &Scale,
375                    const APInt &Offset, bool IsNSW)
376       : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {}
377 
378   LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) {
379     unsigned BitWidth = Val.getBitWidth();
380     Scale = APInt(BitWidth, 1);
381     Offset = APInt(BitWidth, 0);
382   }
383 
384   LinearExpression mul(const APInt &Other, bool MulIsNSW) const {
385     // The check for zero offset is necessary, because generally
386     // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z).
387     bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero()));
388     return LinearExpression(Val, Scale * Other, Offset * Other, NSW);
389   }
390 };
391 }
392 
393 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
394 /// B are constant integers.
395 static LinearExpression GetLinearExpression(
396     const CastedValue &Val,  const DataLayout &DL, unsigned Depth,
397     AssumptionCache *AC, DominatorTree *DT) {
398   // Limit our recursion depth.
399   if (Depth == 6)
400     return Val;
401 
402   if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V))
403     return LinearExpression(Val, APInt(Val.getBitWidth(), 0),
404                             Val.evaluateWith(Const->getValue()), true);
405 
406   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) {
407     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
408       APInt RHS = Val.evaluateWith(RHSC->getValue());
409       // The only non-OBO case we deal with is or, and only limited to the
410       // case where it is both nuw and nsw.
411       bool NUW = true, NSW = true;
412       if (isa<OverflowingBinaryOperator>(BOp)) {
413         NUW &= BOp->hasNoUnsignedWrap();
414         NSW &= BOp->hasNoSignedWrap();
415       }
416       if (!Val.canDistributeOver(NUW, NSW))
417         return Val;
418 
419       // While we can distribute over trunc, we cannot preserve nowrap flags
420       // in that case.
421       if (Val.TruncBits)
422         NUW = NSW = false;
423 
424       LinearExpression E(Val);
425       switch (BOp->getOpcode()) {
426       default:
427         // We don't understand this instruction, so we can't decompose it any
428         // further.
429         return Val;
430       case Instruction::Or:
431         // X|C == X+C if it is disjoint.  Otherwise we can't analyze it.
432         if (!cast<PossiblyDisjointInst>(BOp)->isDisjoint())
433           return Val;
434 
435         [[fallthrough]];
436       case Instruction::Add: {
437         E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL,
438                                 Depth + 1, AC, DT);
439         E.Offset += RHS;
440         E.IsNSW &= NSW;
441         break;
442       }
443       case Instruction::Sub: {
444         E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL,
445                                 Depth + 1, AC, DT);
446         E.Offset -= RHS;
447         E.IsNSW &= NSW;
448         break;
449       }
450       case Instruction::Mul:
451         E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL,
452                                 Depth + 1, AC, DT)
453                 .mul(RHS, NSW);
454         break;
455       case Instruction::Shl:
456         // We're trying to linearize an expression of the kind:
457         //   shl i8 -128, 36
458         // where the shift count exceeds the bitwidth of the type.
459         // We can't decompose this further (the expression would return
460         // a poison value).
461         if (RHS.getLimitedValue() > Val.getBitWidth())
462           return Val;
463 
464         E = GetLinearExpression(Val.withValue(BOp->getOperand(0), NSW), DL,
465                                 Depth + 1, AC, DT);
466         E.Offset <<= RHS.getLimitedValue();
467         E.Scale <<= RHS.getLimitedValue();
468         E.IsNSW &= NSW;
469         break;
470       }
471       return E;
472     }
473   }
474 
475   if (const auto *ZExt = dyn_cast<ZExtInst>(Val.V))
476     return GetLinearExpression(
477         Val.withZExtOfValue(ZExt->getOperand(0), ZExt->hasNonNeg()), DL,
478         Depth + 1, AC, DT);
479 
480   if (isa<SExtInst>(Val.V))
481     return GetLinearExpression(
482         Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
483         DL, Depth + 1, AC, DT);
484 
485   return Val;
486 }
487 
488 /// To ensure a pointer offset fits in an integer of size IndexSize
489 /// (in bits) when that size is smaller than the maximum index size. This is
490 /// an issue, for example, in particular for 32b pointers with negative indices
491 /// that rely on two's complement wrap-arounds for precise alias information
492 /// where the maximum index size is 64b.
493 static void adjustToIndexSize(APInt &Offset, unsigned IndexSize) {
494   assert(IndexSize <= Offset.getBitWidth() && "Invalid IndexSize!");
495   unsigned ShiftBits = Offset.getBitWidth() - IndexSize;
496   if (ShiftBits != 0) {
497     Offset <<= ShiftBits;
498     Offset.ashrInPlace(ShiftBits);
499   }
500 }
501 
502 namespace {
503 // A linear transformation of a Value; this class represents
504 // ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale.
505 struct VariableGEPIndex {
506   CastedValue Val;
507   APInt Scale;
508 
509   // Context instruction to use when querying information about this index.
510   const Instruction *CxtI;
511 
512   /// True if all operations in this expression are NSW.
513   bool IsNSW;
514 
515   /// True if the index should be subtracted rather than added. We don't simply
516   /// negate the Scale, to avoid losing the NSW flag: X - INT_MIN*1 may be
517   /// non-wrapping, while X + INT_MIN*(-1) wraps.
518   bool IsNegated;
519 
520   bool hasNegatedScaleOf(const VariableGEPIndex &Other) const {
521     if (IsNegated == Other.IsNegated)
522       return Scale == -Other.Scale;
523     return Scale == Other.Scale;
524   }
525 
526   void dump() const {
527     print(dbgs());
528     dbgs() << "\n";
529   }
530   void print(raw_ostream &OS) const {
531     OS << "(V=" << Val.V->getName()
532        << ", zextbits=" << Val.ZExtBits
533        << ", sextbits=" << Val.SExtBits
534        << ", truncbits=" << Val.TruncBits
535        << ", scale=" << Scale
536        << ", nsw=" << IsNSW
537        << ", negated=" << IsNegated << ")";
538   }
539 };
540 }
541 
542 // Represents the internal structure of a GEP, decomposed into a base pointer,
543 // constant offsets, and variable scaled indices.
544 struct BasicAAResult::DecomposedGEP {
545   // Base pointer of the GEP
546   const Value *Base;
547   // Total constant offset from base.
548   APInt Offset;
549   // Scaled variable (non-constant) indices.
550   SmallVector<VariableGEPIndex, 4> VarIndices;
551   // Are all operations inbounds GEPs or non-indexing operations?
552   // (std::nullopt iff expression doesn't involve any geps)
553   std::optional<bool> InBounds;
554 
555   void dump() const {
556     print(dbgs());
557     dbgs() << "\n";
558   }
559   void print(raw_ostream &OS) const {
560     OS << "(DecomposedGEP Base=" << Base->getName()
561        << ", Offset=" << Offset
562        << ", VarIndices=[";
563     for (size_t i = 0; i < VarIndices.size(); i++) {
564       if (i != 0)
565         OS << ", ";
566       VarIndices[i].print(OS);
567     }
568     OS << "])";
569   }
570 };
571 
572 
573 /// If V is a symbolic pointer expression, decompose it into a base pointer
574 /// with a constant offset and a number of scaled symbolic offsets.
575 ///
576 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
577 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
578 /// specified amount, but which may have other unrepresented high bits. As
579 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
580 BasicAAResult::DecomposedGEP
581 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
582                                       AssumptionCache *AC, DominatorTree *DT) {
583   // Limit recursion depth to limit compile time in crazy cases.
584   unsigned MaxLookup = MaxLookupSearchDepth;
585   SearchTimes++;
586   const Instruction *CxtI = dyn_cast<Instruction>(V);
587 
588   unsigned MaxIndexSize = DL.getMaxIndexSizeInBits();
589   DecomposedGEP Decomposed;
590   Decomposed.Offset = APInt(MaxIndexSize, 0);
591   do {
592     // See if this is a bitcast or GEP.
593     const Operator *Op = dyn_cast<Operator>(V);
594     if (!Op) {
595       // The only non-operator case we can handle are GlobalAliases.
596       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
597         if (!GA->isInterposable()) {
598           V = GA->getAliasee();
599           continue;
600         }
601       }
602       Decomposed.Base = V;
603       return Decomposed;
604     }
605 
606     if (Op->getOpcode() == Instruction::BitCast ||
607         Op->getOpcode() == Instruction::AddrSpaceCast) {
608       V = Op->getOperand(0);
609       continue;
610     }
611 
612     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
613     if (!GEPOp) {
614       if (const auto *PHI = dyn_cast<PHINode>(V)) {
615         // Look through single-arg phi nodes created by LCSSA.
616         if (PHI->getNumIncomingValues() == 1) {
617           V = PHI->getIncomingValue(0);
618           continue;
619         }
620       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
621         // CaptureTracking can know about special capturing properties of some
622         // intrinsics like launder.invariant.group, that can't be expressed with
623         // the attributes, but have properties like returning aliasing pointer.
624         // Because some analysis may assume that nocaptured pointer is not
625         // returned from some special intrinsic (because function would have to
626         // be marked with returns attribute), it is crucial to use this function
627         // because it should be in sync with CaptureTracking. Not using it may
628         // cause weird miscompilations where 2 aliasing pointers are assumed to
629         // noalias.
630         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
631           V = RP;
632           continue;
633         }
634       }
635 
636       Decomposed.Base = V;
637       return Decomposed;
638     }
639 
640     // Track whether we've seen at least one in bounds gep, and if so, whether
641     // all geps parsed were in bounds.
642     if (Decomposed.InBounds == std::nullopt)
643       Decomposed.InBounds = GEPOp->isInBounds();
644     else if (!GEPOp->isInBounds())
645       Decomposed.InBounds = false;
646 
647     assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized");
648 
649     unsigned AS = GEPOp->getPointerAddressSpace();
650     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
651     gep_type_iterator GTI = gep_type_begin(GEPOp);
652     unsigned IndexSize = DL.getIndexSizeInBits(AS);
653     // Assume all GEP operands are constants until proven otherwise.
654     bool GepHasConstantOffset = true;
655     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
656          I != E; ++I, ++GTI) {
657       const Value *Index = *I;
658       // Compute the (potentially symbolic) offset in bytes for this index.
659       if (StructType *STy = GTI.getStructTypeOrNull()) {
660         // For a struct, add the member offset.
661         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
662         if (FieldNo == 0)
663           continue;
664 
665         Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
666         continue;
667       }
668 
669       // For an array/pointer, add the element offset, explicitly scaled.
670       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
671         if (CIdx->isZero())
672           continue;
673 
674         // Don't attempt to analyze GEPs if the scalable index is not zero.
675         TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL);
676         if (AllocTypeSize.isScalable()) {
677           Decomposed.Base = V;
678           return Decomposed;
679         }
680 
681         Decomposed.Offset += AllocTypeSize.getFixedValue() *
682                              CIdx->getValue().sextOrTrunc(MaxIndexSize);
683         continue;
684       }
685 
686       TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL);
687       if (AllocTypeSize.isScalable()) {
688         Decomposed.Base = V;
689         return Decomposed;
690       }
691 
692       GepHasConstantOffset = false;
693 
694       // If the integer type is smaller than the index size, it is implicitly
695       // sign extended or truncated to index size.
696       unsigned Width = Index->getType()->getIntegerBitWidth();
697       unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0;
698       unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0;
699       LinearExpression LE = GetLinearExpression(
700           CastedValue(Index, 0, SExtBits, TruncBits, false), DL, 0, AC, DT);
701 
702       // Scale by the type size.
703       unsigned TypeSize = AllocTypeSize.getFixedValue();
704       LE = LE.mul(APInt(IndexSize, TypeSize), GEPOp->isInBounds());
705       Decomposed.Offset += LE.Offset.sext(MaxIndexSize);
706       APInt Scale = LE.Scale.sext(MaxIndexSize);
707 
708       // If we already had an occurrence of this index variable, merge this
709       // scale into it.  For example, we want to handle:
710       //   A[x][x] -> x*16 + x*4 -> x*20
711       // This also ensures that 'x' only appears in the index list once.
712       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
713         if ((Decomposed.VarIndices[i].Val.V == LE.Val.V ||
714              areBothVScale(Decomposed.VarIndices[i].Val.V, LE.Val.V)) &&
715             Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) {
716           Scale += Decomposed.VarIndices[i].Scale;
717           LE.IsNSW = false; // We cannot guarantee nsw for the merge.
718           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
719           break;
720         }
721       }
722 
723       // Make sure that we have a scale that makes sense for this target's
724       // index size.
725       adjustToIndexSize(Scale, IndexSize);
726 
727       if (!!Scale) {
728         VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW,
729                                   /* IsNegated */ false};
730         Decomposed.VarIndices.push_back(Entry);
731       }
732     }
733 
734     // Take care of wrap-arounds
735     if (GepHasConstantOffset)
736       adjustToIndexSize(Decomposed.Offset, IndexSize);
737 
738     // Analyze the base pointer next.
739     V = GEPOp->getOperand(0);
740   } while (--MaxLookup);
741 
742   // If the chain of expressions is too deep, just return early.
743   Decomposed.Base = V;
744   SearchLimitReached++;
745   return Decomposed;
746 }
747 
748 ModRefInfo BasicAAResult::getModRefInfoMask(const MemoryLocation &Loc,
749                                             AAQueryInfo &AAQI,
750                                             bool IgnoreLocals) {
751   assert(Visited.empty() && "Visited must be cleared after use!");
752   auto _ = make_scope_exit([&] { Visited.clear(); });
753 
754   unsigned MaxLookup = 8;
755   SmallVector<const Value *, 16> Worklist;
756   Worklist.push_back(Loc.Ptr);
757   ModRefInfo Result = ModRefInfo::NoModRef;
758 
759   do {
760     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
761     if (!Visited.insert(V).second)
762       continue;
763 
764     // Ignore allocas if we were instructed to do so.
765     if (IgnoreLocals && isa<AllocaInst>(V))
766       continue;
767 
768     // If the location points to memory that is known to be invariant for
769     // the life of the underlying SSA value, then we can exclude Mod from
770     // the set of valid memory effects.
771     //
772     // An argument that is marked readonly and noalias is known to be
773     // invariant while that function is executing.
774     if (const Argument *Arg = dyn_cast<Argument>(V)) {
775       if (Arg->hasNoAliasAttr() && Arg->onlyReadsMemory()) {
776         Result |= ModRefInfo::Ref;
777         continue;
778       }
779     }
780 
781     // A global constant can't be mutated.
782     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
783       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
784       // global to be marked constant in some modules and non-constant in
785       // others.  GV may even be a declaration, not a definition.
786       if (!GV->isConstant())
787         return ModRefInfo::ModRef;
788       continue;
789     }
790 
791     // If both select values point to local memory, then so does the select.
792     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
793       Worklist.push_back(SI->getTrueValue());
794       Worklist.push_back(SI->getFalseValue());
795       continue;
796     }
797 
798     // If all values incoming to a phi node point to local memory, then so does
799     // the phi.
800     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
801       // Don't bother inspecting phi nodes with many operands.
802       if (PN->getNumIncomingValues() > MaxLookup)
803         return ModRefInfo::ModRef;
804       append_range(Worklist, PN->incoming_values());
805       continue;
806     }
807 
808     // Otherwise be conservative.
809     return ModRefInfo::ModRef;
810   } while (!Worklist.empty() && --MaxLookup);
811 
812   // If we hit the maximum number of instructions to examine, be conservative.
813   if (!Worklist.empty())
814     return ModRefInfo::ModRef;
815 
816   return Result;
817 }
818 
819 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
820   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
821   return II && II->getIntrinsicID() == IID;
822 }
823 
824 /// Returns the behavior when calling the given call site.
825 MemoryEffects BasicAAResult::getMemoryEffects(const CallBase *Call,
826                                               AAQueryInfo &AAQI) {
827   MemoryEffects Min = Call->getAttributes().getMemoryEffects();
828 
829   if (const Function *F = dyn_cast<Function>(Call->getCalledOperand())) {
830     MemoryEffects FuncME = AAQI.AAR.getMemoryEffects(F);
831     // Operand bundles on the call may also read or write memory, in addition
832     // to the behavior of the called function.
833     if (Call->hasReadingOperandBundles())
834       FuncME |= MemoryEffects::readOnly();
835     if (Call->hasClobberingOperandBundles())
836       FuncME |= MemoryEffects::writeOnly();
837     Min &= FuncME;
838   }
839 
840   return Min;
841 }
842 
843 /// Returns the behavior when calling the given function. For use when the call
844 /// site is not known.
845 MemoryEffects BasicAAResult::getMemoryEffects(const Function *F) {
846   switch (F->getIntrinsicID()) {
847   case Intrinsic::experimental_guard:
848   case Intrinsic::experimental_deoptimize:
849     // These intrinsics can read arbitrary memory, and additionally modref
850     // inaccessible memory to model control dependence.
851     return MemoryEffects::readOnly() |
852            MemoryEffects::inaccessibleMemOnly(ModRefInfo::ModRef);
853   }
854 
855   return F->getMemoryEffects();
856 }
857 
858 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
859                                            unsigned ArgIdx) {
860   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
861     return ModRefInfo::Mod;
862 
863   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
864     return ModRefInfo::Ref;
865 
866   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
867     return ModRefInfo::NoModRef;
868 
869   return ModRefInfo::ModRef;
870 }
871 
872 #ifndef NDEBUG
873 static const Function *getParent(const Value *V) {
874   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
875     if (!inst->getParent())
876       return nullptr;
877     return inst->getParent()->getParent();
878   }
879 
880   if (const Argument *arg = dyn_cast<Argument>(V))
881     return arg->getParent();
882 
883   return nullptr;
884 }
885 
886 static bool notDifferentParent(const Value *O1, const Value *O2) {
887 
888   const Function *F1 = getParent(O1);
889   const Function *F2 = getParent(O2);
890 
891   return !F1 || !F2 || F1 == F2;
892 }
893 #endif
894 
895 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
896                                  const MemoryLocation &LocB, AAQueryInfo &AAQI,
897                                  const Instruction *CtxI) {
898   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
899          "BasicAliasAnalysis doesn't support interprocedural queries.");
900   return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI, CtxI);
901 }
902 
903 /// Checks to see if the specified callsite can clobber the specified memory
904 /// object.
905 ///
906 /// Since we only look at local properties of this function, we really can't
907 /// say much about this query.  We do, however, use simple "address taken"
908 /// analysis on local objects.
909 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
910                                         const MemoryLocation &Loc,
911                                         AAQueryInfo &AAQI) {
912   assert(notDifferentParent(Call, Loc.Ptr) &&
913          "AliasAnalysis query involving multiple functions!");
914 
915   const Value *Object = getUnderlyingObject(Loc.Ptr);
916 
917   // Calls marked 'tail' cannot read or write allocas from the current frame
918   // because the current frame might be destroyed by the time they run. However,
919   // a tail call may use an alloca with byval. Calling with byval copies the
920   // contents of the alloca into argument registers or stack slots, so there is
921   // no lifetime issue.
922   if (isa<AllocaInst>(Object))
923     if (const CallInst *CI = dyn_cast<CallInst>(Call))
924       if (CI->isTailCall() &&
925           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
926         return ModRefInfo::NoModRef;
927 
928   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
929   // modify them even though the alloca is not escaped.
930   if (auto *AI = dyn_cast<AllocaInst>(Object))
931     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
932       return ModRefInfo::Mod;
933 
934   // A call can access a locally allocated object either because it is passed as
935   // an argument to the call, or because it has escaped prior to the call.
936   //
937   // Make sure the object has not escaped here, and then check that none of the
938   // call arguments alias the object below.
939   if (!isa<Constant>(Object) && Call != Object &&
940       AAQI.CI->isNotCapturedBefore(Object, Call, /*OrAt*/ false)) {
941 
942     // Optimistically assume that call doesn't touch Object and check this
943     // assumption in the following loop.
944     ModRefInfo Result = ModRefInfo::NoModRef;
945 
946     unsigned OperandNo = 0;
947     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
948          CI != CE; ++CI, ++OperandNo) {
949       if (!(*CI)->getType()->isPointerTy())
950         continue;
951 
952       // Call doesn't access memory through this operand, so we don't care
953       // if it aliases with Object.
954       if (Call->doesNotAccessMemory(OperandNo))
955         continue;
956 
957       // If this is a no-capture pointer argument, see if we can tell that it
958       // is impossible to alias the pointer we're checking.
959       AliasResult AR =
960           AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(*CI),
961                          MemoryLocation::getBeforeOrAfter(Object), AAQI);
962       // Operand doesn't alias 'Object', continue looking for other aliases
963       if (AR == AliasResult::NoAlias)
964         continue;
965       // Operand aliases 'Object', but call doesn't modify it. Strengthen
966       // initial assumption and keep looking in case if there are more aliases.
967       if (Call->onlyReadsMemory(OperandNo)) {
968         Result |= ModRefInfo::Ref;
969         continue;
970       }
971       // Operand aliases 'Object' but call only writes into it.
972       if (Call->onlyWritesMemory(OperandNo)) {
973         Result |= ModRefInfo::Mod;
974         continue;
975       }
976       // This operand aliases 'Object' and call reads and writes into it.
977       // Setting ModRef will not yield an early return below, MustAlias is not
978       // used further.
979       Result = ModRefInfo::ModRef;
980       break;
981     }
982 
983     // Early return if we improved mod ref information
984     if (!isModAndRefSet(Result))
985       return Result;
986   }
987 
988   // If the call is malloc/calloc like, we can assume that it doesn't
989   // modify any IR visible value.  This is only valid because we assume these
990   // routines do not read values visible in the IR.  TODO: Consider special
991   // casing realloc and strdup routines which access only their arguments as
992   // well.  Or alternatively, replace all of this with inaccessiblememonly once
993   // that's implemented fully.
994   if (isMallocOrCallocLikeFn(Call, &TLI)) {
995     // Be conservative if the accessed pointer may alias the allocation -
996     // fallback to the generic handling below.
997     if (AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(Call), Loc, AAQI) ==
998         AliasResult::NoAlias)
999       return ModRefInfo::NoModRef;
1000   }
1001 
1002   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
1003   // writing so that proper control dependencies are maintained but they never
1004   // mod any particular memory location visible to the IR.
1005   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
1006   // intrinsic is now modeled as reading memory. This prevents hoisting the
1007   // invariant.start intrinsic over stores. Consider:
1008   // *ptr = 40;
1009   // *ptr = 50;
1010   // invariant_start(ptr)
1011   // int val = *ptr;
1012   // print(val);
1013   //
1014   // This cannot be transformed to:
1015   //
1016   // *ptr = 40;
1017   // invariant_start(ptr)
1018   // *ptr = 50;
1019   // int val = *ptr;
1020   // print(val);
1021   //
1022   // The transformation will cause the second store to be ignored (based on
1023   // rules of invariant.start)  and print 40, while the first program always
1024   // prints 50.
1025   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1026     return ModRefInfo::Ref;
1027 
1028   // Be conservative.
1029   return ModRefInfo::ModRef;
1030 }
1031 
1032 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1033                                         const CallBase *Call2,
1034                                         AAQueryInfo &AAQI) {
1035   // Guard intrinsics are marked as arbitrarily writing so that proper control
1036   // dependencies are maintained but they never mods any particular memory
1037   // location.
1038   //
1039   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1040   // heap state at the point the guard is issued needs to be consistent in case
1041   // the guard invokes the "deopt" continuation.
1042 
1043   // NB! This function is *not* commutative, so we special case two
1044   // possibilities for guard intrinsics.
1045 
1046   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1047     return isModSet(getMemoryEffects(Call2, AAQI).getModRef())
1048                ? ModRefInfo::Ref
1049                : ModRefInfo::NoModRef;
1050 
1051   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1052     return isModSet(getMemoryEffects(Call1, AAQI).getModRef())
1053                ? ModRefInfo::Mod
1054                : ModRefInfo::NoModRef;
1055 
1056   // Be conservative.
1057   return ModRefInfo::ModRef;
1058 }
1059 
1060 /// Return true if we know V to the base address of the corresponding memory
1061 /// object.  This implies that any address less than V must be out of bounds
1062 /// for the underlying object.  Note that just being isIdentifiedObject() is
1063 /// not enough - For example, a negative offset from a noalias argument or call
1064 /// can be inbounds w.r.t the actual underlying object.
1065 static bool isBaseOfObject(const Value *V) {
1066   // TODO: We can handle other cases here
1067   // 1) For GC languages, arguments to functions are often required to be
1068   //    base pointers.
1069   // 2) Result of allocation routines are often base pointers.  Leverage TLI.
1070   return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
1071 }
1072 
1073 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1074 /// another pointer.
1075 ///
1076 /// We know that V1 is a GEP, but we don't know anything about V2.
1077 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1078 /// V2.
1079 AliasResult BasicAAResult::aliasGEP(
1080     const GEPOperator *GEP1, LocationSize V1Size,
1081     const Value *V2, LocationSize V2Size,
1082     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1083   if (!V1Size.hasValue() && !V2Size.hasValue()) {
1084     // TODO: This limitation exists for compile-time reasons. Relax it if we
1085     // can avoid exponential pathological cases.
1086     if (!isa<GEPOperator>(V2))
1087       return AliasResult::MayAlias;
1088 
1089     // If both accesses have unknown size, we can only check whether the base
1090     // objects don't alias.
1091     AliasResult BaseAlias =
1092         AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1093                        MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
1094     return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias
1095                                              : AliasResult::MayAlias;
1096   }
1097 
1098   DominatorTree *DT = getDT(AAQI);
1099   DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1100   DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1101 
1102   // Bail if we were not able to decompose anything.
1103   if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2)
1104     return AliasResult::MayAlias;
1105 
1106   // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1107   // symbolic difference.
1108   subtractDecomposedGEPs(DecompGEP1, DecompGEP2, AAQI);
1109 
1110   // If an inbounds GEP would have to start from an out of bounds address
1111   // for the two to alias, then we can assume noalias.
1112   // TODO: Remove !isScalable() once BasicAA fully support scalable location
1113   // size
1114   if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
1115       V2Size.hasValue() && !V2Size.isScalable() &&
1116       DecompGEP1.Offset.sge(V2Size.getValue()) &&
1117       isBaseOfObject(DecompGEP2.Base))
1118     return AliasResult::NoAlias;
1119 
1120   if (isa<GEPOperator>(V2)) {
1121     // Symmetric case to above.
1122     if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
1123         V1Size.hasValue() && !V1Size.isScalable() &&
1124         DecompGEP1.Offset.sle(-V1Size.getValue()) &&
1125         isBaseOfObject(DecompGEP1.Base))
1126       return AliasResult::NoAlias;
1127   }
1128 
1129   // For GEPs with identical offsets, we can preserve the size and AAInfo
1130   // when performing the alias check on the underlying objects.
1131   if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1132     return AAQI.AAR.alias(MemoryLocation(DecompGEP1.Base, V1Size),
1133                           MemoryLocation(DecompGEP2.Base, V2Size), AAQI);
1134 
1135   // Do the base pointers alias?
1136   AliasResult BaseAlias =
1137       AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(DecompGEP1.Base),
1138                      MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI);
1139 
1140   // If we get a No or May, then return it immediately, no amount of analysis
1141   // will improve this situation.
1142   if (BaseAlias != AliasResult::MustAlias) {
1143     assert(BaseAlias == AliasResult::NoAlias ||
1144            BaseAlias == AliasResult::MayAlias);
1145     return BaseAlias;
1146   }
1147 
1148   // If there is a constant difference between the pointers, but the difference
1149   // is less than the size of the associated memory object, then we know
1150   // that the objects are partially overlapping.  If the difference is
1151   // greater, we know they do not overlap.
1152   if (DecompGEP1.VarIndices.empty()) {
1153     APInt &Off = DecompGEP1.Offset;
1154 
1155     // Initialize for Off >= 0 (V2 <= GEP1) case.
1156     const Value *LeftPtr = V2;
1157     const Value *RightPtr = GEP1;
1158     LocationSize VLeftSize = V2Size;
1159     LocationSize VRightSize = V1Size;
1160     const bool Swapped = Off.isNegative();
1161 
1162     if (Swapped) {
1163       // Swap if we have the situation where:
1164       // +                +
1165       // | BaseOffset     |
1166       // ---------------->|
1167       // |-->V1Size       |-------> V2Size
1168       // GEP1             V2
1169       std::swap(LeftPtr, RightPtr);
1170       std::swap(VLeftSize, VRightSize);
1171       Off = -Off;
1172     }
1173 
1174     if (!VLeftSize.hasValue())
1175       return AliasResult::MayAlias;
1176 
1177     const TypeSize LSize = VLeftSize.getValue();
1178     if (!LSize.isScalable()) {
1179       if (Off.ult(LSize)) {
1180         // Conservatively drop processing if a phi was visited and/or offset is
1181         // too big.
1182         AliasResult AR = AliasResult::PartialAlias;
1183         if (VRightSize.hasValue() && !VRightSize.isScalable() &&
1184             Off.ule(INT32_MAX) && (Off + VRightSize.getValue()).ule(LSize)) {
1185           // Memory referenced by right pointer is nested. Save the offset in
1186           // cache. Note that originally offset estimated as GEP1-V2, but
1187           // AliasResult contains the shift that represents GEP1+Offset=V2.
1188           AR.setOffset(-Off.getSExtValue());
1189           AR.swap(Swapped);
1190         }
1191         return AR;
1192       }
1193       return AliasResult::NoAlias;
1194     } else {
1195       // We can use the getVScaleRange to prove that Off >= (CR.upper * LSize).
1196       ConstantRange CR = getVScaleRange(&F, Off.getBitWidth());
1197       bool Overflow;
1198       APInt UpperRange = CR.getUnsignedMax().umul_ov(
1199           APInt(Off.getBitWidth(), LSize.getKnownMinValue()), Overflow);
1200       if (!Overflow && Off.uge(UpperRange))
1201         return AliasResult::NoAlias;
1202     }
1203   }
1204 
1205   // VScale Alias Analysis - Given one scalable offset between accesses and a
1206   // scalable typesize, we can divide each side by vscale, treating both values
1207   // as a constant. We prove that Offset/vscale >= TypeSize/vscale.
1208   if (DecompGEP1.VarIndices.size() == 1 &&
1209       DecompGEP1.VarIndices[0].Val.TruncBits == 0 &&
1210       DecompGEP1.Offset.isZero() &&
1211       PatternMatch::match(DecompGEP1.VarIndices[0].Val.V,
1212                           PatternMatch::m_VScale())) {
1213     const VariableGEPIndex &ScalableVar = DecompGEP1.VarIndices[0];
1214     APInt Scale =
1215         ScalableVar.IsNegated ? -ScalableVar.Scale : ScalableVar.Scale;
1216     LocationSize VLeftSize = Scale.isNegative() ? V1Size : V2Size;
1217 
1218     // Check if the offset is known to not overflow, if it does then attempt to
1219     // prove it with the known values of vscale_range.
1220     bool Overflows = !DecompGEP1.VarIndices[0].IsNSW;
1221     if (Overflows) {
1222       ConstantRange CR = getVScaleRange(&F, Scale.getBitWidth());
1223       (void)CR.getSignedMax().smul_ov(Scale, Overflows);
1224     }
1225 
1226     if (!Overflows) {
1227       // Note that we do not check that the typesize is scalable, as vscale >= 1
1228       // so noalias still holds so long as the dependency distance is at least
1229       // as big as the typesize.
1230       if (VLeftSize.hasValue() &&
1231           Scale.abs().uge(VLeftSize.getValue().getKnownMinValue()))
1232         return AliasResult::NoAlias;
1233     }
1234   }
1235 
1236   // Bail on analysing scalable LocationSize
1237   if (V1Size.isScalable() || V2Size.isScalable())
1238     return AliasResult::MayAlias;
1239 
1240   // We need to know both acess sizes for all the following heuristics.
1241   if (!V1Size.hasValue() || !V2Size.hasValue())
1242     return AliasResult::MayAlias;
1243 
1244   APInt GCD;
1245   ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset);
1246   for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1247     const VariableGEPIndex &Index = DecompGEP1.VarIndices[i];
1248     const APInt &Scale = Index.Scale;
1249     APInt ScaleForGCD = Scale;
1250     if (!Index.IsNSW)
1251       ScaleForGCD =
1252           APInt::getOneBitSet(Scale.getBitWidth(), Scale.countr_zero());
1253 
1254     if (i == 0)
1255       GCD = ScaleForGCD.abs();
1256     else
1257       GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs());
1258 
1259     ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false,
1260                                             true, &AC, Index.CxtI);
1261     KnownBits Known =
1262         computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT);
1263     CR = CR.intersectWith(
1264         ConstantRange::fromKnownBits(Known, /* Signed */ true),
1265         ConstantRange::Signed);
1266     CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth());
1267 
1268     assert(OffsetRange.getBitWidth() == Scale.getBitWidth() &&
1269            "Bit widths are normalized to MaxIndexSize");
1270     if (Index.IsNSW)
1271       CR = CR.smul_sat(ConstantRange(Scale));
1272     else
1273       CR = CR.smul_fast(ConstantRange(Scale));
1274 
1275     if (Index.IsNegated)
1276       OffsetRange = OffsetRange.sub(CR);
1277     else
1278       OffsetRange = OffsetRange.add(CR);
1279   }
1280 
1281   // We now have accesses at two offsets from the same base:
1282   //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
1283   //  2. 0 with size V2Size
1284   // Using arithmetic modulo GCD, the accesses are at
1285   // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1286   // into the range [V2Size..GCD), then we know they cannot overlap.
1287   APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1288   if (ModOffset.isNegative())
1289     ModOffset += GCD; // We want mod, not rem.
1290   if (ModOffset.uge(V2Size.getValue()) &&
1291       (GCD - ModOffset).uge(V1Size.getValue()))
1292     return AliasResult::NoAlias;
1293 
1294   // Compute ranges of potentially accessed bytes for both accesses. If the
1295   // interseciton is empty, there can be no overlap.
1296   unsigned BW = OffsetRange.getBitWidth();
1297   ConstantRange Range1 = OffsetRange.add(
1298       ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue())));
1299   ConstantRange Range2 =
1300       ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue()));
1301   if (Range1.intersectWith(Range2).isEmptySet())
1302     return AliasResult::NoAlias;
1303 
1304   // Try to determine the range of values for VarIndex such that
1305   // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex.
1306   std::optional<APInt> MinAbsVarIndex;
1307   if (DecompGEP1.VarIndices.size() == 1) {
1308     // VarIndex = Scale*V.
1309     const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1310     if (Var.Val.TruncBits == 0 &&
1311         isKnownNonZero(Var.Val.V, SimplifyQuery(DL, DT, &AC, Var.CxtI))) {
1312       // Check if abs(V*Scale) >= abs(Scale) holds in the presence of
1313       // potentially wrapping math.
1314       auto MultiplyByScaleNoWrap = [](const VariableGEPIndex &Var) {
1315         if (Var.IsNSW)
1316           return true;
1317 
1318         int ValOrigBW = Var.Val.V->getType()->getPrimitiveSizeInBits();
1319         // If Scale is small enough so that abs(V*Scale) >= abs(Scale) holds.
1320         // The max value of abs(V) is 2^ValOrigBW - 1. Multiplying with a
1321         // constant smaller than 2^(bitwidth(Val) - ValOrigBW) won't wrap.
1322         int MaxScaleValueBW = Var.Val.getBitWidth() - ValOrigBW;
1323         if (MaxScaleValueBW <= 0)
1324           return false;
1325         return Var.Scale.ule(
1326             APInt::getMaxValue(MaxScaleValueBW).zext(Var.Scale.getBitWidth()));
1327       };
1328       // Refine MinAbsVarIndex, if abs(Scale*V) >= abs(Scale) holds in the
1329       // presence of potentially wrapping math.
1330       if (MultiplyByScaleNoWrap(Var)) {
1331         // If V != 0 then abs(VarIndex) >= abs(Scale).
1332         MinAbsVarIndex = Var.Scale.abs();
1333       }
1334     }
1335   } else if (DecompGEP1.VarIndices.size() == 2) {
1336     // VarIndex = Scale*V0 + (-Scale)*V1.
1337     // If V0 != V1 then abs(VarIndex) >= abs(Scale).
1338     // Check that MayBeCrossIteration is false, to avoid reasoning about
1339     // inequality of values across loop iterations.
1340     const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1341     const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1342     if (Var0.hasNegatedScaleOf(Var1) && Var0.Val.TruncBits == 0 &&
1343         Var0.Val.hasSameCastsAs(Var1.Val) && !AAQI.MayBeCrossIteration &&
1344         isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr,
1345                         DT))
1346       MinAbsVarIndex = Var0.Scale.abs();
1347   }
1348 
1349   if (MinAbsVarIndex) {
1350     // The constant offset will have added at least +/-MinAbsVarIndex to it.
1351     APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1352     APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1353     // We know that Offset <= OffsetLo || Offset >= OffsetHi
1354     if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
1355         OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
1356       return AliasResult::NoAlias;
1357   }
1358 
1359   if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT, AAQI))
1360     return AliasResult::NoAlias;
1361 
1362   // Statically, we can see that the base objects are the same, but the
1363   // pointers have dynamic offsets which we can't resolve. And none of our
1364   // little tricks above worked.
1365   return AliasResult::MayAlias;
1366 }
1367 
1368 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1369   // If the results agree, take it.
1370   if (A == B)
1371     return A;
1372   // A mix of PartialAlias and MustAlias is PartialAlias.
1373   if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) ||
1374       (B == AliasResult::PartialAlias && A == AliasResult::MustAlias))
1375     return AliasResult::PartialAlias;
1376   // Otherwise, we don't know anything.
1377   return AliasResult::MayAlias;
1378 }
1379 
1380 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1381 /// against another.
1382 AliasResult
1383 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1384                            const Value *V2, LocationSize V2Size,
1385                            AAQueryInfo &AAQI) {
1386   // If the values are Selects with the same condition, we can do a more precise
1387   // check: just check for aliases between the values on corresponding arms.
1388   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1389     if (isValueEqualInPotentialCycles(SI->getCondition(), SI2->getCondition(),
1390                                       AAQI)) {
1391       AliasResult Alias =
1392           AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize),
1393                          MemoryLocation(SI2->getTrueValue(), V2Size), AAQI);
1394       if (Alias == AliasResult::MayAlias)
1395         return AliasResult::MayAlias;
1396       AliasResult ThisAlias =
1397           AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize),
1398                          MemoryLocation(SI2->getFalseValue(), V2Size), AAQI);
1399       return MergeAliasResults(ThisAlias, Alias);
1400     }
1401 
1402   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1403   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1404   AliasResult Alias = AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize),
1405                                      MemoryLocation(V2, V2Size), AAQI);
1406   if (Alias == AliasResult::MayAlias)
1407     return AliasResult::MayAlias;
1408 
1409   AliasResult ThisAlias =
1410       AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize),
1411                      MemoryLocation(V2, V2Size), AAQI);
1412   return MergeAliasResults(ThisAlias, Alias);
1413 }
1414 
1415 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1416 /// another.
1417 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1418                                     const Value *V2, LocationSize V2Size,
1419                                     AAQueryInfo &AAQI) {
1420   if (!PN->getNumIncomingValues())
1421     return AliasResult::NoAlias;
1422   // If the values are PHIs in the same block, we can do a more precise
1423   // as well as efficient check: just check for aliases between the values
1424   // on corresponding edges.
1425   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1426     if (PN2->getParent() == PN->getParent()) {
1427       std::optional<AliasResult> Alias;
1428       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1429         AliasResult ThisAlias = AAQI.AAR.alias(
1430             MemoryLocation(PN->getIncomingValue(i), PNSize),
1431             MemoryLocation(
1432                 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size),
1433             AAQI);
1434         if (Alias)
1435           *Alias = MergeAliasResults(*Alias, ThisAlias);
1436         else
1437           Alias = ThisAlias;
1438         if (*Alias == AliasResult::MayAlias)
1439           break;
1440       }
1441       return *Alias;
1442     }
1443 
1444   SmallVector<Value *, 4> V1Srcs;
1445   // If a phi operand recurses back to the phi, we can still determine NoAlias
1446   // if we don't alias the underlying objects of the other phi operands, as we
1447   // know that the recursive phi needs to be based on them in some way.
1448   bool isRecursive = false;
1449   auto CheckForRecPhi = [&](Value *PV) {
1450     if (!EnableRecPhiAnalysis)
1451       return false;
1452     if (getUnderlyingObject(PV) == PN) {
1453       isRecursive = true;
1454       return true;
1455     }
1456     return false;
1457   };
1458 
1459   SmallPtrSet<Value *, 4> UniqueSrc;
1460   Value *OnePhi = nullptr;
1461   for (Value *PV1 : PN->incoming_values()) {
1462     // Skip the phi itself being the incoming value.
1463     if (PV1 == PN)
1464       continue;
1465 
1466     if (isa<PHINode>(PV1)) {
1467       if (OnePhi && OnePhi != PV1) {
1468         // To control potential compile time explosion, we choose to be
1469         // conserviate when we have more than one Phi input.  It is important
1470         // that we handle the single phi case as that lets us handle LCSSA
1471         // phi nodes and (combined with the recursive phi handling) simple
1472         // pointer induction variable patterns.
1473         return AliasResult::MayAlias;
1474       }
1475       OnePhi = PV1;
1476     }
1477 
1478     if (CheckForRecPhi(PV1))
1479       continue;
1480 
1481     if (UniqueSrc.insert(PV1).second)
1482       V1Srcs.push_back(PV1);
1483   }
1484 
1485   if (OnePhi && UniqueSrc.size() > 1)
1486     // Out of an abundance of caution, allow only the trivial lcssa and
1487     // recursive phi cases.
1488     return AliasResult::MayAlias;
1489 
1490   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1491   // value. This should only be possible in blocks unreachable from the entry
1492   // block, but return MayAlias just in case.
1493   if (V1Srcs.empty())
1494     return AliasResult::MayAlias;
1495 
1496   // If this PHI node is recursive, indicate that the pointer may be moved
1497   // across iterations. We can only prove NoAlias if different underlying
1498   // objects are involved.
1499   if (isRecursive)
1500     PNSize = LocationSize::beforeOrAfterPointer();
1501 
1502   // In the recursive alias queries below, we may compare values from two
1503   // different loop iterations.
1504   SaveAndRestore SavedMayBeCrossIteration(AAQI.MayBeCrossIteration, true);
1505 
1506   AliasResult Alias = AAQI.AAR.alias(MemoryLocation(V1Srcs[0], PNSize),
1507                                      MemoryLocation(V2, V2Size), AAQI);
1508 
1509   // Early exit if the check of the first PHI source against V2 is MayAlias.
1510   // Other results are not possible.
1511   if (Alias == AliasResult::MayAlias)
1512     return AliasResult::MayAlias;
1513   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1514   // remain valid to all elements and needs to conservatively return MayAlias.
1515   if (isRecursive && Alias != AliasResult::NoAlias)
1516     return AliasResult::MayAlias;
1517 
1518   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1519   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1520   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1521     Value *V = V1Srcs[i];
1522 
1523     AliasResult ThisAlias = AAQI.AAR.alias(
1524         MemoryLocation(V, PNSize), MemoryLocation(V2, V2Size), AAQI);
1525     Alias = MergeAliasResults(ThisAlias, Alias);
1526     if (Alias == AliasResult::MayAlias)
1527       break;
1528   }
1529 
1530   return Alias;
1531 }
1532 
1533 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1534 /// array references.
1535 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1536                                       const Value *V2, LocationSize V2Size,
1537                                       AAQueryInfo &AAQI,
1538                                       const Instruction *CtxI) {
1539   // If either of the memory references is empty, it doesn't matter what the
1540   // pointer values are.
1541   if (V1Size.isZero() || V2Size.isZero())
1542     return AliasResult::NoAlias;
1543 
1544   // Strip off any casts if they exist.
1545   V1 = V1->stripPointerCastsForAliasAnalysis();
1546   V2 = V2->stripPointerCastsForAliasAnalysis();
1547 
1548   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1549   // value for undef that aliases nothing in the program.
1550   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1551     return AliasResult::NoAlias;
1552 
1553   // Are we checking for alias of the same value?
1554   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1555   // different iterations. We must therefore make sure that this is not the
1556   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1557   // happen by looking at the visited phi nodes and making sure they cannot
1558   // reach the value.
1559   if (isValueEqualInPotentialCycles(V1, V2, AAQI))
1560     return AliasResult::MustAlias;
1561 
1562   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1563     return AliasResult::NoAlias; // Scalars cannot alias each other
1564 
1565   // Figure out what objects these things are pointing to if we can.
1566   const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1567   const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1568 
1569   // Null values in the default address space don't point to any object, so they
1570   // don't alias any other pointer.
1571   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1572     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1573       return AliasResult::NoAlias;
1574   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1575     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1576       return AliasResult::NoAlias;
1577 
1578   if (O1 != O2) {
1579     // If V1/V2 point to two different objects, we know that we have no alias.
1580     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1581       return AliasResult::NoAlias;
1582 
1583     // Function arguments can't alias with things that are known to be
1584     // unambigously identified at the function level.
1585     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1586         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1587       return AliasResult::NoAlias;
1588 
1589     // If one pointer is the result of a call/invoke or load and the other is a
1590     // non-escaping local object within the same function, then we know the
1591     // object couldn't escape to a point where the call could return it.
1592     //
1593     // Note that if the pointers are in different functions, there are a
1594     // variety of complications. A call with a nocapture argument may still
1595     // temporary store the nocapture argument's value in a temporary memory
1596     // location if that memory location doesn't escape. Or it may pass a
1597     // nocapture value to other functions as long as they don't capture it.
1598     if (isEscapeSource(O1) && AAQI.CI->isNotCapturedBefore(
1599                                   O2, dyn_cast<Instruction>(O1), /*OrAt*/ true))
1600       return AliasResult::NoAlias;
1601     if (isEscapeSource(O2) && AAQI.CI->isNotCapturedBefore(
1602                                   O1, dyn_cast<Instruction>(O2), /*OrAt*/ true))
1603       return AliasResult::NoAlias;
1604   }
1605 
1606   // If the size of one access is larger than the entire object on the other
1607   // side, then we know such behavior is undefined and can assume no alias.
1608   bool NullIsValidLocation = NullPointerIsDefined(&F);
1609   if ((isObjectSmallerThan(
1610           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1611           TLI, NullIsValidLocation)) ||
1612       (isObjectSmallerThan(
1613           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1614           TLI, NullIsValidLocation)))
1615     return AliasResult::NoAlias;
1616 
1617   if (EnableSeparateStorageAnalysis) {
1618     for (AssumptionCache::ResultElem &Elem : AC.assumptionsFor(O1)) {
1619       if (!Elem || Elem.Index == AssumptionCache::ExprResultIdx)
1620         continue;
1621 
1622       AssumeInst *Assume = cast<AssumeInst>(Elem);
1623       OperandBundleUse OBU = Assume->getOperandBundleAt(Elem.Index);
1624       if (OBU.getTagName() == "separate_storage") {
1625         assert(OBU.Inputs.size() == 2);
1626         const Value *Hint1 = OBU.Inputs[0].get();
1627         const Value *Hint2 = OBU.Inputs[1].get();
1628         // This is often a no-op; instcombine rewrites this for us. No-op
1629         // getUnderlyingObject calls are fast, though.
1630         const Value *HintO1 = getUnderlyingObject(Hint1);
1631         const Value *HintO2 = getUnderlyingObject(Hint2);
1632 
1633         DominatorTree *DT = getDT(AAQI);
1634         auto ValidAssumeForPtrContext = [&](const Value *Ptr) {
1635           if (const Instruction *PtrI = dyn_cast<Instruction>(Ptr)) {
1636             return isValidAssumeForContext(Assume, PtrI, DT,
1637                                            /* AllowEphemerals */ true);
1638           }
1639           if (const Argument *PtrA = dyn_cast<Argument>(Ptr)) {
1640             const Instruction *FirstI =
1641                 &*PtrA->getParent()->getEntryBlock().begin();
1642             return isValidAssumeForContext(Assume, FirstI, DT,
1643                                            /* AllowEphemerals */ true);
1644           }
1645           return false;
1646         };
1647 
1648         if ((O1 == HintO1 && O2 == HintO2) || (O1 == HintO2 && O2 == HintO1)) {
1649           // Note that we go back to V1 and V2 for the
1650           // ValidAssumeForPtrContext checks; they're dominated by O1 and O2,
1651           // so strictly more assumptions are valid for them.
1652           if ((CtxI && isValidAssumeForContext(Assume, CtxI, DT,
1653                                                /* AllowEphemerals */ true)) ||
1654               ValidAssumeForPtrContext(V1) || ValidAssumeForPtrContext(V2)) {
1655             return AliasResult::NoAlias;
1656           }
1657         }
1658       }
1659     }
1660   }
1661 
1662   // If one the accesses may be before the accessed pointer, canonicalize this
1663   // by using unknown after-pointer sizes for both accesses. This is
1664   // equivalent, because regardless of which pointer is lower, one of them
1665   // will always came after the other, as long as the underlying objects aren't
1666   // disjoint. We do this so that the rest of BasicAA does not have to deal
1667   // with accesses before the base pointer, and to improve cache utilization by
1668   // merging equivalent states.
1669   if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1670     V1Size = LocationSize::afterPointer();
1671     V2Size = LocationSize::afterPointer();
1672   }
1673 
1674   // FIXME: If this depth limit is hit, then we may cache sub-optimal results
1675   // for recursive queries. For this reason, this limit is chosen to be large
1676   // enough to be very rarely hit, while still being small enough to avoid
1677   // stack overflows.
1678   if (AAQI.Depth >= 512)
1679     return AliasResult::MayAlias;
1680 
1681   // Check the cache before climbing up use-def chains. This also terminates
1682   // otherwise infinitely recursive queries. Include MayBeCrossIteration in the
1683   // cache key, because some cases where MayBeCrossIteration==false returns
1684   // MustAlias or NoAlias may become MayAlias under MayBeCrossIteration==true.
1685   AAQueryInfo::LocPair Locs({V1, V1Size, AAQI.MayBeCrossIteration},
1686                             {V2, V2Size, AAQI.MayBeCrossIteration});
1687   const bool Swapped = V1 > V2;
1688   if (Swapped)
1689     std::swap(Locs.first, Locs.second);
1690   const auto &Pair = AAQI.AliasCache.try_emplace(
1691       Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0});
1692   if (!Pair.second) {
1693     auto &Entry = Pair.first->second;
1694     if (!Entry.isDefinitive()) {
1695       // Remember that we used an assumption. This may either be a direct use
1696       // of an assumption, or a use of an entry that may itself be based on an
1697       // assumption.
1698       ++AAQI.NumAssumptionUses;
1699       if (Entry.isAssumption())
1700         ++Entry.NumAssumptionUses;
1701     }
1702     // Cache contains sorted {V1,V2} pairs but we should return original order.
1703     auto Result = Entry.Result;
1704     Result.swap(Swapped);
1705     return Result;
1706   }
1707 
1708   int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
1709   unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
1710   AliasResult Result =
1711       aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2);
1712 
1713   auto It = AAQI.AliasCache.find(Locs);
1714   assert(It != AAQI.AliasCache.end() && "Must be in cache");
1715   auto &Entry = It->second;
1716 
1717   // Check whether a NoAlias assumption has been used, but disproven.
1718   bool AssumptionDisproven =
1719       Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias;
1720   if (AssumptionDisproven)
1721     Result = AliasResult::MayAlias;
1722 
1723   // This is a definitive result now, when considered as a root query.
1724   AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
1725   Entry.Result = Result;
1726   // Cache contains sorted {V1,V2} pairs.
1727   Entry.Result.swap(Swapped);
1728 
1729   // If the assumption has been disproven, remove any results that may have
1730   // been based on this assumption. Do this after the Entry updates above to
1731   // avoid iterator invalidation.
1732   if (AssumptionDisproven)
1733     while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1734       AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
1735 
1736   // The result may still be based on assumptions higher up in the chain.
1737   // Remember it, so it can be purged from the cache later.
1738   if (OrigNumAssumptionUses != AAQI.NumAssumptionUses &&
1739       Result != AliasResult::MayAlias) {
1740     AAQI.AssumptionBasedResults.push_back(Locs);
1741     Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::AssumptionBased;
1742   } else {
1743     Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive;
1744   }
1745 
1746   // Depth is incremented before this function is called, so Depth==1 indicates
1747   // a root query.
1748   if (AAQI.Depth == 1) {
1749     // Any remaining assumption based results must be based on proven
1750     // assumptions, so convert them to definitive results.
1751     for (const auto &Loc : AAQI.AssumptionBasedResults) {
1752       auto It = AAQI.AliasCache.find(Loc);
1753       if (It != AAQI.AliasCache.end())
1754         It->second.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive;
1755     }
1756     AAQI.AssumptionBasedResults.clear();
1757     AAQI.NumAssumptionUses = 0;
1758   }
1759   return Result;
1760 }
1761 
1762 AliasResult BasicAAResult::aliasCheckRecursive(
1763     const Value *V1, LocationSize V1Size,
1764     const Value *V2, LocationSize V2Size,
1765     AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1766   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1767     AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI);
1768     if (Result != AliasResult::MayAlias)
1769       return Result;
1770   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1771     AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI);
1772     Result.swap();
1773     if (Result != AliasResult::MayAlias)
1774       return Result;
1775   }
1776 
1777   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1778     AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI);
1779     if (Result != AliasResult::MayAlias)
1780       return Result;
1781   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1782     AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI);
1783     Result.swap();
1784     if (Result != AliasResult::MayAlias)
1785       return Result;
1786   }
1787 
1788   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1789     AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI);
1790     if (Result != AliasResult::MayAlias)
1791       return Result;
1792   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1793     AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI);
1794     Result.swap();
1795     if (Result != AliasResult::MayAlias)
1796       return Result;
1797   }
1798 
1799   // If both pointers are pointing into the same object and one of them
1800   // accesses the entire object, then the accesses must overlap in some way.
1801   if (O1 == O2) {
1802     bool NullIsValidLocation = NullPointerIsDefined(&F);
1803     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1804         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1805          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1806       return AliasResult::PartialAlias;
1807   }
1808 
1809   return AliasResult::MayAlias;
1810 }
1811 
1812 /// Check whether two Values can be considered equivalent.
1813 ///
1814 /// If the values may come from different cycle iterations, this will also
1815 /// check that the values are not part of cycle. We have to do this because we
1816 /// are looking through phi nodes, that is we say
1817 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1818 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1819                                                   const Value *V2,
1820                                                   const AAQueryInfo &AAQI) {
1821   if (V != V2)
1822     return false;
1823 
1824   if (!AAQI.MayBeCrossIteration)
1825     return true;
1826 
1827   // Non-instructions and instructions in the entry block cannot be part of
1828   // a loop.
1829   const Instruction *Inst = dyn_cast<Instruction>(V);
1830   if (!Inst || Inst->getParent()->isEntryBlock())
1831     return true;
1832 
1833   return isNotInCycle(Inst, getDT(AAQI), /*LI*/ nullptr);
1834 }
1835 
1836 /// Computes the symbolic difference between two de-composed GEPs.
1837 void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP,
1838                                            const DecomposedGEP &SrcGEP,
1839                                            const AAQueryInfo &AAQI) {
1840   DestGEP.Offset -= SrcGEP.Offset;
1841   for (const VariableGEPIndex &Src : SrcGEP.VarIndices) {
1842     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1843     // than a few variable indexes.
1844     bool Found = false;
1845     for (auto I : enumerate(DestGEP.VarIndices)) {
1846       VariableGEPIndex &Dest = I.value();
1847       if ((!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V, AAQI) &&
1848            !areBothVScale(Dest.Val.V, Src.Val.V)) ||
1849           !Dest.Val.hasSameCastsAs(Src.Val))
1850         continue;
1851 
1852       // Normalize IsNegated if we're going to lose the NSW flag anyway.
1853       if (Dest.IsNegated) {
1854         Dest.Scale = -Dest.Scale;
1855         Dest.IsNegated = false;
1856         Dest.IsNSW = false;
1857       }
1858 
1859       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1860       // goes to zero, remove the entry.
1861       if (Dest.Scale != Src.Scale) {
1862         Dest.Scale -= Src.Scale;
1863         Dest.IsNSW = false;
1864       } else {
1865         DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index());
1866       }
1867       Found = true;
1868       break;
1869     }
1870 
1871     // If we didn't consume this entry, add it to the end of the Dest list.
1872     if (!Found) {
1873       VariableGEPIndex Entry = {Src.Val, Src.Scale, Src.CxtI, Src.IsNSW,
1874                                 /* IsNegated */ true};
1875       DestGEP.VarIndices.push_back(Entry);
1876     }
1877   }
1878 }
1879 
1880 bool BasicAAResult::constantOffsetHeuristic(const DecomposedGEP &GEP,
1881                                             LocationSize MaybeV1Size,
1882                                             LocationSize MaybeV2Size,
1883                                             AssumptionCache *AC,
1884                                             DominatorTree *DT,
1885                                             const AAQueryInfo &AAQI) {
1886   if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1887       !MaybeV2Size.hasValue())
1888     return false;
1889 
1890   const uint64_t V1Size = MaybeV1Size.getValue();
1891   const uint64_t V2Size = MaybeV2Size.getValue();
1892 
1893   const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1];
1894 
1895   if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) ||
1896       !Var0.hasNegatedScaleOf(Var1) ||
1897       Var0.Val.V->getType() != Var1.Val.V->getType())
1898     return false;
1899 
1900   // We'll strip off the Extensions of Var0 and Var1 and do another round
1901   // of GetLinearExpression decomposition. In the example above, if Var0
1902   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1903 
1904   LinearExpression E0 =
1905       GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT);
1906   LinearExpression E1 =
1907       GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT);
1908   if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) ||
1909       !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V, AAQI))
1910     return false;
1911 
1912   // We have a hit - Var0 and Var1 only differ by a constant offset!
1913 
1914   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1915   // Var1 is possible to calculate, but we're just interested in the absolute
1916   // minimum difference between the two. The minimum distance may occur due to
1917   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1918   // the minimum distance between %i and %i + 5 is 3.
1919   APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff;
1920   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1921   APInt MinDiffBytes =
1922     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1923 
1924   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1925   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1926   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1927   // V2Size can fit in the MinDiffBytes gap.
1928   return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) &&
1929          MinDiffBytes.uge(V2Size + GEP.Offset.abs());
1930 }
1931 
1932 //===----------------------------------------------------------------------===//
1933 // BasicAliasAnalysis Pass
1934 //===----------------------------------------------------------------------===//
1935 
1936 AnalysisKey BasicAA::Key;
1937 
1938 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1939   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1940   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1941   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1942   return BasicAAResult(F.getDataLayout(), F, TLI, AC, DT);
1943 }
1944 
1945 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1946   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1947 }
1948 
1949 char BasicAAWrapperPass::ID = 0;
1950 
1951 void BasicAAWrapperPass::anchor() {}
1952 
1953 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1954                       "Basic Alias Analysis (stateless AA impl)", true, true)
1955 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1956 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1957 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1958 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1959                     "Basic Alias Analysis (stateless AA impl)", true, true)
1960 
1961 FunctionPass *llvm::createBasicAAWrapperPass() {
1962   return new BasicAAWrapperPass();
1963 }
1964 
1965 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1966   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1967   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1968   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1969 
1970   Result.reset(new BasicAAResult(F.getDataLayout(), F,
1971                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1972                                  &DTWP.getDomTree()));
1973 
1974   return false;
1975 }
1976 
1977 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1978   AU.setPreservesAll();
1979   AU.addRequiredTransitive<AssumptionCacheTracker>();
1980   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1981   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1982 }
1983