1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/PhiValues.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/KnownBits.h" 57 #include <cassert> 58 #include <cstdint> 59 #include <cstdlib> 60 #include <utility> 61 62 #define DEBUG_TYPE "basicaa" 63 64 using namespace llvm; 65 66 /// Enable analysis of recursive PHI nodes. 67 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 68 cl::init(false)); 69 70 /// By default, even on 32-bit architectures we use 64-bit integers for 71 /// calculations. This will allow us to more-aggressively decompose indexing 72 /// expressions calculated using i64 values (e.g., long long in C) which is 73 /// common enough to worry about. 74 static cl::opt<bool> ForceAtLeast64Bits("basicaa-force-at-least-64b", 75 cl::Hidden, cl::init(true)); 76 static cl::opt<bool> DoubleCalcBits("basicaa-double-calc-bits", 77 cl::Hidden, cl::init(false)); 78 79 /// SearchLimitReached / SearchTimes shows how often the limit of 80 /// to decompose GEPs is reached. It will affect the precision 81 /// of basic alias analysis. 82 STATISTIC(SearchLimitReached, "Number of times the limit to " 83 "decompose GEPs is reached"); 84 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 85 86 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 87 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 88 /// careful with value equivalence. We use reachability to make sure a value 89 /// cannot be involved in a cycle. 90 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 91 92 // The max limit of the search depth in DecomposeGEPExpression() and 93 // GetUnderlyingObject(), both functions need to use the same search 94 // depth otherwise the algorithm in aliasGEP will assert. 95 static const unsigned MaxLookupSearchDepth = 6; 96 97 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 98 FunctionAnalysisManager::Invalidator &Inv) { 99 // We don't care if this analysis itself is preserved, it has no state. But 100 // we need to check that the analyses it depends on have been. Note that we 101 // may be created without handles to some analyses and in that case don't 102 // depend on them. 103 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 104 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 105 (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) || 106 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 107 return true; 108 109 // Otherwise this analysis result remains valid. 110 return false; 111 } 112 113 //===----------------------------------------------------------------------===// 114 // Useful predicates 115 //===----------------------------------------------------------------------===// 116 117 /// Returns true if the pointer is to a function-local object that never 118 /// escapes from the function. 119 static bool isNonEscapingLocalObject( 120 const Value *V, 121 SmallDenseMap<const Value *, bool, 8> *IsCapturedCache = nullptr) { 122 SmallDenseMap<const Value *, bool, 8>::iterator CacheIt; 123 if (IsCapturedCache) { 124 bool Inserted; 125 std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false}); 126 if (!Inserted) 127 // Found cached result, return it! 128 return CacheIt->second; 129 } 130 131 // If this is a local allocation, check to see if it escapes. 132 if (isa<AllocaInst>(V) || isNoAliasCall(V)) { 133 // Set StoreCaptures to True so that we can assume in our callers that the 134 // pointer is not the result of a load instruction. Currently 135 // PointerMayBeCaptured doesn't have any special analysis for the 136 // StoreCaptures=false case; if it did, our callers could be refined to be 137 // more precise. 138 auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 139 if (IsCapturedCache) 140 CacheIt->second = Ret; 141 return Ret; 142 } 143 144 // If this is an argument that corresponds to a byval or noalias argument, 145 // then it has not escaped before entering the function. Check if it escapes 146 // inside the function. 147 if (const Argument *A = dyn_cast<Argument>(V)) 148 if (A->hasByValAttr() || A->hasNoAliasAttr()) { 149 // Note even if the argument is marked nocapture, we still need to check 150 // for copies made inside the function. The nocapture attribute only 151 // specifies that there are no copies made that outlive the function. 152 auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 153 if (IsCapturedCache) 154 CacheIt->second = Ret; 155 return Ret; 156 } 157 158 return false; 159 } 160 161 /// Returns true if the pointer is one which would have been considered an 162 /// escape by isNonEscapingLocalObject. 163 static bool isEscapeSource(const Value *V) { 164 if (isa<CallBase>(V)) 165 return true; 166 167 if (isa<Argument>(V)) 168 return true; 169 170 // The load case works because isNonEscapingLocalObject considers all 171 // stores to be escapes (it passes true for the StoreCaptures argument 172 // to PointerMayBeCaptured). 173 if (isa<LoadInst>(V)) 174 return true; 175 176 return false; 177 } 178 179 /// Returns the size of the object specified by V or UnknownSize if unknown. 180 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 181 const TargetLibraryInfo &TLI, 182 bool NullIsValidLoc, 183 bool RoundToAlign = false) { 184 uint64_t Size; 185 ObjectSizeOpts Opts; 186 Opts.RoundToAlign = RoundToAlign; 187 Opts.NullIsUnknownSize = NullIsValidLoc; 188 if (getObjectSize(V, Size, DL, &TLI, Opts)) 189 return Size; 190 return MemoryLocation::UnknownSize; 191 } 192 193 /// Returns true if we can prove that the object specified by V is smaller than 194 /// Size. 195 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 196 const DataLayout &DL, 197 const TargetLibraryInfo &TLI, 198 bool NullIsValidLoc) { 199 // Note that the meanings of the "object" are slightly different in the 200 // following contexts: 201 // c1: llvm::getObjectSize() 202 // c2: llvm.objectsize() intrinsic 203 // c3: isObjectSmallerThan() 204 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 205 // refers to the "entire object". 206 // 207 // Consider this example: 208 // char *p = (char*)malloc(100) 209 // char *q = p+80; 210 // 211 // In the context of c1 and c2, the "object" pointed by q refers to the 212 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 213 // 214 // However, in the context of c3, the "object" refers to the chunk of memory 215 // being allocated. So, the "object" has 100 bytes, and q points to the middle 216 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 217 // parameter, before the llvm::getObjectSize() is called to get the size of 218 // entire object, we should: 219 // - either rewind the pointer q to the base-address of the object in 220 // question (in this case rewind to p), or 221 // - just give up. It is up to caller to make sure the pointer is pointing 222 // to the base address the object. 223 // 224 // We go for 2nd option for simplicity. 225 if (!isIdentifiedObject(V)) 226 return false; 227 228 // This function needs to use the aligned object size because we allow 229 // reads a bit past the end given sufficient alignment. 230 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 231 /*RoundToAlign*/ true); 232 233 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 234 } 235 236 /// Return the minimal extent from \p V to the end of the underlying object, 237 /// assuming the result is used in an aliasing query. E.g., we do use the query 238 /// location size and the fact that null pointers cannot alias here. 239 static uint64_t getMinimalExtentFrom(const Value &V, 240 const LocationSize &LocSize, 241 const DataLayout &DL, 242 bool NullIsValidLoc) { 243 // If we have dereferenceability information we know a lower bound for the 244 // extent as accesses for a lower offset would be valid. We need to exclude 245 // the "or null" part if null is a valid pointer. 246 bool CanBeNull; 247 uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull); 248 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 249 // If queried with a precise location size, we assume that location size to be 250 // accessed, thus valid. 251 if (LocSize.isPrecise()) 252 DerefBytes = std::max(DerefBytes, LocSize.getValue()); 253 return DerefBytes; 254 } 255 256 /// Returns true if we can prove that the object specified by V has size Size. 257 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 258 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 259 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 260 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 261 } 262 263 //===----------------------------------------------------------------------===// 264 // GetElementPtr Instruction Decomposition and Analysis 265 //===----------------------------------------------------------------------===// 266 267 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 268 /// B are constant integers. 269 /// 270 /// Returns the scale and offset values as APInts and return V as a Value*, and 271 /// return whether we looked through any sign or zero extends. The incoming 272 /// Value is known to have IntegerType, and it may already be sign or zero 273 /// extended. 274 /// 275 /// Note that this looks through extends, so the high bits may not be 276 /// represented in the result. 277 /*static*/ const Value *BasicAAResult::GetLinearExpression( 278 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 279 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 280 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 281 assert(V->getType()->isIntegerTy() && "Not an integer value"); 282 283 // Limit our recursion depth. 284 if (Depth == 6) { 285 Scale = 1; 286 Offset = 0; 287 return V; 288 } 289 290 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 291 // If it's a constant, just convert it to an offset and remove the variable. 292 // If we've been called recursively, the Offset bit width will be greater 293 // than the constant's (the Offset's always as wide as the outermost call), 294 // so we'll zext here and process any extension in the isa<SExtInst> & 295 // isa<ZExtInst> cases below. 296 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 297 assert(Scale == 0 && "Constant values don't have a scale"); 298 return V; 299 } 300 301 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 302 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 303 // If we've been called recursively, then Offset and Scale will be wider 304 // than the BOp operands. We'll always zext it here as we'll process sign 305 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 306 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 307 308 switch (BOp->getOpcode()) { 309 default: 310 // We don't understand this instruction, so we can't decompose it any 311 // further. 312 Scale = 1; 313 Offset = 0; 314 return V; 315 case Instruction::Or: 316 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 317 // analyze it. 318 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 319 BOp, DT)) { 320 Scale = 1; 321 Offset = 0; 322 return V; 323 } 324 LLVM_FALLTHROUGH; 325 case Instruction::Add: 326 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 327 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 328 Offset += RHS; 329 break; 330 case Instruction::Sub: 331 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 332 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 333 Offset -= RHS; 334 break; 335 case Instruction::Mul: 336 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 337 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 338 Offset *= RHS; 339 Scale *= RHS; 340 break; 341 case Instruction::Shl: 342 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 343 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 344 345 // We're trying to linearize an expression of the kind: 346 // shl i8 -128, 36 347 // where the shift count exceeds the bitwidth of the type. 348 // We can't decompose this further (the expression would return 349 // a poison value). 350 if (Offset.getBitWidth() < RHS.getLimitedValue() || 351 Scale.getBitWidth() < RHS.getLimitedValue()) { 352 Scale = 1; 353 Offset = 0; 354 return V; 355 } 356 357 Offset <<= RHS.getLimitedValue(); 358 Scale <<= RHS.getLimitedValue(); 359 // the semantics of nsw and nuw for left shifts don't match those of 360 // multiplications, so we won't propagate them. 361 NSW = NUW = false; 362 return V; 363 } 364 365 if (isa<OverflowingBinaryOperator>(BOp)) { 366 NUW &= BOp->hasNoUnsignedWrap(); 367 NSW &= BOp->hasNoSignedWrap(); 368 } 369 return V; 370 } 371 } 372 373 // Since GEP indices are sign extended anyway, we don't care about the high 374 // bits of a sign or zero extended value - just scales and offsets. The 375 // extensions have to be consistent though. 376 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 377 Value *CastOp = cast<CastInst>(V)->getOperand(0); 378 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 379 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 380 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 381 const Value *Result = 382 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 383 Depth + 1, AC, DT, NSW, NUW); 384 385 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 386 // by just incrementing the number of bits we've extended by. 387 unsigned ExtendedBy = NewWidth - SmallWidth; 388 389 if (isa<SExtInst>(V) && ZExtBits == 0) { 390 // sext(sext(%x, a), b) == sext(%x, a + b) 391 392 if (NSW) { 393 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 394 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 395 unsigned OldWidth = Offset.getBitWidth(); 396 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 397 } else { 398 // We may have signed-wrapped, so don't decompose sext(%x + c) into 399 // sext(%x) + sext(c) 400 Scale = 1; 401 Offset = 0; 402 Result = CastOp; 403 ZExtBits = OldZExtBits; 404 SExtBits = OldSExtBits; 405 } 406 SExtBits += ExtendedBy; 407 } else { 408 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 409 410 if (!NUW) { 411 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 412 // zext(%x) + zext(c) 413 Scale = 1; 414 Offset = 0; 415 Result = CastOp; 416 ZExtBits = OldZExtBits; 417 SExtBits = OldSExtBits; 418 } 419 ZExtBits += ExtendedBy; 420 } 421 422 return Result; 423 } 424 425 Scale = 1; 426 Offset = 0; 427 return V; 428 } 429 430 /// To ensure a pointer offset fits in an integer of size PointerSize 431 /// (in bits) when that size is smaller than the maximum pointer size. This is 432 /// an issue, for example, in particular for 32b pointers with negative indices 433 /// that rely on two's complement wrap-arounds for precise alias information 434 /// where the maximum pointer size is 64b. 435 static APInt adjustToPointerSize(APInt Offset, unsigned PointerSize) { 436 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!"); 437 unsigned ShiftBits = Offset.getBitWidth() - PointerSize; 438 return (Offset << ShiftBits).ashr(ShiftBits); 439 } 440 441 static unsigned getMaxPointerSize(const DataLayout &DL) { 442 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits(); 443 if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64; 444 if (DoubleCalcBits) MaxPointerSize *= 2; 445 446 return MaxPointerSize; 447 } 448 449 /// If V is a symbolic pointer expression, decompose it into a base pointer 450 /// with a constant offset and a number of scaled symbolic offsets. 451 /// 452 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 453 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 454 /// specified amount, but which may have other unrepresented high bits. As 455 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 456 /// 457 /// When DataLayout is around, this function is capable of analyzing everything 458 /// that GetUnderlyingObject can look through. To be able to do that 459 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 460 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 461 /// through pointer casts. 462 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 463 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 464 DominatorTree *DT) { 465 // Limit recursion depth to limit compile time in crazy cases. 466 unsigned MaxLookup = MaxLookupSearchDepth; 467 SearchTimes++; 468 469 unsigned MaxPointerSize = getMaxPointerSize(DL); 470 Decomposed.VarIndices.clear(); 471 do { 472 // See if this is a bitcast or GEP. 473 const Operator *Op = dyn_cast<Operator>(V); 474 if (!Op) { 475 // The only non-operator case we can handle are GlobalAliases. 476 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 477 if (!GA->isInterposable()) { 478 V = GA->getAliasee(); 479 continue; 480 } 481 } 482 Decomposed.Base = V; 483 return false; 484 } 485 486 if (Op->getOpcode() == Instruction::BitCast || 487 Op->getOpcode() == Instruction::AddrSpaceCast) { 488 V = Op->getOperand(0); 489 continue; 490 } 491 492 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 493 if (!GEPOp) { 494 if (const auto *Call = dyn_cast<CallBase>(V)) { 495 // CaptureTracking can know about special capturing properties of some 496 // intrinsics like launder.invariant.group, that can't be expressed with 497 // the attributes, but have properties like returning aliasing pointer. 498 // Because some analysis may assume that nocaptured pointer is not 499 // returned from some special intrinsic (because function would have to 500 // be marked with returns attribute), it is crucial to use this function 501 // because it should be in sync with CaptureTracking. Not using it may 502 // cause weird miscompilations where 2 aliasing pointers are assumed to 503 // noalias. 504 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 505 V = RP; 506 continue; 507 } 508 } 509 510 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 511 // can come up with something. This matches what GetUnderlyingObject does. 512 if (const Instruction *I = dyn_cast<Instruction>(V)) 513 // TODO: Get a DominatorTree and AssumptionCache and use them here 514 // (these are both now available in this function, but this should be 515 // updated when GetUnderlyingObject is updated). TLI should be 516 // provided also. 517 if (const Value *Simplified = 518 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 519 V = Simplified; 520 continue; 521 } 522 523 Decomposed.Base = V; 524 return false; 525 } 526 527 // Don't attempt to analyze GEPs over unsized objects. 528 if (!GEPOp->getSourceElementType()->isSized()) { 529 Decomposed.Base = V; 530 return false; 531 } 532 533 unsigned AS = GEPOp->getPointerAddressSpace(); 534 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 535 gep_type_iterator GTI = gep_type_begin(GEPOp); 536 unsigned PointerSize = DL.getPointerSizeInBits(AS); 537 // Assume all GEP operands are constants until proven otherwise. 538 bool GepHasConstantOffset = true; 539 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 540 I != E; ++I, ++GTI) { 541 const Value *Index = *I; 542 // Compute the (potentially symbolic) offset in bytes for this index. 543 if (StructType *STy = GTI.getStructTypeOrNull()) { 544 // For a struct, add the member offset. 545 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 546 if (FieldNo == 0) 547 continue; 548 549 Decomposed.StructOffset += 550 DL.getStructLayout(STy)->getElementOffset(FieldNo); 551 continue; 552 } 553 554 // For an array/pointer, add the element offset, explicitly scaled. 555 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 556 if (CIdx->isZero()) 557 continue; 558 Decomposed.OtherOffset += 559 (DL.getTypeAllocSize(GTI.getIndexedType()) * 560 CIdx->getValue().sextOrSelf(MaxPointerSize)) 561 .sextOrTrunc(MaxPointerSize); 562 continue; 563 } 564 565 GepHasConstantOffset = false; 566 567 APInt Scale(MaxPointerSize, DL.getTypeAllocSize(GTI.getIndexedType())); 568 unsigned ZExtBits = 0, SExtBits = 0; 569 570 // If the integer type is smaller than the pointer size, it is implicitly 571 // sign extended to pointer size. 572 unsigned Width = Index->getType()->getIntegerBitWidth(); 573 if (PointerSize > Width) 574 SExtBits += PointerSize - Width; 575 576 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 577 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 578 bool NSW = true, NUW = true; 579 const Value *OrigIndex = Index; 580 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 581 SExtBits, DL, 0, AC, DT, NSW, NUW); 582 583 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 584 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 585 586 // It can be the case that, even through C1*V+C2 does not overflow for 587 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot 588 // decompose the expression in this way. 589 // 590 // FIXME: C1*Scale and the other operations in the decomposed 591 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this 592 // possibility. 593 APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) * 594 Scale.sext(MaxPointerSize*2); 595 if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) { 596 Index = OrigIndex; 597 IndexScale = 1; 598 IndexOffset = 0; 599 600 ZExtBits = SExtBits = 0; 601 if (PointerSize > Width) 602 SExtBits += PointerSize - Width; 603 } else { 604 Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale; 605 Scale *= IndexScale.sextOrTrunc(MaxPointerSize); 606 } 607 608 // If we already had an occurrence of this index variable, merge this 609 // scale into it. For example, we want to handle: 610 // A[x][x] -> x*16 + x*4 -> x*20 611 // This also ensures that 'x' only appears in the index list once. 612 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 613 if (Decomposed.VarIndices[i].V == Index && 614 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 615 Decomposed.VarIndices[i].SExtBits == SExtBits) { 616 Scale += Decomposed.VarIndices[i].Scale; 617 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 618 break; 619 } 620 } 621 622 // Make sure that we have a scale that makes sense for this target's 623 // pointer size. 624 Scale = adjustToPointerSize(Scale, PointerSize); 625 626 if (!!Scale) { 627 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale}; 628 Decomposed.VarIndices.push_back(Entry); 629 } 630 } 631 632 // Take care of wrap-arounds 633 if (GepHasConstantOffset) { 634 Decomposed.StructOffset = 635 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 636 Decomposed.OtherOffset = 637 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 638 } 639 640 // Analyze the base pointer next. 641 V = GEPOp->getOperand(0); 642 } while (--MaxLookup); 643 644 // If the chain of expressions is too deep, just return early. 645 Decomposed.Base = V; 646 SearchLimitReached++; 647 return true; 648 } 649 650 /// Returns whether the given pointer value points to memory that is local to 651 /// the function, with global constants being considered local to all 652 /// functions. 653 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 654 AAQueryInfo &AAQI, bool OrLocal) { 655 assert(Visited.empty() && "Visited must be cleared after use!"); 656 657 unsigned MaxLookup = 8; 658 SmallVector<const Value *, 16> Worklist; 659 Worklist.push_back(Loc.Ptr); 660 do { 661 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 662 if (!Visited.insert(V).second) { 663 Visited.clear(); 664 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 665 } 666 667 // An alloca instruction defines local memory. 668 if (OrLocal && isa<AllocaInst>(V)) 669 continue; 670 671 // A global constant counts as local memory for our purposes. 672 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 673 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 674 // global to be marked constant in some modules and non-constant in 675 // others. GV may even be a declaration, not a definition. 676 if (!GV->isConstant()) { 677 Visited.clear(); 678 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 679 } 680 continue; 681 } 682 683 // If both select values point to local memory, then so does the select. 684 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 685 Worklist.push_back(SI->getTrueValue()); 686 Worklist.push_back(SI->getFalseValue()); 687 continue; 688 } 689 690 // If all values incoming to a phi node point to local memory, then so does 691 // the phi. 692 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 693 // Don't bother inspecting phi nodes with many operands. 694 if (PN->getNumIncomingValues() > MaxLookup) { 695 Visited.clear(); 696 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 697 } 698 for (Value *IncValue : PN->incoming_values()) 699 Worklist.push_back(IncValue); 700 continue; 701 } 702 703 // Otherwise be conservative. 704 Visited.clear(); 705 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 706 } while (!Worklist.empty() && --MaxLookup); 707 708 Visited.clear(); 709 return Worklist.empty(); 710 } 711 712 /// Returns the behavior when calling the given call site. 713 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 714 if (Call->doesNotAccessMemory()) 715 // Can't do better than this. 716 return FMRB_DoesNotAccessMemory; 717 718 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 719 720 // If the callsite knows it only reads memory, don't return worse 721 // than that. 722 if (Call->onlyReadsMemory()) 723 Min = FMRB_OnlyReadsMemory; 724 else if (Call->doesNotReadMemory()) 725 Min = FMRB_DoesNotReadMemory; 726 727 if (Call->onlyAccessesArgMemory()) 728 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 729 else if (Call->onlyAccessesInaccessibleMemory()) 730 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 731 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 732 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 733 734 // If the call has operand bundles then aliasing attributes from the function 735 // it calls do not directly apply to the call. This can be made more precise 736 // in the future. 737 if (!Call->hasOperandBundles()) 738 if (const Function *F = Call->getCalledFunction()) 739 Min = 740 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 741 742 return Min; 743 } 744 745 /// Returns the behavior when calling the given function. For use when the call 746 /// site is not known. 747 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 748 // If the function declares it doesn't access memory, we can't do better. 749 if (F->doesNotAccessMemory()) 750 return FMRB_DoesNotAccessMemory; 751 752 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 753 754 // If the function declares it only reads memory, go with that. 755 if (F->onlyReadsMemory()) 756 Min = FMRB_OnlyReadsMemory; 757 else if (F->doesNotReadMemory()) 758 Min = FMRB_DoesNotReadMemory; 759 760 if (F->onlyAccessesArgMemory()) 761 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 762 else if (F->onlyAccessesInaccessibleMemory()) 763 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 764 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 765 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 766 767 return Min; 768 } 769 770 /// Returns true if this is a writeonly (i.e Mod only) parameter. 771 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 772 const TargetLibraryInfo &TLI) { 773 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 774 return true; 775 776 // We can bound the aliasing properties of memset_pattern16 just as we can 777 // for memcpy/memset. This is particularly important because the 778 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 779 // whenever possible. 780 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 781 // attributes. 782 LibFunc F; 783 if (Call->getCalledFunction() && 784 TLI.getLibFunc(*Call->getCalledFunction(), F) && 785 F == LibFunc_memset_pattern16 && TLI.has(F)) 786 if (ArgIdx == 0) 787 return true; 788 789 // TODO: memset_pattern4, memset_pattern8 790 // TODO: _chk variants 791 // TODO: strcmp, strcpy 792 793 return false; 794 } 795 796 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 797 unsigned ArgIdx) { 798 // Checking for known builtin intrinsics and target library functions. 799 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 800 return ModRefInfo::Mod; 801 802 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 803 return ModRefInfo::Ref; 804 805 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 806 return ModRefInfo::NoModRef; 807 808 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 809 } 810 811 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 812 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 813 return II && II->getIntrinsicID() == IID; 814 } 815 816 #ifndef NDEBUG 817 static const Function *getParent(const Value *V) { 818 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 819 if (!inst->getParent()) 820 return nullptr; 821 return inst->getParent()->getParent(); 822 } 823 824 if (const Argument *arg = dyn_cast<Argument>(V)) 825 return arg->getParent(); 826 827 return nullptr; 828 } 829 830 static bool notDifferentParent(const Value *O1, const Value *O2) { 831 832 const Function *F1 = getParent(O1); 833 const Function *F2 = getParent(O2); 834 835 return !F1 || !F2 || F1 == F2; 836 } 837 #endif 838 839 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 840 const MemoryLocation &LocB, 841 AAQueryInfo &AAQI) { 842 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 843 "BasicAliasAnalysis doesn't support interprocedural queries."); 844 845 // If we have a directly cached entry for these locations, we have recursed 846 // through this once, so just return the cached results. Notably, when this 847 // happens, we don't clear the cache. 848 auto CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocA, LocB)); 849 if (CacheIt != AAQI.AliasCache.end()) 850 return CacheIt->second; 851 852 CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocB, LocA)); 853 if (CacheIt != AAQI.AliasCache.end()) 854 return CacheIt->second; 855 856 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 857 LocB.Size, LocB.AATags, AAQI); 858 859 VisitedPhiBBs.clear(); 860 return Alias; 861 } 862 863 /// Checks to see if the specified callsite can clobber the specified memory 864 /// object. 865 /// 866 /// Since we only look at local properties of this function, we really can't 867 /// say much about this query. We do, however, use simple "address taken" 868 /// analysis on local objects. 869 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 870 const MemoryLocation &Loc, 871 AAQueryInfo &AAQI) { 872 assert(notDifferentParent(Call, Loc.Ptr) && 873 "AliasAnalysis query involving multiple functions!"); 874 875 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 876 877 // Calls marked 'tail' cannot read or write allocas from the current frame 878 // because the current frame might be destroyed by the time they run. However, 879 // a tail call may use an alloca with byval. Calling with byval copies the 880 // contents of the alloca into argument registers or stack slots, so there is 881 // no lifetime issue. 882 if (isa<AllocaInst>(Object)) 883 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 884 if (CI->isTailCall() && 885 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 886 return ModRefInfo::NoModRef; 887 888 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 889 // modify them even though the alloca is not escaped. 890 if (auto *AI = dyn_cast<AllocaInst>(Object)) 891 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 892 return ModRefInfo::Mod; 893 894 // If the pointer is to a locally allocated object that does not escape, 895 // then the call can not mod/ref the pointer unless the call takes the pointer 896 // as an argument, and itself doesn't capture it. 897 if (!isa<Constant>(Object) && Call != Object && 898 isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) { 899 900 // Optimistically assume that call doesn't touch Object and check this 901 // assumption in the following loop. 902 ModRefInfo Result = ModRefInfo::NoModRef; 903 bool IsMustAlias = true; 904 905 unsigned OperandNo = 0; 906 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 907 CI != CE; ++CI, ++OperandNo) { 908 // Only look at the no-capture or byval pointer arguments. If this 909 // pointer were passed to arguments that were neither of these, then it 910 // couldn't be no-capture. 911 if (!(*CI)->getType()->isPointerTy() || 912 (!Call->doesNotCapture(OperandNo) && 913 OperandNo < Call->getNumArgOperands() && 914 !Call->isByValArgument(OperandNo))) 915 continue; 916 917 // Call doesn't access memory through this operand, so we don't care 918 // if it aliases with Object. 919 if (Call->doesNotAccessMemory(OperandNo)) 920 continue; 921 922 // If this is a no-capture pointer argument, see if we can tell that it 923 // is impossible to alias the pointer we're checking. 924 AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI), 925 MemoryLocation(Object), AAQI); 926 if (AR != MustAlias) 927 IsMustAlias = false; 928 // Operand doesn't alias 'Object', continue looking for other aliases 929 if (AR == NoAlias) 930 continue; 931 // Operand aliases 'Object', but call doesn't modify it. Strengthen 932 // initial assumption and keep looking in case if there are more aliases. 933 if (Call->onlyReadsMemory(OperandNo)) { 934 Result = setRef(Result); 935 continue; 936 } 937 // Operand aliases 'Object' but call only writes into it. 938 if (Call->doesNotReadMemory(OperandNo)) { 939 Result = setMod(Result); 940 continue; 941 } 942 // This operand aliases 'Object' and call reads and writes into it. 943 // Setting ModRef will not yield an early return below, MustAlias is not 944 // used further. 945 Result = ModRefInfo::ModRef; 946 break; 947 } 948 949 // No operand aliases, reset Must bit. Add below if at least one aliases 950 // and all aliases found are MustAlias. 951 if (isNoModRef(Result)) 952 IsMustAlias = false; 953 954 // Early return if we improved mod ref information 955 if (!isModAndRefSet(Result)) { 956 if (isNoModRef(Result)) 957 return ModRefInfo::NoModRef; 958 return IsMustAlias ? setMust(Result) : clearMust(Result); 959 } 960 } 961 962 // If the call is to malloc or calloc, we can assume that it doesn't 963 // modify any IR visible value. This is only valid because we assume these 964 // routines do not read values visible in the IR. TODO: Consider special 965 // casing realloc and strdup routines which access only their arguments as 966 // well. Or alternatively, replace all of this with inaccessiblememonly once 967 // that's implemented fully. 968 if (isMallocOrCallocLikeFn(Call, &TLI)) { 969 // Be conservative if the accessed pointer may alias the allocation - 970 // fallback to the generic handling below. 971 if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias) 972 return ModRefInfo::NoModRef; 973 } 974 975 // The semantics of memcpy intrinsics forbid overlap between their respective 976 // operands, i.e., source and destination of any given memcpy must no-alias. 977 // If Loc must-aliases either one of these two locations, then it necessarily 978 // no-aliases the other. 979 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) { 980 AliasResult SrcAA, DestAA; 981 982 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst), 983 Loc, AAQI)) == MustAlias) 984 // Loc is exactly the memcpy source thus disjoint from memcpy dest. 985 return ModRefInfo::Ref; 986 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst), 987 Loc, AAQI)) == MustAlias) 988 // The converse case. 989 return ModRefInfo::Mod; 990 991 // It's also possible for Loc to alias both src and dest, or neither. 992 ModRefInfo rv = ModRefInfo::NoModRef; 993 if (SrcAA != NoAlias) 994 rv = setRef(rv); 995 if (DestAA != NoAlias) 996 rv = setMod(rv); 997 return rv; 998 } 999 1000 // While the assume intrinsic is marked as arbitrarily writing so that 1001 // proper control dependencies will be maintained, it never aliases any 1002 // particular memory location. 1003 if (isIntrinsicCall(Call, Intrinsic::assume)) 1004 return ModRefInfo::NoModRef; 1005 1006 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 1007 // that proper control dependencies are maintained but they never mods any 1008 // particular memory location. 1009 // 1010 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1011 // heap state at the point the guard is issued needs to be consistent in case 1012 // the guard invokes the "deopt" continuation. 1013 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 1014 return ModRefInfo::Ref; 1015 1016 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 1017 // writing so that proper control dependencies are maintained but they never 1018 // mod any particular memory location visible to the IR. 1019 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 1020 // intrinsic is now modeled as reading memory. This prevents hoisting the 1021 // invariant.start intrinsic over stores. Consider: 1022 // *ptr = 40; 1023 // *ptr = 50; 1024 // invariant_start(ptr) 1025 // int val = *ptr; 1026 // print(val); 1027 // 1028 // This cannot be transformed to: 1029 // 1030 // *ptr = 40; 1031 // invariant_start(ptr) 1032 // *ptr = 50; 1033 // int val = *ptr; 1034 // print(val); 1035 // 1036 // The transformation will cause the second store to be ignored (based on 1037 // rules of invariant.start) and print 40, while the first program always 1038 // prints 50. 1039 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 1040 return ModRefInfo::Ref; 1041 1042 // The AAResultBase base class has some smarts, lets use them. 1043 return AAResultBase::getModRefInfo(Call, Loc, AAQI); 1044 } 1045 1046 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 1047 const CallBase *Call2, 1048 AAQueryInfo &AAQI) { 1049 // While the assume intrinsic is marked as arbitrarily writing so that 1050 // proper control dependencies will be maintained, it never aliases any 1051 // particular memory location. 1052 if (isIntrinsicCall(Call1, Intrinsic::assume) || 1053 isIntrinsicCall(Call2, Intrinsic::assume)) 1054 return ModRefInfo::NoModRef; 1055 1056 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 1057 // that proper control dependencies are maintained but they never mod any 1058 // particular memory location. 1059 // 1060 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1061 // heap state at the point the guard is issued needs to be consistent in case 1062 // the guard invokes the "deopt" continuation. 1063 1064 // NB! This function is *not* commutative, so we special case two 1065 // possibilities for guard intrinsics. 1066 1067 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1068 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 1069 ? ModRefInfo::Ref 1070 : ModRefInfo::NoModRef; 1071 1072 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1073 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 1074 ? ModRefInfo::Mod 1075 : ModRefInfo::NoModRef; 1076 1077 // The AAResultBase base class has some smarts, lets use them. 1078 return AAResultBase::getModRefInfo(Call1, Call2, AAQI); 1079 } 1080 1081 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 1082 /// both having the exact same pointer operand. 1083 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 1084 LocationSize MaybeV1Size, 1085 const GEPOperator *GEP2, 1086 LocationSize MaybeV2Size, 1087 const DataLayout &DL) { 1088 assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1089 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1090 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() && 1091 "Expected GEPs with the same pointer operand"); 1092 1093 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 1094 // such that the struct field accesses provably cannot alias. 1095 // We also need at least two indices (the pointer, and the struct field). 1096 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 1097 GEP1->getNumIndices() < 2) 1098 return MayAlias; 1099 1100 // If we don't know the size of the accesses through both GEPs, we can't 1101 // determine whether the struct fields accessed can't alias. 1102 if (MaybeV1Size == LocationSize::unknown() || 1103 MaybeV2Size == LocationSize::unknown()) 1104 return MayAlias; 1105 1106 const uint64_t V1Size = MaybeV1Size.getValue(); 1107 const uint64_t V2Size = MaybeV2Size.getValue(); 1108 1109 ConstantInt *C1 = 1110 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 1111 ConstantInt *C2 = 1112 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 1113 1114 // If the last (struct) indices are constants and are equal, the other indices 1115 // might be also be dynamically equal, so the GEPs can alias. 1116 if (C1 && C2) { 1117 unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth()); 1118 if (C1->getValue().sextOrSelf(BitWidth) == 1119 C2->getValue().sextOrSelf(BitWidth)) 1120 return MayAlias; 1121 } 1122 1123 // Find the last-indexed type of the GEP, i.e., the type you'd get if 1124 // you stripped the last index. 1125 // On the way, look at each indexed type. If there's something other 1126 // than an array, different indices can lead to different final types. 1127 SmallVector<Value *, 8> IntermediateIndices; 1128 1129 // Insert the first index; we don't need to check the type indexed 1130 // through it as it only drops the pointer indirection. 1131 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 1132 IntermediateIndices.push_back(GEP1->getOperand(1)); 1133 1134 // Insert all the remaining indices but the last one. 1135 // Also, check that they all index through arrays. 1136 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 1137 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 1138 GEP1->getSourceElementType(), IntermediateIndices))) 1139 return MayAlias; 1140 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 1141 } 1142 1143 auto *Ty = GetElementPtrInst::getIndexedType( 1144 GEP1->getSourceElementType(), IntermediateIndices); 1145 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 1146 1147 if (isa<SequentialType>(Ty)) { 1148 // We know that: 1149 // - both GEPs begin indexing from the exact same pointer; 1150 // - the last indices in both GEPs are constants, indexing into a sequential 1151 // type (array or pointer); 1152 // - both GEPs only index through arrays prior to that. 1153 // 1154 // Because array indices greater than the number of elements are valid in 1155 // GEPs, unless we know the intermediate indices are identical between 1156 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 1157 // partially overlap. We also need to check that the loaded size matches 1158 // the element size, otherwise we could still have overlap. 1159 const uint64_t ElementSize = 1160 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 1161 if (V1Size != ElementSize || V2Size != ElementSize) 1162 return MayAlias; 1163 1164 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 1165 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 1166 return MayAlias; 1167 1168 // Now we know that the array/pointer that GEP1 indexes into and that 1169 // that GEP2 indexes into must either precisely overlap or be disjoint. 1170 // Because they cannot partially overlap and because fields in an array 1171 // cannot overlap, if we can prove the final indices are different between 1172 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1173 1174 // If the last indices are constants, we've already checked they don't 1175 // equal each other so we can exit early. 1176 if (C1 && C2) 1177 return NoAlias; 1178 { 1179 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1); 1180 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1); 1181 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) { 1182 // If one of the indices is a PHI node, be safe and only use 1183 // computeKnownBits so we don't make any assumptions about the 1184 // relationships between the two indices. This is important if we're 1185 // asking about values from different loop iterations. See PR32314. 1186 // TODO: We may be able to change the check so we only do this when 1187 // we definitely looked through a PHINode. 1188 if (GEP1LastIdx != GEP2LastIdx && 1189 GEP1LastIdx->getType() == GEP2LastIdx->getType()) { 1190 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL); 1191 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL); 1192 if (Known1.Zero.intersects(Known2.One) || 1193 Known1.One.intersects(Known2.Zero)) 1194 return NoAlias; 1195 } 1196 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL)) 1197 return NoAlias; 1198 } 1199 return MayAlias; 1200 } else if (!LastIndexedStruct || !C1 || !C2) { 1201 return MayAlias; 1202 } 1203 1204 if (C1->getValue().getActiveBits() > 64 || 1205 C2->getValue().getActiveBits() > 64) 1206 return MayAlias; 1207 1208 // We know that: 1209 // - both GEPs begin indexing from the exact same pointer; 1210 // - the last indices in both GEPs are constants, indexing into a struct; 1211 // - said indices are different, hence, the pointed-to fields are different; 1212 // - both GEPs only index through arrays prior to that. 1213 // 1214 // This lets us determine that the struct that GEP1 indexes into and the 1215 // struct that GEP2 indexes into must either precisely overlap or be 1216 // completely disjoint. Because they cannot partially overlap, indexing into 1217 // different non-overlapping fields of the struct will never alias. 1218 1219 // Therefore, the only remaining thing needed to show that both GEPs can't 1220 // alias is that the fields are not overlapping. 1221 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1222 const uint64_t StructSize = SL->getSizeInBytes(); 1223 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1224 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1225 1226 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1227 uint64_t V2Off, uint64_t V2Size) { 1228 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1229 ((V2Off + V2Size <= StructSize) || 1230 (V2Off + V2Size - StructSize <= V1Off)); 1231 }; 1232 1233 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1234 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1235 return NoAlias; 1236 1237 return MayAlias; 1238 } 1239 1240 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1241 // beginning of the object the GEP points would have a negative offset with 1242 // repsect to the alloca, that means the GEP can not alias pointer (b). 1243 // Note that the pointer based on the alloca may not be a GEP. For 1244 // example, it may be the alloca itself. 1245 // The same applies if (b) is based on a GlobalVariable. Note that just being 1246 // based on isIdentifiedObject() is not enough - we need an identified object 1247 // that does not permit access to negative offsets. For example, a negative 1248 // offset from a noalias argument or call can be inbounds w.r.t the actual 1249 // underlying object. 1250 // 1251 // For example, consider: 1252 // 1253 // struct { int f0, int f1, ...} foo; 1254 // foo alloca; 1255 // foo* random = bar(alloca); 1256 // int *f0 = &alloca.f0 1257 // int *f1 = &random->f1; 1258 // 1259 // Which is lowered, approximately, to: 1260 // 1261 // %alloca = alloca %struct.foo 1262 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1263 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1264 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1265 // 1266 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1267 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1268 // point into the same object. But since %f0 points to the beginning of %alloca, 1269 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1270 // than (%alloca - 1), and so is not inbounds, a contradiction. 1271 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1272 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1273 LocationSize MaybeObjectAccessSize) { 1274 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1275 if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds()) 1276 return false; 1277 1278 const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue(); 1279 1280 // We need the object to be an alloca or a globalvariable, and want to know 1281 // the offset of the pointer from the object precisely, so no variable 1282 // indices are allowed. 1283 if (!(isa<AllocaInst>(DecompObject.Base) || 1284 isa<GlobalVariable>(DecompObject.Base)) || 1285 !DecompObject.VarIndices.empty()) 1286 return false; 1287 1288 APInt ObjectBaseOffset = DecompObject.StructOffset + 1289 DecompObject.OtherOffset; 1290 1291 // If the GEP has no variable indices, we know the precise offset 1292 // from the base, then use it. If the GEP has variable indices, 1293 // we can't get exact GEP offset to identify pointer alias. So return 1294 // false in that case. 1295 if (!DecompGEP.VarIndices.empty()) 1296 return false; 1297 1298 APInt GEPBaseOffset = DecompGEP.StructOffset; 1299 GEPBaseOffset += DecompGEP.OtherOffset; 1300 1301 return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize); 1302 } 1303 1304 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1305 /// another pointer. 1306 /// 1307 /// We know that V1 is a GEP, but we don't know anything about V2. 1308 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1309 /// V2. 1310 AliasResult BasicAAResult::aliasGEP( 1311 const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo, 1312 const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo, 1313 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1314 DecomposedGEP DecompGEP1, DecompGEP2; 1315 unsigned MaxPointerSize = getMaxPointerSize(DL); 1316 DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0); 1317 DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0); 1318 1319 bool GEP1MaxLookupReached = 1320 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1321 bool GEP2MaxLookupReached = 1322 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1323 1324 APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1325 APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1326 1327 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1328 "DecomposeGEPExpression returned a result different from " 1329 "GetUnderlyingObject"); 1330 1331 // If the GEP's offset relative to its base is such that the base would 1332 // fall below the start of the object underlying V2, then the GEP and V2 1333 // cannot alias. 1334 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1335 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1336 return NoAlias; 1337 // If we have two gep instructions with must-alias or not-alias'ing base 1338 // pointers, figure out if the indexes to the GEP tell us anything about the 1339 // derived pointer. 1340 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1341 // Check for the GEP base being at a negative offset, this time in the other 1342 // direction. 1343 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1344 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1345 return NoAlias; 1346 // Do the base pointers alias? 1347 AliasResult BaseAlias = 1348 aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(), 1349 UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI); 1350 1351 // Check for geps of non-aliasing underlying pointers where the offsets are 1352 // identical. 1353 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1354 // Do the base pointers alias assuming type and size. 1355 AliasResult PreciseBaseAlias = aliasCheck( 1356 UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI); 1357 if (PreciseBaseAlias == NoAlias) { 1358 // See if the computed offset from the common pointer tells us about the 1359 // relation of the resulting pointer. 1360 // If the max search depth is reached the result is undefined 1361 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1362 return MayAlias; 1363 1364 // Same offsets. 1365 if (GEP1BaseOffset == GEP2BaseOffset && 1366 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1367 return NoAlias; 1368 } 1369 } 1370 1371 // If we get a No or May, then return it immediately, no amount of analysis 1372 // will improve this situation. 1373 if (BaseAlias != MustAlias) { 1374 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1375 return BaseAlias; 1376 } 1377 1378 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1379 // exactly, see if the computed offset from the common pointer tells us 1380 // about the relation of the resulting pointer. 1381 // If we know the two GEPs are based off of the exact same pointer (and not 1382 // just the same underlying object), see if that tells us anything about 1383 // the resulting pointers. 1384 if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1385 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1386 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) { 1387 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1388 // If we couldn't find anything interesting, don't abandon just yet. 1389 if (R != MayAlias) 1390 return R; 1391 } 1392 1393 // If the max search depth is reached, the result is undefined 1394 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1395 return MayAlias; 1396 1397 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1398 // symbolic difference. 1399 GEP1BaseOffset -= GEP2BaseOffset; 1400 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1401 1402 } else { 1403 // Check to see if these two pointers are related by the getelementptr 1404 // instruction. If one pointer is a GEP with a non-zero index of the other 1405 // pointer, we know they cannot alias. 1406 1407 // If both accesses are unknown size, we can't do anything useful here. 1408 if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown()) 1409 return MayAlias; 1410 1411 AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(), 1412 AAMDNodes(), V2, LocationSize::unknown(), 1413 V2AAInfo, AAQI, nullptr, UnderlyingV2); 1414 if (R != MustAlias) { 1415 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1416 // If V2 is known not to alias GEP base pointer, then the two values 1417 // cannot alias per GEP semantics: "Any memory access must be done through 1418 // a pointer value associated with an address range of the memory access, 1419 // otherwise the behavior is undefined.". 1420 assert(R == NoAlias || R == MayAlias); 1421 return R; 1422 } 1423 1424 // If the max search depth is reached the result is undefined 1425 if (GEP1MaxLookupReached) 1426 return MayAlias; 1427 } 1428 1429 // In the two GEP Case, if there is no difference in the offsets of the 1430 // computed pointers, the resultant pointers are a must alias. This 1431 // happens when we have two lexically identical GEP's (for example). 1432 // 1433 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1434 // must aliases the GEP, the end result is a must alias also. 1435 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1436 return MustAlias; 1437 1438 // If there is a constant difference between the pointers, but the difference 1439 // is less than the size of the associated memory object, then we know 1440 // that the objects are partially overlapping. If the difference is 1441 // greater, we know they do not overlap. 1442 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1443 if (GEP1BaseOffset.sge(0)) { 1444 if (V2Size != LocationSize::unknown()) { 1445 if (GEP1BaseOffset.ult(V2Size.getValue())) 1446 return PartialAlias; 1447 return NoAlias; 1448 } 1449 } else { 1450 // We have the situation where: 1451 // + + 1452 // | BaseOffset | 1453 // ---------------->| 1454 // |-->V1Size |-------> V2Size 1455 // GEP1 V2 1456 // We need to know that V2Size is not unknown, otherwise we might have 1457 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1458 if (V1Size != LocationSize::unknown() && 1459 V2Size != LocationSize::unknown()) { 1460 if ((-GEP1BaseOffset).ult(V1Size.getValue())) 1461 return PartialAlias; 1462 return NoAlias; 1463 } 1464 } 1465 } 1466 1467 if (!DecompGEP1.VarIndices.empty()) { 1468 APInt Modulo(MaxPointerSize, 0); 1469 bool AllPositive = true; 1470 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1471 1472 // Try to distinguish something like &A[i][1] against &A[42][0]. 1473 // Grab the least significant bit set in any of the scales. We 1474 // don't need std::abs here (even if the scale's negative) as we'll 1475 // be ^'ing Modulo with itself later. 1476 Modulo |= DecompGEP1.VarIndices[i].Scale; 1477 1478 if (AllPositive) { 1479 // If the Value could change between cycles, then any reasoning about 1480 // the Value this cycle may not hold in the next cycle. We'll just 1481 // give up if we can't determine conditions that hold for every cycle: 1482 const Value *V = DecompGEP1.VarIndices[i].V; 1483 1484 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT); 1485 bool SignKnownZero = Known.isNonNegative(); 1486 bool SignKnownOne = Known.isNegative(); 1487 1488 // Zero-extension widens the variable, and so forces the sign 1489 // bit to zero. 1490 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1491 SignKnownZero |= IsZExt; 1492 SignKnownOne &= !IsZExt; 1493 1494 // If the variable begins with a zero then we know it's 1495 // positive, regardless of whether the value is signed or 1496 // unsigned. 1497 APInt Scale = DecompGEP1.VarIndices[i].Scale; 1498 AllPositive = 1499 (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0)); 1500 } 1501 } 1502 1503 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1504 1505 // We can compute the difference between the two addresses 1506 // mod Modulo. Check whether that difference guarantees that the 1507 // two locations do not alias. 1508 APInt ModOffset = GEP1BaseOffset & (Modulo - 1); 1509 if (V1Size != LocationSize::unknown() && 1510 V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) && 1511 (Modulo - ModOffset).uge(V1Size.getValue())) 1512 return NoAlias; 1513 1514 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1515 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1516 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1517 if (AllPositive && GEP1BaseOffset.sgt(0) && 1518 V2Size != LocationSize::unknown() && 1519 GEP1BaseOffset.uge(V2Size.getValue())) 1520 return NoAlias; 1521 1522 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1523 GEP1BaseOffset, &AC, DT)) 1524 return NoAlias; 1525 } 1526 1527 // Statically, we can see that the base objects are the same, but the 1528 // pointers have dynamic offsets which we can't resolve. And none of our 1529 // little tricks above worked. 1530 return MayAlias; 1531 } 1532 1533 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1534 // If the results agree, take it. 1535 if (A == B) 1536 return A; 1537 // A mix of PartialAlias and MustAlias is PartialAlias. 1538 if ((A == PartialAlias && B == MustAlias) || 1539 (B == PartialAlias && A == MustAlias)) 1540 return PartialAlias; 1541 // Otherwise, we don't know anything. 1542 return MayAlias; 1543 } 1544 1545 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1546 /// against another. 1547 AliasResult 1548 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1549 const AAMDNodes &SIAAInfo, const Value *V2, 1550 LocationSize V2Size, const AAMDNodes &V2AAInfo, 1551 const Value *UnderV2, AAQueryInfo &AAQI) { 1552 // If the values are Selects with the same condition, we can do a more precise 1553 // check: just check for aliases between the values on corresponding arms. 1554 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1555 if (SI->getCondition() == SI2->getCondition()) { 1556 AliasResult Alias = 1557 aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(), 1558 V2Size, V2AAInfo, AAQI); 1559 if (Alias == MayAlias) 1560 return MayAlias; 1561 AliasResult ThisAlias = 1562 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1563 SI2->getFalseValue(), V2Size, V2AAInfo, AAQI); 1564 return MergeAliasResults(ThisAlias, Alias); 1565 } 1566 1567 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1568 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1569 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1570 SISize, SIAAInfo, AAQI, UnderV2); 1571 if (Alias == MayAlias) 1572 return MayAlias; 1573 1574 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), 1575 SISize, SIAAInfo, AAQI, UnderV2); 1576 return MergeAliasResults(ThisAlias, Alias); 1577 } 1578 1579 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1580 /// another. 1581 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1582 const AAMDNodes &PNAAInfo, const Value *V2, 1583 LocationSize V2Size, 1584 const AAMDNodes &V2AAInfo, 1585 const Value *UnderV2, AAQueryInfo &AAQI) { 1586 // Track phi nodes we have visited. We use this information when we determine 1587 // value equivalence. 1588 VisitedPhiBBs.insert(PN->getParent()); 1589 1590 // If the values are PHIs in the same block, we can do a more precise 1591 // as well as efficient check: just check for aliases between the values 1592 // on corresponding edges. 1593 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1594 if (PN2->getParent() == PN->getParent()) { 1595 AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1596 MemoryLocation(V2, V2Size, V2AAInfo)); 1597 if (PN > V2) 1598 std::swap(Locs.first, Locs.second); 1599 // Analyse the PHIs' inputs under the assumption that the PHIs are 1600 // NoAlias. 1601 // If the PHIs are May/MustAlias there must be (recursively) an input 1602 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1603 // there must be an operation on the PHIs within the PHIs' value cycle 1604 // that causes a MayAlias. 1605 // Pretend the phis do not alias. 1606 AliasResult Alias = NoAlias; 1607 AliasResult OrigAliasResult; 1608 { 1609 // Limited lifetime iterator invalidated by the aliasCheck call below. 1610 auto CacheIt = AAQI.AliasCache.find(Locs); 1611 assert((CacheIt != AAQI.AliasCache.end()) && 1612 "There must exist an entry for the phi node"); 1613 OrigAliasResult = CacheIt->second; 1614 CacheIt->second = NoAlias; 1615 } 1616 1617 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1618 AliasResult ThisAlias = 1619 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1620 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1621 V2Size, V2AAInfo, AAQI); 1622 Alias = MergeAliasResults(ThisAlias, Alias); 1623 if (Alias == MayAlias) 1624 break; 1625 } 1626 1627 // Reset if speculation failed. 1628 if (Alias != NoAlias) { 1629 auto Pair = 1630 AAQI.AliasCache.insert(std::make_pair(Locs, OrigAliasResult)); 1631 assert(!Pair.second && "Entry must have existed"); 1632 Pair.first->second = OrigAliasResult; 1633 } 1634 return Alias; 1635 } 1636 1637 SmallVector<Value *, 4> V1Srcs; 1638 bool isRecursive = false; 1639 if (PV) { 1640 // If we have PhiValues then use it to get the underlying phi values. 1641 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1642 // If we have more phi values than the search depth then return MayAlias 1643 // conservatively to avoid compile time explosion. The worst possible case 1644 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1645 // where 'm' and 'n' are the number of PHI sources. 1646 if (PhiValueSet.size() > MaxLookupSearchDepth) 1647 return MayAlias; 1648 // Add the values to V1Srcs 1649 for (Value *PV1 : PhiValueSet) { 1650 if (EnableRecPhiAnalysis) { 1651 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1652 // Check whether the incoming value is a GEP that advances the pointer 1653 // result of this PHI node (e.g. in a loop). If this is the case, we 1654 // would recurse and always get a MayAlias. Handle this case specially 1655 // below. 1656 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1657 isa<ConstantInt>(PV1GEP->idx_begin())) { 1658 isRecursive = true; 1659 continue; 1660 } 1661 } 1662 } 1663 V1Srcs.push_back(PV1); 1664 } 1665 } else { 1666 // If we don't have PhiInfo then just look at the operands of the phi itself 1667 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1668 SmallPtrSet<Value *, 4> UniqueSrc; 1669 for (Value *PV1 : PN->incoming_values()) { 1670 if (isa<PHINode>(PV1)) 1671 // If any of the source itself is a PHI, return MayAlias conservatively 1672 // to avoid compile time explosion. The worst possible case is if both 1673 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1674 // and 'n' are the number of PHI sources. 1675 return MayAlias; 1676 1677 if (EnableRecPhiAnalysis) 1678 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1679 // Check whether the incoming value is a GEP that advances the pointer 1680 // result of this PHI node (e.g. in a loop). If this is the case, we 1681 // would recurse and always get a MayAlias. Handle this case specially 1682 // below. 1683 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1684 isa<ConstantInt>(PV1GEP->idx_begin())) { 1685 isRecursive = true; 1686 continue; 1687 } 1688 } 1689 1690 if (UniqueSrc.insert(PV1).second) 1691 V1Srcs.push_back(PV1); 1692 } 1693 } 1694 1695 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1696 // value. This should only be possible in blocks unreachable from the entry 1697 // block, but return MayAlias just in case. 1698 if (V1Srcs.empty()) 1699 return MayAlias; 1700 1701 // If this PHI node is recursive, set the size of the accessed memory to 1702 // unknown to represent all the possible values the GEP could advance the 1703 // pointer to. 1704 if (isRecursive) 1705 PNSize = LocationSize::unknown(); 1706 1707 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, 1708 PNAAInfo, AAQI, UnderV2); 1709 1710 // Early exit if the check of the first PHI source against V2 is MayAlias. 1711 // Other results are not possible. 1712 if (Alias == MayAlias) 1713 return MayAlias; 1714 1715 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1716 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1717 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1718 Value *V = V1Srcs[i]; 1719 1720 AliasResult ThisAlias = 1721 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, AAQI, UnderV2); 1722 Alias = MergeAliasResults(ThisAlias, Alias); 1723 if (Alias == MayAlias) 1724 break; 1725 } 1726 1727 return Alias; 1728 } 1729 1730 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1731 /// array references. 1732 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1733 AAMDNodes V1AAInfo, const Value *V2, 1734 LocationSize V2Size, AAMDNodes V2AAInfo, 1735 AAQueryInfo &AAQI, const Value *O1, 1736 const Value *O2) { 1737 // If either of the memory references is empty, it doesn't matter what the 1738 // pointer values are. 1739 if (V1Size.isZero() || V2Size.isZero()) 1740 return NoAlias; 1741 1742 // Strip off any casts if they exist. 1743 V1 = V1->stripPointerCastsAndInvariantGroups(); 1744 V2 = V2->stripPointerCastsAndInvariantGroups(); 1745 1746 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1747 // value for undef that aliases nothing in the program. 1748 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1749 return NoAlias; 1750 1751 // Are we checking for alias of the same value? 1752 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1753 // different iterations. We must therefore make sure that this is not the 1754 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1755 // happen by looking at the visited phi nodes and making sure they cannot 1756 // reach the value. 1757 if (isValueEqualInPotentialCycles(V1, V2)) 1758 return MustAlias; 1759 1760 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1761 return NoAlias; // Scalars cannot alias each other 1762 1763 // Figure out what objects these things are pointing to if we can. 1764 if (O1 == nullptr) 1765 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1766 1767 if (O2 == nullptr) 1768 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1769 1770 // Null values in the default address space don't point to any object, so they 1771 // don't alias any other pointer. 1772 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1773 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1774 return NoAlias; 1775 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1776 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1777 return NoAlias; 1778 1779 if (O1 != O2) { 1780 // If V1/V2 point to two different objects, we know that we have no alias. 1781 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1782 return NoAlias; 1783 1784 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1785 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1786 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1787 return NoAlias; 1788 1789 // Function arguments can't alias with things that are known to be 1790 // unambigously identified at the function level. 1791 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1792 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1793 return NoAlias; 1794 1795 // If one pointer is the result of a call/invoke or load and the other is a 1796 // non-escaping local object within the same function, then we know the 1797 // object couldn't escape to a point where the call could return it. 1798 // 1799 // Note that if the pointers are in different functions, there are a 1800 // variety of complications. A call with a nocapture argument may still 1801 // temporary store the nocapture argument's value in a temporary memory 1802 // location if that memory location doesn't escape. Or it may pass a 1803 // nocapture value to other functions as long as they don't capture it. 1804 if (isEscapeSource(O1) && 1805 isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache)) 1806 return NoAlias; 1807 if (isEscapeSource(O2) && 1808 isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache)) 1809 return NoAlias; 1810 } 1811 1812 // If the size of one access is larger than the entire object on the other 1813 // side, then we know such behavior is undefined and can assume no alias. 1814 bool NullIsValidLocation = NullPointerIsDefined(&F); 1815 if ((isObjectSmallerThan( 1816 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1817 TLI, NullIsValidLocation)) || 1818 (isObjectSmallerThan( 1819 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1820 TLI, NullIsValidLocation))) 1821 return NoAlias; 1822 1823 // Check the cache before climbing up use-def chains. This also terminates 1824 // otherwise infinitely recursive queries. 1825 AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1826 MemoryLocation(V2, V2Size, V2AAInfo)); 1827 if (V1 > V2) 1828 std::swap(Locs.first, Locs.second); 1829 std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair = 1830 AAQI.AliasCache.try_emplace(Locs, MayAlias); 1831 if (!Pair.second) 1832 return Pair.first->second; 1833 1834 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1835 // GEP can't simplify, we don't even look at the PHI cases. 1836 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1837 std::swap(V1, V2); 1838 std::swap(V1Size, V2Size); 1839 std::swap(O1, O2); 1840 std::swap(V1AAInfo, V2AAInfo); 1841 } 1842 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1843 AliasResult Result = 1844 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI); 1845 if (Result != MayAlias) { 1846 auto ItInsPair = AAQI.AliasCache.insert(std::make_pair(Locs, Result)); 1847 assert(!ItInsPair.second && "Entry must have existed"); 1848 ItInsPair.first->second = Result; 1849 return Result; 1850 } 1851 } 1852 1853 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1854 std::swap(V1, V2); 1855 std::swap(O1, O2); 1856 std::swap(V1Size, V2Size); 1857 std::swap(V1AAInfo, V2AAInfo); 1858 } 1859 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1860 AliasResult Result = 1861 aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI); 1862 if (Result != MayAlias) { 1863 Pair = AAQI.AliasCache.try_emplace(Locs, Result); 1864 assert(!Pair.second && "Entry must have existed"); 1865 return Pair.first->second = Result; 1866 } 1867 } 1868 1869 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1870 std::swap(V1, V2); 1871 std::swap(O1, O2); 1872 std::swap(V1Size, V2Size); 1873 std::swap(V1AAInfo, V2AAInfo); 1874 } 1875 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1876 AliasResult Result = 1877 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI); 1878 if (Result != MayAlias) { 1879 Pair = AAQI.AliasCache.try_emplace(Locs, Result); 1880 assert(!Pair.second && "Entry must have existed"); 1881 return Pair.first->second = Result; 1882 } 1883 } 1884 1885 // If both pointers are pointing into the same object and one of them 1886 // accesses the entire object, then the accesses must overlap in some way. 1887 if (O1 == O2) 1888 if (V1Size.isPrecise() && V2Size.isPrecise() && 1889 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1890 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) { 1891 Pair = AAQI.AliasCache.try_emplace(Locs, PartialAlias); 1892 assert(!Pair.second && "Entry must have existed"); 1893 return Pair.first->second = PartialAlias; 1894 } 1895 1896 // Recurse back into the best AA results we have, potentially with refined 1897 // memory locations. We have already ensured that BasicAA has a MayAlias 1898 // cache result for these, so any recursion back into BasicAA won't loop. 1899 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI); 1900 Pair = AAQI.AliasCache.try_emplace(Locs, Result); 1901 assert(!Pair.second && "Entry must have existed"); 1902 return Pair.first->second = Result; 1903 } 1904 1905 /// Check whether two Values can be considered equivalent. 1906 /// 1907 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1908 /// they can not be part of a cycle in the value graph by looking at all 1909 /// visited phi nodes an making sure that the phis cannot reach the value. We 1910 /// have to do this because we are looking through phi nodes (That is we say 1911 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1912 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1913 const Value *V2) { 1914 if (V != V2) 1915 return false; 1916 1917 const Instruction *Inst = dyn_cast<Instruction>(V); 1918 if (!Inst) 1919 return true; 1920 1921 if (VisitedPhiBBs.empty()) 1922 return true; 1923 1924 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1925 return false; 1926 1927 // Make sure that the visited phis cannot reach the Value. This ensures that 1928 // the Values cannot come from different iterations of a potential cycle the 1929 // phi nodes could be involved in. 1930 for (auto *P : VisitedPhiBBs) 1931 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI)) 1932 return false; 1933 1934 return true; 1935 } 1936 1937 /// Computes the symbolic difference between two de-composed GEPs. 1938 /// 1939 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1940 /// instructions GEP1 and GEP2 which have common base pointers. 1941 void BasicAAResult::GetIndexDifference( 1942 SmallVectorImpl<VariableGEPIndex> &Dest, 1943 const SmallVectorImpl<VariableGEPIndex> &Src) { 1944 if (Src.empty()) 1945 return; 1946 1947 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1948 const Value *V = Src[i].V; 1949 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1950 APInt Scale = Src[i].Scale; 1951 1952 // Find V in Dest. This is N^2, but pointer indices almost never have more 1953 // than a few variable indexes. 1954 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1955 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1956 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1957 continue; 1958 1959 // If we found it, subtract off Scale V's from the entry in Dest. If it 1960 // goes to zero, remove the entry. 1961 if (Dest[j].Scale != Scale) 1962 Dest[j].Scale -= Scale; 1963 else 1964 Dest.erase(Dest.begin() + j); 1965 Scale = 0; 1966 break; 1967 } 1968 1969 // If we didn't consume this entry, add it to the end of the Dest list. 1970 if (!!Scale) { 1971 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1972 Dest.push_back(Entry); 1973 } 1974 } 1975 } 1976 1977 bool BasicAAResult::constantOffsetHeuristic( 1978 const SmallVectorImpl<VariableGEPIndex> &VarIndices, 1979 LocationSize MaybeV1Size, LocationSize MaybeV2Size, APInt BaseOffset, 1980 AssumptionCache *AC, DominatorTree *DT) { 1981 if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() || 1982 MaybeV2Size == LocationSize::unknown()) 1983 return false; 1984 1985 const uint64_t V1Size = MaybeV1Size.getValue(); 1986 const uint64_t V2Size = MaybeV2Size.getValue(); 1987 1988 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1989 1990 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1991 Var0.Scale != -Var1.Scale) 1992 return false; 1993 1994 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1995 1996 // We'll strip off the Extensions of Var0 and Var1 and do another round 1997 // of GetLinearExpression decomposition. In the example above, if Var0 1998 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1999 2000 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 2001 V1Offset(Width, 0); 2002 bool NSW = true, NUW = true; 2003 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 2004 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 2005 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 2006 NSW = true; 2007 NUW = true; 2008 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 2009 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 2010 2011 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 2012 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 2013 return false; 2014 2015 // We have a hit - Var0 and Var1 only differ by a constant offset! 2016 2017 // If we've been sext'ed then zext'd the maximum difference between Var0 and 2018 // Var1 is possible to calculate, but we're just interested in the absolute 2019 // minimum difference between the two. The minimum distance may occur due to 2020 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 2021 // the minimum distance between %i and %i + 5 is 3. 2022 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 2023 MinDiff = APIntOps::umin(MinDiff, Wrapped); 2024 APInt MinDiffBytes = 2025 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 2026 2027 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 2028 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 2029 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 2030 // V2Size can fit in the MinDiffBytes gap. 2031 return MinDiffBytes.uge(V1Size + BaseOffset.abs()) && 2032 MinDiffBytes.uge(V2Size + BaseOffset.abs()); 2033 } 2034 2035 //===----------------------------------------------------------------------===// 2036 // BasicAliasAnalysis Pass 2037 //===----------------------------------------------------------------------===// 2038 2039 AnalysisKey BasicAA::Key; 2040 2041 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 2042 return BasicAAResult(F.getParent()->getDataLayout(), 2043 F, 2044 AM.getResult<TargetLibraryAnalysis>(F), 2045 AM.getResult<AssumptionAnalysis>(F), 2046 &AM.getResult<DominatorTreeAnalysis>(F), 2047 AM.getCachedResult<LoopAnalysis>(F), 2048 AM.getCachedResult<PhiValuesAnalysis>(F)); 2049 } 2050 2051 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 2052 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 2053 } 2054 2055 char BasicAAWrapperPass::ID = 0; 2056 2057 void BasicAAWrapperPass::anchor() {} 2058 2059 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 2060 "Basic Alias Analysis (stateless AA impl)", false, true) 2061 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2062 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2063 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2064 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 2065 "Basic Alias Analysis (stateless AA impl)", false, true) 2066 2067 FunctionPass *llvm::createBasicAAWrapperPass() { 2068 return new BasicAAWrapperPass(); 2069 } 2070 2071 bool BasicAAWrapperPass::runOnFunction(Function &F) { 2072 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 2073 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 2074 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 2075 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 2076 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 2077 2078 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 2079 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 2080 &DTWP.getDomTree(), 2081 LIWP ? &LIWP->getLoopInfo() : nullptr, 2082 PVWP ? &PVWP->getResult() : nullptr)); 2083 2084 return false; 2085 } 2086 2087 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2088 AU.setPreservesAll(); 2089 AU.addRequired<AssumptionCacheTracker>(); 2090 AU.addRequired<DominatorTreeWrapperPass>(); 2091 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2092 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 2093 } 2094 2095 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 2096 return BasicAAResult( 2097 F.getParent()->getDataLayout(), F, 2098 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 2099 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 2100 } 2101