xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/BasicAliasAnalysis.cpp (revision 5def4c47d4bd90b209b9b4a4ba9faec15846d8fd)
1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/PhiValues.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/KnownBits.h"
59 #include <cassert>
60 #include <cstdint>
61 #include <cstdlib>
62 #include <utility>
63 
64 #define DEBUG_TYPE "basicaa"
65 
66 using namespace llvm;
67 
68 /// Enable analysis of recursive PHI nodes.
69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
70                                           cl::init(true));
71 
72 /// By default, even on 32-bit architectures we use 64-bit integers for
73 /// calculations. This will allow us to more-aggressively decompose indexing
74 /// expressions calculated using i64 values (e.g., long long in C) which is
75 /// common enough to worry about.
76 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b",
77                                         cl::Hidden, cl::init(true));
78 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits",
79                                     cl::Hidden, cl::init(false));
80 
81 /// SearchLimitReached / SearchTimes shows how often the limit of
82 /// to decompose GEPs is reached. It will affect the precision
83 /// of basic alias analysis.
84 STATISTIC(SearchLimitReached, "Number of times the limit to "
85                               "decompose GEPs is reached");
86 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
87 
88 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
89 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
90 /// careful with value equivalence. We use reachability to make sure a value
91 /// cannot be involved in a cycle.
92 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
93 
94 // The max limit of the search depth in DecomposeGEPExpression() and
95 // getUnderlyingObject(), both functions need to use the same search
96 // depth otherwise the algorithm in aliasGEP will assert.
97 static const unsigned MaxLookupSearchDepth = 6;
98 
99 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
100                                FunctionAnalysisManager::Invalidator &Inv) {
101   // We don't care if this analysis itself is preserved, it has no state. But
102   // we need to check that the analyses it depends on have been. Note that we
103   // may be created without handles to some analyses and in that case don't
104   // depend on them.
105   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
106       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
107       (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
108       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
109     return true;
110 
111   // Otherwise this analysis result remains valid.
112   return false;
113 }
114 
115 //===----------------------------------------------------------------------===//
116 // Useful predicates
117 //===----------------------------------------------------------------------===//
118 
119 /// Returns true if the pointer is one which would have been considered an
120 /// escape by isNonEscapingLocalObject.
121 static bool isEscapeSource(const Value *V) {
122   if (isa<CallBase>(V))
123     return true;
124 
125   if (isa<Argument>(V))
126     return true;
127 
128   // The load case works because isNonEscapingLocalObject considers all
129   // stores to be escapes (it passes true for the StoreCaptures argument
130   // to PointerMayBeCaptured).
131   if (isa<LoadInst>(V))
132     return true;
133 
134   return false;
135 }
136 
137 /// Returns the size of the object specified by V or UnknownSize if unknown.
138 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
139                               const TargetLibraryInfo &TLI,
140                               bool NullIsValidLoc,
141                               bool RoundToAlign = false) {
142   uint64_t Size;
143   ObjectSizeOpts Opts;
144   Opts.RoundToAlign = RoundToAlign;
145   Opts.NullIsUnknownSize = NullIsValidLoc;
146   if (getObjectSize(V, Size, DL, &TLI, Opts))
147     return Size;
148   return MemoryLocation::UnknownSize;
149 }
150 
151 /// Returns true if we can prove that the object specified by V is smaller than
152 /// Size.
153 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
154                                 const DataLayout &DL,
155                                 const TargetLibraryInfo &TLI,
156                                 bool NullIsValidLoc) {
157   // Note that the meanings of the "object" are slightly different in the
158   // following contexts:
159   //    c1: llvm::getObjectSize()
160   //    c2: llvm.objectsize() intrinsic
161   //    c3: isObjectSmallerThan()
162   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
163   // refers to the "entire object".
164   //
165   //  Consider this example:
166   //     char *p = (char*)malloc(100)
167   //     char *q = p+80;
168   //
169   //  In the context of c1 and c2, the "object" pointed by q refers to the
170   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
171   //
172   //  However, in the context of c3, the "object" refers to the chunk of memory
173   // being allocated. So, the "object" has 100 bytes, and q points to the middle
174   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
175   // parameter, before the llvm::getObjectSize() is called to get the size of
176   // entire object, we should:
177   //    - either rewind the pointer q to the base-address of the object in
178   //      question (in this case rewind to p), or
179   //    - just give up. It is up to caller to make sure the pointer is pointing
180   //      to the base address the object.
181   //
182   // We go for 2nd option for simplicity.
183   if (!isIdentifiedObject(V))
184     return false;
185 
186   // This function needs to use the aligned object size because we allow
187   // reads a bit past the end given sufficient alignment.
188   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
189                                       /*RoundToAlign*/ true);
190 
191   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
192 }
193 
194 /// Return the minimal extent from \p V to the end of the underlying object,
195 /// assuming the result is used in an aliasing query. E.g., we do use the query
196 /// location size and the fact that null pointers cannot alias here.
197 static uint64_t getMinimalExtentFrom(const Value &V,
198                                      const LocationSize &LocSize,
199                                      const DataLayout &DL,
200                                      bool NullIsValidLoc) {
201   // If we have dereferenceability information we know a lower bound for the
202   // extent as accesses for a lower offset would be valid. We need to exclude
203   // the "or null" part if null is a valid pointer.
204   bool CanBeNull;
205   uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
206   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
207   // If queried with a precise location size, we assume that location size to be
208   // accessed, thus valid.
209   if (LocSize.isPrecise())
210     DerefBytes = std::max(DerefBytes, LocSize.getValue());
211   return DerefBytes;
212 }
213 
214 /// Returns true if we can prove that the object specified by V has size Size.
215 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
216                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
217   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
218   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
219 }
220 
221 //===----------------------------------------------------------------------===//
222 // GetElementPtr Instruction Decomposition and Analysis
223 //===----------------------------------------------------------------------===//
224 
225 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
226 /// B are constant integers.
227 ///
228 /// Returns the scale and offset values as APInts and return V as a Value*, and
229 /// return whether we looked through any sign or zero extends.  The incoming
230 /// Value is known to have IntegerType, and it may already be sign or zero
231 /// extended.
232 ///
233 /// Note that this looks through extends, so the high bits may not be
234 /// represented in the result.
235 /*static*/ const Value *BasicAAResult::GetLinearExpression(
236     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
237     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
238     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
239   assert(V->getType()->isIntegerTy() && "Not an integer value");
240 
241   // Limit our recursion depth.
242   if (Depth == 6) {
243     Scale = 1;
244     Offset = 0;
245     return V;
246   }
247 
248   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
249     // If it's a constant, just convert it to an offset and remove the variable.
250     // If we've been called recursively, the Offset bit width will be greater
251     // than the constant's (the Offset's always as wide as the outermost call),
252     // so we'll zext here and process any extension in the isa<SExtInst> &
253     // isa<ZExtInst> cases below.
254     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
255     assert(Scale == 0 && "Constant values don't have a scale");
256     return V;
257   }
258 
259   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
260     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
261       // If we've been called recursively, then Offset and Scale will be wider
262       // than the BOp operands. We'll always zext it here as we'll process sign
263       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
264       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
265 
266       switch (BOp->getOpcode()) {
267       default:
268         // We don't understand this instruction, so we can't decompose it any
269         // further.
270         Scale = 1;
271         Offset = 0;
272         return V;
273       case Instruction::Or:
274         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
275         // analyze it.
276         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
277                                BOp, DT)) {
278           Scale = 1;
279           Offset = 0;
280           return V;
281         }
282         LLVM_FALLTHROUGH;
283       case Instruction::Add:
284         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
285                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
286         Offset += RHS;
287         break;
288       case Instruction::Sub:
289         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
290                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
291         Offset -= RHS;
292         break;
293       case Instruction::Mul:
294         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
295                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
296         Offset *= RHS;
297         Scale *= RHS;
298         break;
299       case Instruction::Shl:
300         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
301                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
302 
303         // We're trying to linearize an expression of the kind:
304         //   shl i8 -128, 36
305         // where the shift count exceeds the bitwidth of the type.
306         // We can't decompose this further (the expression would return
307         // a poison value).
308         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
309             Scale.getBitWidth() < RHS.getLimitedValue()) {
310           Scale = 1;
311           Offset = 0;
312           return V;
313         }
314 
315         Offset <<= RHS.getLimitedValue();
316         Scale <<= RHS.getLimitedValue();
317         // the semantics of nsw and nuw for left shifts don't match those of
318         // multiplications, so we won't propagate them.
319         NSW = NUW = false;
320         return V;
321       }
322 
323       if (isa<OverflowingBinaryOperator>(BOp)) {
324         NUW &= BOp->hasNoUnsignedWrap();
325         NSW &= BOp->hasNoSignedWrap();
326       }
327       return V;
328     }
329   }
330 
331   // Since GEP indices are sign extended anyway, we don't care about the high
332   // bits of a sign or zero extended value - just scales and offsets.  The
333   // extensions have to be consistent though.
334   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
335     Value *CastOp = cast<CastInst>(V)->getOperand(0);
336     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
337     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
338     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
339     const Value *Result =
340         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
341                             Depth + 1, AC, DT, NSW, NUW);
342 
343     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
344     // by just incrementing the number of bits we've extended by.
345     unsigned ExtendedBy = NewWidth - SmallWidth;
346 
347     if (isa<SExtInst>(V) && ZExtBits == 0) {
348       // sext(sext(%x, a), b) == sext(%x, a + b)
349 
350       if (NSW) {
351         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
352         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
353         unsigned OldWidth = Offset.getBitWidth();
354         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
355       } else {
356         // We may have signed-wrapped, so don't decompose sext(%x + c) into
357         // sext(%x) + sext(c)
358         Scale = 1;
359         Offset = 0;
360         Result = CastOp;
361         ZExtBits = OldZExtBits;
362         SExtBits = OldSExtBits;
363       }
364       SExtBits += ExtendedBy;
365     } else {
366       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
367 
368       if (!NUW) {
369         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
370         // zext(%x) + zext(c)
371         Scale = 1;
372         Offset = 0;
373         Result = CastOp;
374         ZExtBits = OldZExtBits;
375         SExtBits = OldSExtBits;
376       }
377       ZExtBits += ExtendedBy;
378     }
379 
380     return Result;
381   }
382 
383   Scale = 1;
384   Offset = 0;
385   return V;
386 }
387 
388 /// To ensure a pointer offset fits in an integer of size PointerSize
389 /// (in bits) when that size is smaller than the maximum pointer size. This is
390 /// an issue, for example, in particular for 32b pointers with negative indices
391 /// that rely on two's complement wrap-arounds for precise alias information
392 /// where the maximum pointer size is 64b.
393 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
394   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
395   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
396   return (Offset << ShiftBits).ashr(ShiftBits);
397 }
398 
399 static unsigned getMaxPointerSize(const DataLayout &DL) {
400   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
401   if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
402   if (DoubleCalcBits) MaxPointerSize *= 2;
403 
404   return MaxPointerSize;
405 }
406 
407 /// If V is a symbolic pointer expression, decompose it into a base pointer
408 /// with a constant offset and a number of scaled symbolic offsets.
409 ///
410 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
411 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
412 /// specified amount, but which may have other unrepresented high bits. As
413 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
414 ///
415 /// This function is capable of analyzing everything that getUnderlyingObject
416 /// can look through. To be able to do that getUnderlyingObject and
417 /// DecomposeGEPExpression must use the same search depth
418 /// (MaxLookupSearchDepth).
419 BasicAAResult::DecomposedGEP
420 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
421                                       AssumptionCache *AC, DominatorTree *DT) {
422   // Limit recursion depth to limit compile time in crazy cases.
423   unsigned MaxLookup = MaxLookupSearchDepth;
424   SearchTimes++;
425   const Instruction *CxtI = dyn_cast<Instruction>(V);
426 
427   unsigned MaxPointerSize = getMaxPointerSize(DL);
428   DecomposedGEP Decomposed;
429   Decomposed.Offset = APInt(MaxPointerSize, 0);
430   Decomposed.HasCompileTimeConstantScale = true;
431   do {
432     // See if this is a bitcast or GEP.
433     const Operator *Op = dyn_cast<Operator>(V);
434     if (!Op) {
435       // The only non-operator case we can handle are GlobalAliases.
436       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
437         if (!GA->isInterposable()) {
438           V = GA->getAliasee();
439           continue;
440         }
441       }
442       Decomposed.Base = V;
443       return Decomposed;
444     }
445 
446     if (Op->getOpcode() == Instruction::BitCast ||
447         Op->getOpcode() == Instruction::AddrSpaceCast) {
448       V = Op->getOperand(0);
449       continue;
450     }
451 
452     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
453     if (!GEPOp) {
454       if (const auto *PHI = dyn_cast<PHINode>(V)) {
455         // Look through single-arg phi nodes created by LCSSA.
456         if (PHI->getNumIncomingValues() == 1) {
457           V = PHI->getIncomingValue(0);
458           continue;
459         }
460       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
461         // CaptureTracking can know about special capturing properties of some
462         // intrinsics like launder.invariant.group, that can't be expressed with
463         // the attributes, but have properties like returning aliasing pointer.
464         // Because some analysis may assume that nocaptured pointer is not
465         // returned from some special intrinsic (because function would have to
466         // be marked with returns attribute), it is crucial to use this function
467         // because it should be in sync with CaptureTracking. Not using it may
468         // cause weird miscompilations where 2 aliasing pointers are assumed to
469         // noalias.
470         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
471           V = RP;
472           continue;
473         }
474       }
475 
476       Decomposed.Base = V;
477       return Decomposed;
478     }
479 
480     // Don't attempt to analyze GEPs over unsized objects.
481     if (!GEPOp->getSourceElementType()->isSized()) {
482       Decomposed.Base = V;
483       return Decomposed;
484     }
485 
486     // Don't attempt to analyze GEPs if index scale is not a compile-time
487     // constant.
488     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
489       Decomposed.Base = V;
490       Decomposed.HasCompileTimeConstantScale = false;
491       return Decomposed;
492     }
493 
494     unsigned AS = GEPOp->getPointerAddressSpace();
495     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
496     gep_type_iterator GTI = gep_type_begin(GEPOp);
497     unsigned PointerSize = DL.getPointerSizeInBits(AS);
498     // Assume all GEP operands are constants until proven otherwise.
499     bool GepHasConstantOffset = true;
500     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
501          I != E; ++I, ++GTI) {
502       const Value *Index = *I;
503       // Compute the (potentially symbolic) offset in bytes for this index.
504       if (StructType *STy = GTI.getStructTypeOrNull()) {
505         // For a struct, add the member offset.
506         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
507         if (FieldNo == 0)
508           continue;
509 
510         Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
511         continue;
512       }
513 
514       // For an array/pointer, add the element offset, explicitly scaled.
515       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
516         if (CIdx->isZero())
517           continue;
518         Decomposed.Offset +=
519             DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
520             CIdx->getValue().sextOrTrunc(MaxPointerSize);
521         continue;
522       }
523 
524       GepHasConstantOffset = false;
525 
526       APInt Scale(MaxPointerSize,
527                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
528       unsigned ZExtBits = 0, SExtBits = 0;
529 
530       // If the integer type is smaller than the pointer size, it is implicitly
531       // sign extended to pointer size.
532       unsigned Width = Index->getType()->getIntegerBitWidth();
533       if (PointerSize > Width)
534         SExtBits += PointerSize - Width;
535 
536       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
537       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
538       bool NSW = true, NUW = true;
539       const Value *OrigIndex = Index;
540       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
541                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
542 
543       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
544       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
545 
546       // It can be the case that, even through C1*V+C2 does not overflow for
547       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
548       // decompose the expression in this way.
549       //
550       // FIXME: C1*Scale and the other operations in the decomposed
551       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
552       // possibility.
553       bool Overflow;
554       APInt ScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize)
555                            .smul_ov(Scale, Overflow);
556       if (Overflow) {
557         Index = OrigIndex;
558         IndexScale = 1;
559         IndexOffset = 0;
560 
561         ZExtBits = SExtBits = 0;
562         if (PointerSize > Width)
563           SExtBits += PointerSize - Width;
564       } else {
565         Decomposed.Offset += ScaledOffset;
566         Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
567       }
568 
569       // If we already had an occurrence of this index variable, merge this
570       // scale into it.  For example, we want to handle:
571       //   A[x][x] -> x*16 + x*4 -> x*20
572       // This also ensures that 'x' only appears in the index list once.
573       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
574         if (Decomposed.VarIndices[i].V == Index &&
575             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
576             Decomposed.VarIndices[i].SExtBits == SExtBits) {
577           Scale += Decomposed.VarIndices[i].Scale;
578           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
579           break;
580         }
581       }
582 
583       // Make sure that we have a scale that makes sense for this target's
584       // pointer size.
585       Scale = adjustToPointerSize(Scale, PointerSize);
586 
587       if (!!Scale) {
588         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale, CxtI};
589         Decomposed.VarIndices.push_back(Entry);
590       }
591     }
592 
593     // Take care of wrap-arounds
594     if (GepHasConstantOffset)
595       Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize);
596 
597     // Analyze the base pointer next.
598     V = GEPOp->getOperand(0);
599   } while (--MaxLookup);
600 
601   // If the chain of expressions is too deep, just return early.
602   Decomposed.Base = V;
603   SearchLimitReached++;
604   return Decomposed;
605 }
606 
607 /// Returns whether the given pointer value points to memory that is local to
608 /// the function, with global constants being considered local to all
609 /// functions.
610 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
611                                            AAQueryInfo &AAQI, bool OrLocal) {
612   assert(Visited.empty() && "Visited must be cleared after use!");
613 
614   unsigned MaxLookup = 8;
615   SmallVector<const Value *, 16> Worklist;
616   Worklist.push_back(Loc.Ptr);
617   do {
618     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
619     if (!Visited.insert(V).second) {
620       Visited.clear();
621       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
622     }
623 
624     // An alloca instruction defines local memory.
625     if (OrLocal && isa<AllocaInst>(V))
626       continue;
627 
628     // A global constant counts as local memory for our purposes.
629     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
630       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
631       // global to be marked constant in some modules and non-constant in
632       // others.  GV may even be a declaration, not a definition.
633       if (!GV->isConstant()) {
634         Visited.clear();
635         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
636       }
637       continue;
638     }
639 
640     // If both select values point to local memory, then so does the select.
641     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
642       Worklist.push_back(SI->getTrueValue());
643       Worklist.push_back(SI->getFalseValue());
644       continue;
645     }
646 
647     // If all values incoming to a phi node point to local memory, then so does
648     // the phi.
649     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
650       // Don't bother inspecting phi nodes with many operands.
651       if (PN->getNumIncomingValues() > MaxLookup) {
652         Visited.clear();
653         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
654       }
655       append_range(Worklist, PN->incoming_values());
656       continue;
657     }
658 
659     // Otherwise be conservative.
660     Visited.clear();
661     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
662   } while (!Worklist.empty() && --MaxLookup);
663 
664   Visited.clear();
665   return Worklist.empty();
666 }
667 
668 /// Returns the behavior when calling the given call site.
669 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
670   if (Call->doesNotAccessMemory())
671     // Can't do better than this.
672     return FMRB_DoesNotAccessMemory;
673 
674   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
675 
676   // If the callsite knows it only reads memory, don't return worse
677   // than that.
678   if (Call->onlyReadsMemory())
679     Min = FMRB_OnlyReadsMemory;
680   else if (Call->doesNotReadMemory())
681     Min = FMRB_OnlyWritesMemory;
682 
683   if (Call->onlyAccessesArgMemory())
684     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
685   else if (Call->onlyAccessesInaccessibleMemory())
686     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
687   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
688     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
689 
690   // If the call has operand bundles then aliasing attributes from the function
691   // it calls do not directly apply to the call.  This can be made more precise
692   // in the future.
693   if (!Call->hasOperandBundles())
694     if (const Function *F = Call->getCalledFunction())
695       Min =
696           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
697 
698   return Min;
699 }
700 
701 /// Returns the behavior when calling the given function. For use when the call
702 /// site is not known.
703 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
704   // If the function declares it doesn't access memory, we can't do better.
705   if (F->doesNotAccessMemory())
706     return FMRB_DoesNotAccessMemory;
707 
708   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
709 
710   // If the function declares it only reads memory, go with that.
711   if (F->onlyReadsMemory())
712     Min = FMRB_OnlyReadsMemory;
713   else if (F->doesNotReadMemory())
714     Min = FMRB_OnlyWritesMemory;
715 
716   if (F->onlyAccessesArgMemory())
717     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
718   else if (F->onlyAccessesInaccessibleMemory())
719     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
720   else if (F->onlyAccessesInaccessibleMemOrArgMem())
721     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
722 
723   return Min;
724 }
725 
726 /// Returns true if this is a writeonly (i.e Mod only) parameter.
727 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
728                              const TargetLibraryInfo &TLI) {
729   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
730     return true;
731 
732   // We can bound the aliasing properties of memset_pattern16 just as we can
733   // for memcpy/memset.  This is particularly important because the
734   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
735   // whenever possible.
736   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
737   // attributes.
738   LibFunc F;
739   if (Call->getCalledFunction() &&
740       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
741       F == LibFunc_memset_pattern16 && TLI.has(F))
742     if (ArgIdx == 0)
743       return true;
744 
745   // TODO: memset_pattern4, memset_pattern8
746   // TODO: _chk variants
747   // TODO: strcmp, strcpy
748 
749   return false;
750 }
751 
752 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
753                                            unsigned ArgIdx) {
754   // Checking for known builtin intrinsics and target library functions.
755   if (isWriteOnlyParam(Call, ArgIdx, TLI))
756     return ModRefInfo::Mod;
757 
758   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
759     return ModRefInfo::Ref;
760 
761   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
762     return ModRefInfo::NoModRef;
763 
764   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
765 }
766 
767 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
768   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
769   return II && II->getIntrinsicID() == IID;
770 }
771 
772 #ifndef NDEBUG
773 static const Function *getParent(const Value *V) {
774   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
775     if (!inst->getParent())
776       return nullptr;
777     return inst->getParent()->getParent();
778   }
779 
780   if (const Argument *arg = dyn_cast<Argument>(V))
781     return arg->getParent();
782 
783   return nullptr;
784 }
785 
786 static bool notDifferentParent(const Value *O1, const Value *O2) {
787 
788   const Function *F1 = getParent(O1);
789   const Function *F2 = getParent(O2);
790 
791   return !F1 || !F2 || F1 == F2;
792 }
793 #endif
794 
795 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
796                                  const MemoryLocation &LocB,
797                                  AAQueryInfo &AAQI) {
798   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
799          "BasicAliasAnalysis doesn't support interprocedural queries.");
800   return aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, LocB.Size,
801                     LocB.AATags, AAQI);
802 }
803 
804 /// Checks to see if the specified callsite can clobber the specified memory
805 /// object.
806 ///
807 /// Since we only look at local properties of this function, we really can't
808 /// say much about this query.  We do, however, use simple "address taken"
809 /// analysis on local objects.
810 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
811                                         const MemoryLocation &Loc,
812                                         AAQueryInfo &AAQI) {
813   assert(notDifferentParent(Call, Loc.Ptr) &&
814          "AliasAnalysis query involving multiple functions!");
815 
816   const Value *Object = getUnderlyingObject(Loc.Ptr);
817 
818   // Calls marked 'tail' cannot read or write allocas from the current frame
819   // because the current frame might be destroyed by the time they run. However,
820   // a tail call may use an alloca with byval. Calling with byval copies the
821   // contents of the alloca into argument registers or stack slots, so there is
822   // no lifetime issue.
823   if (isa<AllocaInst>(Object))
824     if (const CallInst *CI = dyn_cast<CallInst>(Call))
825       if (CI->isTailCall() &&
826           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
827         return ModRefInfo::NoModRef;
828 
829   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
830   // modify them even though the alloca is not escaped.
831   if (auto *AI = dyn_cast<AllocaInst>(Object))
832     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
833       return ModRefInfo::Mod;
834 
835   // If the pointer is to a locally allocated object that does not escape,
836   // then the call can not mod/ref the pointer unless the call takes the pointer
837   // as an argument, and itself doesn't capture it.
838   if (!isa<Constant>(Object) && Call != Object &&
839       isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
840 
841     // Optimistically assume that call doesn't touch Object and check this
842     // assumption in the following loop.
843     ModRefInfo Result = ModRefInfo::NoModRef;
844     bool IsMustAlias = true;
845 
846     unsigned OperandNo = 0;
847     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
848          CI != CE; ++CI, ++OperandNo) {
849       // Only look at the no-capture or byval pointer arguments.  If this
850       // pointer were passed to arguments that were neither of these, then it
851       // couldn't be no-capture.
852       if (!(*CI)->getType()->isPointerTy() ||
853           (!Call->doesNotCapture(OperandNo) &&
854            OperandNo < Call->getNumArgOperands() &&
855            !Call->isByValArgument(OperandNo)))
856         continue;
857 
858       // Call doesn't access memory through this operand, so we don't care
859       // if it aliases with Object.
860       if (Call->doesNotAccessMemory(OperandNo))
861         continue;
862 
863       // If this is a no-capture pointer argument, see if we can tell that it
864       // is impossible to alias the pointer we're checking.
865       AliasResult AR = getBestAAResults().alias(
866           MemoryLocation::getBeforeOrAfter(*CI),
867           MemoryLocation::getBeforeOrAfter(Object), AAQI);
868       if (AR != MustAlias)
869         IsMustAlias = false;
870       // Operand doesn't alias 'Object', continue looking for other aliases
871       if (AR == NoAlias)
872         continue;
873       // Operand aliases 'Object', but call doesn't modify it. Strengthen
874       // initial assumption and keep looking in case if there are more aliases.
875       if (Call->onlyReadsMemory(OperandNo)) {
876         Result = setRef(Result);
877         continue;
878       }
879       // Operand aliases 'Object' but call only writes into it.
880       if (Call->doesNotReadMemory(OperandNo)) {
881         Result = setMod(Result);
882         continue;
883       }
884       // This operand aliases 'Object' and call reads and writes into it.
885       // Setting ModRef will not yield an early return below, MustAlias is not
886       // used further.
887       Result = ModRefInfo::ModRef;
888       break;
889     }
890 
891     // No operand aliases, reset Must bit. Add below if at least one aliases
892     // and all aliases found are MustAlias.
893     if (isNoModRef(Result))
894       IsMustAlias = false;
895 
896     // Early return if we improved mod ref information
897     if (!isModAndRefSet(Result)) {
898       if (isNoModRef(Result))
899         return ModRefInfo::NoModRef;
900       return IsMustAlias ? setMust(Result) : clearMust(Result);
901     }
902   }
903 
904   // If the call is malloc/calloc like, we can assume that it doesn't
905   // modify any IR visible value.  This is only valid because we assume these
906   // routines do not read values visible in the IR.  TODO: Consider special
907   // casing realloc and strdup routines which access only their arguments as
908   // well.  Or alternatively, replace all of this with inaccessiblememonly once
909   // that's implemented fully.
910   if (isMallocOrCallocLikeFn(Call, &TLI)) {
911     // Be conservative if the accessed pointer may alias the allocation -
912     // fallback to the generic handling below.
913     if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call),
914                                  Loc, AAQI) == NoAlias)
915       return ModRefInfo::NoModRef;
916   }
917 
918   // The semantics of memcpy intrinsics either exactly overlap or do not
919   // overlap, i.e., source and destination of any given memcpy are either
920   // no-alias or must-alias.
921   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
922     AliasResult SrcAA =
923         getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
924     AliasResult DestAA =
925         getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
926     // It's also possible for Loc to alias both src and dest, or neither.
927     ModRefInfo rv = ModRefInfo::NoModRef;
928     if (SrcAA != NoAlias)
929       rv = setRef(rv);
930     if (DestAA != NoAlias)
931       rv = setMod(rv);
932     return rv;
933   }
934 
935   // While the assume intrinsic is marked as arbitrarily writing so that
936   // proper control dependencies will be maintained, it never aliases any
937   // particular memory location.
938   if (isIntrinsicCall(Call, Intrinsic::assume))
939     return ModRefInfo::NoModRef;
940 
941   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
942   // that proper control dependencies are maintained but they never mods any
943   // particular memory location.
944   //
945   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
946   // heap state at the point the guard is issued needs to be consistent in case
947   // the guard invokes the "deopt" continuation.
948   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
949     return ModRefInfo::Ref;
950   // The same applies to deoptimize which is essentially a guard(false).
951   if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
952     return ModRefInfo::Ref;
953 
954   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
955   // writing so that proper control dependencies are maintained but they never
956   // mod any particular memory location visible to the IR.
957   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
958   // intrinsic is now modeled as reading memory. This prevents hoisting the
959   // invariant.start intrinsic over stores. Consider:
960   // *ptr = 40;
961   // *ptr = 50;
962   // invariant_start(ptr)
963   // int val = *ptr;
964   // print(val);
965   //
966   // This cannot be transformed to:
967   //
968   // *ptr = 40;
969   // invariant_start(ptr)
970   // *ptr = 50;
971   // int val = *ptr;
972   // print(val);
973   //
974   // The transformation will cause the second store to be ignored (based on
975   // rules of invariant.start)  and print 40, while the first program always
976   // prints 50.
977   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
978     return ModRefInfo::Ref;
979 
980   // The AAResultBase base class has some smarts, lets use them.
981   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
982 }
983 
984 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
985                                         const CallBase *Call2,
986                                         AAQueryInfo &AAQI) {
987   // While the assume intrinsic is marked as arbitrarily writing so that
988   // proper control dependencies will be maintained, it never aliases any
989   // particular memory location.
990   if (isIntrinsicCall(Call1, Intrinsic::assume) ||
991       isIntrinsicCall(Call2, Intrinsic::assume))
992     return ModRefInfo::NoModRef;
993 
994   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
995   // that proper control dependencies are maintained but they never mod any
996   // particular memory location.
997   //
998   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
999   // heap state at the point the guard is issued needs to be consistent in case
1000   // the guard invokes the "deopt" continuation.
1001 
1002   // NB! This function is *not* commutative, so we special case two
1003   // possibilities for guard intrinsics.
1004 
1005   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1006     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1007                ? ModRefInfo::Ref
1008                : ModRefInfo::NoModRef;
1009 
1010   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1011     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1012                ? ModRefInfo::Mod
1013                : ModRefInfo::NoModRef;
1014 
1015   // The AAResultBase base class has some smarts, lets use them.
1016   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1017 }
1018 
1019 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1020 // beginning of the object the GEP points would have a negative offset with
1021 // repsect to the alloca, that means the GEP can not alias pointer (b).
1022 // Note that the pointer based on the alloca may not be a GEP. For
1023 // example, it may be the alloca itself.
1024 // The same applies if (b) is based on a GlobalVariable. Note that just being
1025 // based on isIdentifiedObject() is not enough - we need an identified object
1026 // that does not permit access to negative offsets. For example, a negative
1027 // offset from a noalias argument or call can be inbounds w.r.t the actual
1028 // underlying object.
1029 //
1030 // For example, consider:
1031 //
1032 //   struct { int f0, int f1, ...} foo;
1033 //   foo alloca;
1034 //   foo* random = bar(alloca);
1035 //   int *f0 = &alloca.f0
1036 //   int *f1 = &random->f1;
1037 //
1038 // Which is lowered, approximately, to:
1039 //
1040 //  %alloca = alloca %struct.foo
1041 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1042 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1043 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1044 //
1045 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1046 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1047 // point into the same object. But since %f0 points to the beginning of %alloca,
1048 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1049 // than (%alloca - 1), and so is not inbounds, a contradiction.
1050 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1051       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1052       LocationSize MaybeObjectAccessSize) {
1053   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1054   if (!MaybeObjectAccessSize.hasValue() || !GEPOp->isInBounds())
1055     return false;
1056 
1057   const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
1058 
1059   // We need the object to be an alloca or a globalvariable, and want to know
1060   // the offset of the pointer from the object precisely, so no variable
1061   // indices are allowed.
1062   if (!(isa<AllocaInst>(DecompObject.Base) ||
1063         isa<GlobalVariable>(DecompObject.Base)) ||
1064       !DecompObject.VarIndices.empty())
1065     return false;
1066 
1067   // If the GEP has no variable indices, we know the precise offset
1068   // from the base, then use it. If the GEP has variable indices,
1069   // we can't get exact GEP offset to identify pointer alias. So return
1070   // false in that case.
1071   if (!DecompGEP.VarIndices.empty())
1072     return false;
1073 
1074   return DecompGEP.Offset.sge(DecompObject.Offset + (int64_t)ObjectAccessSize);
1075 }
1076 
1077 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1078 /// another pointer.
1079 ///
1080 /// We know that V1 is a GEP, but we don't know anything about V2.
1081 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1082 /// V2.
1083 AliasResult BasicAAResult::aliasGEP(
1084     const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1085     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1086     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1087   DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1088   DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1089 
1090   // Don't attempt to analyze the decomposed GEP if index scale is not a
1091   // compile-time constant.
1092   if (!DecompGEP1.HasCompileTimeConstantScale ||
1093       !DecompGEP2.HasCompileTimeConstantScale)
1094     return MayAlias;
1095 
1096   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1097          "DecomposeGEPExpression returned a result different from "
1098          "getUnderlyingObject");
1099 
1100   // If the GEP's offset relative to its base is such that the base would
1101   // fall below the start of the object underlying V2, then the GEP and V2
1102   // cannot alias.
1103   if (isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1104     return NoAlias;
1105   // If we have two gep instructions with must-alias or not-alias'ing base
1106   // pointers, figure out if the indexes to the GEP tell us anything about the
1107   // derived pointer.
1108   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1109     // Check for the GEP base being at a negative offset, this time in the other
1110     // direction.
1111     if (isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1112       return NoAlias;
1113     // Do the base pointers alias?
1114     AliasResult BaseAlias = getBestAAResults().alias(
1115         MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1116         MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
1117 
1118     // For GEPs with identical offsets, we can preserve the size and AAInfo
1119     // when performing the alias check on the underlying objects.
1120     if (BaseAlias == MayAlias && DecompGEP1.Offset == DecompGEP2.Offset &&
1121         DecompGEP1.VarIndices == DecompGEP2.VarIndices) {
1122       AliasResult PreciseBaseAlias = getBestAAResults().alias(
1123           MemoryLocation(UnderlyingV1, V1Size, V1AAInfo),
1124           MemoryLocation(UnderlyingV2, V2Size, V2AAInfo), AAQI);
1125       if (PreciseBaseAlias == NoAlias)
1126         return NoAlias;
1127     }
1128 
1129     // If we get a No or May, then return it immediately, no amount of analysis
1130     // will improve this situation.
1131     if (BaseAlias != MustAlias) {
1132       assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1133       return BaseAlias;
1134     }
1135 
1136     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1137     // symbolic difference.
1138     DecompGEP1.Offset -= DecompGEP2.Offset;
1139     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1140 
1141   } else {
1142     // Check to see if these two pointers are related by the getelementptr
1143     // instruction.  If one pointer is a GEP with a non-zero index of the other
1144     // pointer, we know they cannot alias.
1145 
1146     // If both accesses are unknown size, we can't do anything useful here.
1147     if (!V1Size.hasValue() && !V2Size.hasValue())
1148       return MayAlias;
1149 
1150     AliasResult R = getBestAAResults().alias(
1151         MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1152         MemoryLocation(V2, V2Size, V2AAInfo), AAQI);
1153     if (R != MustAlias) {
1154       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1155       // If V2 is known not to alias GEP base pointer, then the two values
1156       // cannot alias per GEP semantics: "Any memory access must be done through
1157       // a pointer value associated with an address range of the memory access,
1158       // otherwise the behavior is undefined.".
1159       assert(R == NoAlias || R == MayAlias);
1160       return R;
1161     }
1162   }
1163 
1164   // In the two GEP Case, if there is no difference in the offsets of the
1165   // computed pointers, the resultant pointers are a must alias.  This
1166   // happens when we have two lexically identical GEP's (for example).
1167   //
1168   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1169   // must aliases the GEP, the end result is a must alias also.
1170   if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1171     return MustAlias;
1172 
1173   // If there is a constant difference between the pointers, but the difference
1174   // is less than the size of the associated memory object, then we know
1175   // that the objects are partially overlapping.  If the difference is
1176   // greater, we know they do not overlap.
1177   if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) {
1178     if (DecompGEP1.Offset.sge(0)) {
1179       if (V2Size.hasValue()) {
1180         if (DecompGEP1.Offset.ult(V2Size.getValue()))
1181           return PartialAlias;
1182         return NoAlias;
1183       }
1184     } else {
1185       // We have the situation where:
1186       // +                +
1187       // | BaseOffset     |
1188       // ---------------->|
1189       // |-->V1Size       |-------> V2Size
1190       // GEP1             V2
1191       if (V1Size.hasValue()) {
1192         if ((-DecompGEP1.Offset).ult(V1Size.getValue()))
1193           return PartialAlias;
1194         return NoAlias;
1195       }
1196     }
1197   }
1198 
1199   if (!DecompGEP1.VarIndices.empty()) {
1200     APInt GCD;
1201     bool AllNonNegative = DecompGEP1.Offset.isNonNegative();
1202     bool AllNonPositive = DecompGEP1.Offset.isNonPositive();
1203     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1204       const APInt &Scale = DecompGEP1.VarIndices[i].Scale;
1205       if (i == 0)
1206         GCD = Scale.abs();
1207       else
1208         GCD = APIntOps::GreatestCommonDivisor(GCD, Scale.abs());
1209 
1210       if (AllNonNegative || AllNonPositive) {
1211         // If the Value could change between cycles, then any reasoning about
1212         // the Value this cycle may not hold in the next cycle. We'll just
1213         // give up if we can't determine conditions that hold for every cycle:
1214         const Value *V = DecompGEP1.VarIndices[i].V;
1215         const Instruction *CxtI = DecompGEP1.VarIndices[i].CxtI;
1216 
1217         KnownBits Known = computeKnownBits(V, DL, 0, &AC, CxtI, DT);
1218         bool SignKnownZero = Known.isNonNegative();
1219         bool SignKnownOne = Known.isNegative();
1220 
1221         // Zero-extension widens the variable, and so forces the sign
1222         // bit to zero.
1223         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1224         SignKnownZero |= IsZExt;
1225         SignKnownOne &= !IsZExt;
1226 
1227         AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) ||
1228                           (SignKnownOne && Scale.isNonPositive());
1229         AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) ||
1230                           (SignKnownOne && Scale.isNonNegative());
1231       }
1232     }
1233 
1234     // We now have accesses at two offsets from the same base:
1235     //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
1236     //  2. 0 with size V2Size
1237     // Using arithmetic modulo GCD, the accesses are at
1238     // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1239     // into the range [V2Size..GCD), then we know they cannot overlap.
1240     APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1241     if (ModOffset.isNegative())
1242       ModOffset += GCD; // We want mod, not rem.
1243     if (V1Size.hasValue() && V2Size.hasValue() &&
1244         ModOffset.uge(V2Size.getValue()) &&
1245         (GCD - ModOffset).uge(V1Size.getValue()))
1246       return NoAlias;
1247 
1248     // If we know all the variables are non-negative, then the total offset is
1249     // also non-negative and >= DecompGEP1.Offset. We have the following layout:
1250     // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size]
1251     // If DecompGEP1.Offset >= V2Size, the accesses don't alias.
1252     if (AllNonNegative && V2Size.hasValue() &&
1253         DecompGEP1.Offset.uge(V2Size.getValue()))
1254       return NoAlias;
1255     // Similarly, if the variables are non-positive, then the total offset is
1256     // also non-positive and <= DecompGEP1.Offset. We have the following layout:
1257     // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size)
1258     // If -DecompGEP1.Offset >= V1Size, the accesses don't alias.
1259     if (AllNonPositive && V1Size.hasValue() &&
1260         (-DecompGEP1.Offset).uge(V1Size.getValue()))
1261       return NoAlias;
1262 
1263     if (V1Size.hasValue() && V2Size.hasValue()) {
1264       // Try to determine whether abs(VarIndex) > 0.
1265       Optional<APInt> MinAbsVarIndex;
1266       if (DecompGEP1.VarIndices.size() == 1) {
1267         // VarIndex = Scale*V. If V != 0 then abs(VarIndex) >= abs(Scale).
1268         const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1269         if (isKnownNonZero(Var.V, DL, 0, &AC, Var.CxtI, DT))
1270           MinAbsVarIndex = Var.Scale.abs();
1271       } else if (DecompGEP1.VarIndices.size() == 2) {
1272         // VarIndex = Scale*V0 + (-Scale)*V1.
1273         // If V0 != V1 then abs(VarIndex) >= abs(Scale).
1274         // Check that VisitedPhiBBs is empty, to avoid reasoning about
1275         // inequality of values across loop iterations.
1276         const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1277         const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1278         if (Var0.Scale == -Var1.Scale && Var0.ZExtBits == Var1.ZExtBits &&
1279             Var0.SExtBits == Var1.SExtBits && VisitedPhiBBs.empty() &&
1280             isKnownNonEqual(Var0.V, Var1.V, DL, &AC, /* CxtI */ nullptr, DT))
1281           MinAbsVarIndex = Var0.Scale.abs();
1282       }
1283 
1284       if (MinAbsVarIndex) {
1285         // The constant offset will have added at least +/-MinAbsVarIndex to it.
1286         APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1287         APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1288         // Check that an access at OffsetLo or lower, and an access at OffsetHi
1289         // or higher both do not alias.
1290         if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
1291             OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
1292           return NoAlias;
1293       }
1294     }
1295 
1296     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1297                                 DecompGEP1.Offset, &AC, DT))
1298       return NoAlias;
1299   }
1300 
1301   // Statically, we can see that the base objects are the same, but the
1302   // pointers have dynamic offsets which we can't resolve. And none of our
1303   // little tricks above worked.
1304   return MayAlias;
1305 }
1306 
1307 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1308   // If the results agree, take it.
1309   if (A == B)
1310     return A;
1311   // A mix of PartialAlias and MustAlias is PartialAlias.
1312   if ((A == PartialAlias && B == MustAlias) ||
1313       (B == PartialAlias && A == MustAlias))
1314     return PartialAlias;
1315   // Otherwise, we don't know anything.
1316   return MayAlias;
1317 }
1318 
1319 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1320 /// against another.
1321 AliasResult
1322 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1323                            const AAMDNodes &SIAAInfo, const Value *V2,
1324                            LocationSize V2Size, const AAMDNodes &V2AAInfo,
1325                            AAQueryInfo &AAQI) {
1326   // If the values are Selects with the same condition, we can do a more precise
1327   // check: just check for aliases between the values on corresponding arms.
1328   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1329     if (SI->getCondition() == SI2->getCondition()) {
1330       AliasResult Alias = getBestAAResults().alias(
1331           MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo),
1332           MemoryLocation(SI2->getTrueValue(), V2Size, V2AAInfo), AAQI);
1333       if (Alias == MayAlias)
1334         return MayAlias;
1335       AliasResult ThisAlias = getBestAAResults().alias(
1336           MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo),
1337           MemoryLocation(SI2->getFalseValue(), V2Size, V2AAInfo), AAQI);
1338       return MergeAliasResults(ThisAlias, Alias);
1339     }
1340 
1341   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1342   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1343   AliasResult Alias = getBestAAResults().alias(
1344       MemoryLocation(V2, V2Size, V2AAInfo),
1345       MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo), AAQI);
1346   if (Alias == MayAlias)
1347     return MayAlias;
1348 
1349   AliasResult ThisAlias = getBestAAResults().alias(
1350       MemoryLocation(V2, V2Size, V2AAInfo),
1351       MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo), AAQI);
1352   return MergeAliasResults(ThisAlias, Alias);
1353 }
1354 
1355 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1356 /// another.
1357 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1358                                     const AAMDNodes &PNAAInfo, const Value *V2,
1359                                     LocationSize V2Size,
1360                                     const AAMDNodes &V2AAInfo,
1361                                     AAQueryInfo &AAQI) {
1362   // If the values are PHIs in the same block, we can do a more precise
1363   // as well as efficient check: just check for aliases between the values
1364   // on corresponding edges.
1365   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1366     if (PN2->getParent() == PN->getParent()) {
1367       Optional<AliasResult> Alias;
1368       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1369         AliasResult ThisAlias = getBestAAResults().alias(
1370             MemoryLocation(PN->getIncomingValue(i), PNSize, PNAAInfo),
1371             MemoryLocation(
1372                 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size,
1373                 V2AAInfo),
1374             AAQI);
1375         if (Alias)
1376           *Alias = MergeAliasResults(*Alias, ThisAlias);
1377         else
1378           Alias = ThisAlias;
1379         if (*Alias == MayAlias)
1380           break;
1381       }
1382       return *Alias;
1383     }
1384 
1385   SmallVector<Value *, 4> V1Srcs;
1386   // If a phi operand recurses back to the phi, we can still determine NoAlias
1387   // if we don't alias the underlying objects of the other phi operands, as we
1388   // know that the recursive phi needs to be based on them in some way.
1389   bool isRecursive = false;
1390   auto CheckForRecPhi = [&](Value *PV) {
1391     if (!EnableRecPhiAnalysis)
1392       return false;
1393     if (getUnderlyingObject(PV) == PN) {
1394       isRecursive = true;
1395       return true;
1396     }
1397     return false;
1398   };
1399 
1400   if (PV) {
1401     // If we have PhiValues then use it to get the underlying phi values.
1402     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1403     // If we have more phi values than the search depth then return MayAlias
1404     // conservatively to avoid compile time explosion. The worst possible case
1405     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1406     // where 'm' and 'n' are the number of PHI sources.
1407     if (PhiValueSet.size() > MaxLookupSearchDepth)
1408       return MayAlias;
1409     // Add the values to V1Srcs
1410     for (Value *PV1 : PhiValueSet) {
1411       if (CheckForRecPhi(PV1))
1412         continue;
1413       V1Srcs.push_back(PV1);
1414     }
1415   } else {
1416     // If we don't have PhiInfo then just look at the operands of the phi itself
1417     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1418     SmallPtrSet<Value *, 4> UniqueSrc;
1419     for (Value *PV1 : PN->incoming_values()) {
1420       if (isa<PHINode>(PV1))
1421         // If any of the source itself is a PHI, return MayAlias conservatively
1422         // to avoid compile time explosion. The worst possible case is if both
1423         // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1424         // and 'n' are the number of PHI sources.
1425         return MayAlias;
1426 
1427       if (CheckForRecPhi(PV1))
1428         continue;
1429 
1430       if (UniqueSrc.insert(PV1).second)
1431         V1Srcs.push_back(PV1);
1432     }
1433   }
1434 
1435   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1436   // value. This should only be possible in blocks unreachable from the entry
1437   // block, but return MayAlias just in case.
1438   if (V1Srcs.empty())
1439     return MayAlias;
1440 
1441   // If this PHI node is recursive, indicate that the pointer may be moved
1442   // across iterations. We can only prove NoAlias if different underlying
1443   // objects are involved.
1444   if (isRecursive)
1445     PNSize = LocationSize::beforeOrAfterPointer();
1446 
1447   // In the recursive alias queries below, we may compare values from two
1448   // different loop iterations. Keep track of visited phi blocks, which will
1449   // be used when determining value equivalence.
1450   bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
1451   auto _ = make_scope_exit([&]() {
1452     if (BlockInserted)
1453       VisitedPhiBBs.erase(PN->getParent());
1454   });
1455 
1456   // If we inserted a block into VisitedPhiBBs, alias analysis results that
1457   // have been cached earlier may no longer be valid. Perform recursive queries
1458   // with a new AAQueryInfo.
1459   AAQueryInfo NewAAQI;
1460   AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
1461 
1462   AliasResult Alias = getBestAAResults().alias(
1463       MemoryLocation(V2, V2Size, V2AAInfo),
1464       MemoryLocation(V1Srcs[0], PNSize, PNAAInfo), *UseAAQI);
1465 
1466   // Early exit if the check of the first PHI source against V2 is MayAlias.
1467   // Other results are not possible.
1468   if (Alias == MayAlias)
1469     return MayAlias;
1470   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1471   // remain valid to all elements and needs to conservatively return MayAlias.
1472   if (isRecursive && Alias != NoAlias)
1473     return MayAlias;
1474 
1475   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1476   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1477   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1478     Value *V = V1Srcs[i];
1479 
1480     AliasResult ThisAlias = getBestAAResults().alias(
1481         MemoryLocation(V2, V2Size, V2AAInfo),
1482         MemoryLocation(V, PNSize, PNAAInfo), *UseAAQI);
1483     Alias = MergeAliasResults(ThisAlias, Alias);
1484     if (Alias == MayAlias)
1485       break;
1486   }
1487 
1488   return Alias;
1489 }
1490 
1491 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1492 /// array references.
1493 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1494                                       const AAMDNodes &V1AAInfo,
1495                                       const Value *V2, LocationSize V2Size,
1496                                       const AAMDNodes &V2AAInfo,
1497                                       AAQueryInfo &AAQI) {
1498   // If either of the memory references is empty, it doesn't matter what the
1499   // pointer values are.
1500   if (V1Size.isZero() || V2Size.isZero())
1501     return NoAlias;
1502 
1503   // Strip off any casts if they exist.
1504   V1 = V1->stripPointerCastsAndInvariantGroups();
1505   V2 = V2->stripPointerCastsAndInvariantGroups();
1506 
1507   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1508   // value for undef that aliases nothing in the program.
1509   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1510     return NoAlias;
1511 
1512   // Are we checking for alias of the same value?
1513   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1514   // different iterations. We must therefore make sure that this is not the
1515   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1516   // happen by looking at the visited phi nodes and making sure they cannot
1517   // reach the value.
1518   if (isValueEqualInPotentialCycles(V1, V2))
1519     return MustAlias;
1520 
1521   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1522     return NoAlias; // Scalars cannot alias each other
1523 
1524   // Figure out what objects these things are pointing to if we can.
1525   const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1526   const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1527 
1528   // Null values in the default address space don't point to any object, so they
1529   // don't alias any other pointer.
1530   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1531     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1532       return NoAlias;
1533   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1534     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1535       return NoAlias;
1536 
1537   if (O1 != O2) {
1538     // If V1/V2 point to two different objects, we know that we have no alias.
1539     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1540       return NoAlias;
1541 
1542     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1543     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1544         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1545       return NoAlias;
1546 
1547     // Function arguments can't alias with things that are known to be
1548     // unambigously identified at the function level.
1549     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1550         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1551       return NoAlias;
1552 
1553     // If one pointer is the result of a call/invoke or load and the other is a
1554     // non-escaping local object within the same function, then we know the
1555     // object couldn't escape to a point where the call could return it.
1556     //
1557     // Note that if the pointers are in different functions, there are a
1558     // variety of complications. A call with a nocapture argument may still
1559     // temporary store the nocapture argument's value in a temporary memory
1560     // location if that memory location doesn't escape. Or it may pass a
1561     // nocapture value to other functions as long as they don't capture it.
1562     if (isEscapeSource(O1) &&
1563         isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1564       return NoAlias;
1565     if (isEscapeSource(O2) &&
1566         isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1567       return NoAlias;
1568   }
1569 
1570   // If the size of one access is larger than the entire object on the other
1571   // side, then we know such behavior is undefined and can assume no alias.
1572   bool NullIsValidLocation = NullPointerIsDefined(&F);
1573   if ((isObjectSmallerThan(
1574           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1575           TLI, NullIsValidLocation)) ||
1576       (isObjectSmallerThan(
1577           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1578           TLI, NullIsValidLocation)))
1579     return NoAlias;
1580 
1581   // If one the accesses may be before the accessed pointer, canonicalize this
1582   // by using unknown after-pointer sizes for both accesses. This is
1583   // equivalent, because regardless of which pointer is lower, one of them
1584   // will always came after the other, as long as the underlying objects aren't
1585   // disjoint. We do this so that the rest of BasicAA does not have to deal
1586   // with accesses before the base pointer, and to improve cache utilization by
1587   // merging equivalent states.
1588   if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1589     V1Size = LocationSize::afterPointer();
1590     V2Size = LocationSize::afterPointer();
1591   }
1592 
1593   // Check the cache before climbing up use-def chains. This also terminates
1594   // otherwise infinitely recursive queries.
1595   AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1596                             MemoryLocation(V2, V2Size, V2AAInfo));
1597   if (V1 > V2)
1598     std::swap(Locs.first, Locs.second);
1599   const auto &Pair = AAQI.AliasCache.try_emplace(
1600       Locs, AAQueryInfo::CacheEntry{NoAlias, 0});
1601   if (!Pair.second) {
1602     auto &Entry = Pair.first->second;
1603     if (!Entry.isDefinitive()) {
1604       // Remember that we used an assumption.
1605       ++Entry.NumAssumptionUses;
1606       ++AAQI.NumAssumptionUses;
1607     }
1608     return Entry.Result;
1609   }
1610 
1611   int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
1612   unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
1613   AliasResult Result = aliasCheckRecursive(V1, V1Size, V1AAInfo, V2, V2Size,
1614                                            V2AAInfo, AAQI, O1, O2);
1615 
1616   auto It = AAQI.AliasCache.find(Locs);
1617   assert(It != AAQI.AliasCache.end() && "Must be in cache");
1618   auto &Entry = It->second;
1619 
1620   // Check whether a NoAlias assumption has been used, but disproven.
1621   bool AssumptionDisproven = Entry.NumAssumptionUses > 0 && Result != NoAlias;
1622   if (AssumptionDisproven)
1623     Result = MayAlias;
1624 
1625   // This is a definitive result now, when considered as a root query.
1626   AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
1627   Entry.Result = Result;
1628   Entry.NumAssumptionUses = -1;
1629 
1630   // If the assumption has been disproven, remove any results that may have
1631   // been based on this assumption. Do this after the Entry updates above to
1632   // avoid iterator invalidation.
1633   if (AssumptionDisproven)
1634     while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1635       AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
1636 
1637   // The result may still be based on assumptions higher up in the chain.
1638   // Remember it, so it can be purged from the cache later.
1639   if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && Result != MayAlias)
1640     AAQI.AssumptionBasedResults.push_back(Locs);
1641   return Result;
1642 }
1643 
1644 AliasResult BasicAAResult::aliasCheckRecursive(
1645     const Value *V1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1646     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1647     AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1648   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1649     AliasResult Result =
1650         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1651     if (Result != MayAlias)
1652       return Result;
1653   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1654     AliasResult Result =
1655         aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI);
1656     if (Result != MayAlias)
1657       return Result;
1658   }
1659 
1660   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1661     AliasResult Result =
1662         aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI);
1663     if (Result != MayAlias)
1664       return Result;
1665   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1666     AliasResult Result =
1667         aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI);
1668     if (Result != MayAlias)
1669       return Result;
1670   }
1671 
1672   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1673     AliasResult Result =
1674         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI);
1675     if (Result != MayAlias)
1676       return Result;
1677   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1678     AliasResult Result =
1679         aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI);
1680     if (Result != MayAlias)
1681       return Result;
1682   }
1683 
1684   // If both pointers are pointing into the same object and one of them
1685   // accesses the entire object, then the accesses must overlap in some way.
1686   if (O1 == O2) {
1687     bool NullIsValidLocation = NullPointerIsDefined(&F);
1688     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1689         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1690          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1691       return PartialAlias;
1692   }
1693 
1694   return MayAlias;
1695 }
1696 
1697 /// Check whether two Values can be considered equivalent.
1698 ///
1699 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1700 /// they can not be part of a cycle in the value graph by looking at all
1701 /// visited phi nodes an making sure that the phis cannot reach the value. We
1702 /// have to do this because we are looking through phi nodes (That is we say
1703 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1704 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1705                                                   const Value *V2) {
1706   if (V != V2)
1707     return false;
1708 
1709   const Instruction *Inst = dyn_cast<Instruction>(V);
1710   if (!Inst)
1711     return true;
1712 
1713   if (VisitedPhiBBs.empty())
1714     return true;
1715 
1716   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1717     return false;
1718 
1719   // Make sure that the visited phis cannot reach the Value. This ensures that
1720   // the Values cannot come from different iterations of a potential cycle the
1721   // phi nodes could be involved in.
1722   for (auto *P : VisitedPhiBBs)
1723     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
1724       return false;
1725 
1726   return true;
1727 }
1728 
1729 /// Computes the symbolic difference between two de-composed GEPs.
1730 ///
1731 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1732 /// instructions GEP1 and GEP2 which have common base pointers.
1733 void BasicAAResult::GetIndexDifference(
1734     SmallVectorImpl<VariableGEPIndex> &Dest,
1735     const SmallVectorImpl<VariableGEPIndex> &Src) {
1736   if (Src.empty())
1737     return;
1738 
1739   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1740     const Value *V = Src[i].V;
1741     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1742     APInt Scale = Src[i].Scale;
1743 
1744     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1745     // than a few variable indexes.
1746     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1747       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1748           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1749         continue;
1750 
1751       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1752       // goes to zero, remove the entry.
1753       if (Dest[j].Scale != Scale)
1754         Dest[j].Scale -= Scale;
1755       else
1756         Dest.erase(Dest.begin() + j);
1757       Scale = 0;
1758       break;
1759     }
1760 
1761     // If we didn't consume this entry, add it to the end of the Dest list.
1762     if (!!Scale) {
1763       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale, Src[i].CxtI};
1764       Dest.push_back(Entry);
1765     }
1766   }
1767 }
1768 
1769 bool BasicAAResult::constantOffsetHeuristic(
1770     const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1771     LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset,
1772     AssumptionCache *AC, DominatorTree *DT) {
1773   if (VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1774       !MaybeV2Size.hasValue())
1775     return false;
1776 
1777   const uint64_t V1Size = MaybeV1Size.getValue();
1778   const uint64_t V2Size = MaybeV2Size.getValue();
1779 
1780   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1781 
1782   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1783       Var0.Scale != -Var1.Scale)
1784     return false;
1785 
1786   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1787 
1788   // We'll strip off the Extensions of Var0 and Var1 and do another round
1789   // of GetLinearExpression decomposition. In the example above, if Var0
1790   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1791 
1792   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1793       V1Offset(Width, 0);
1794   bool NSW = true, NUW = true;
1795   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1796   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1797                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1798   NSW = true;
1799   NUW = true;
1800   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1801                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1802 
1803   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1804       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1805     return false;
1806 
1807   // We have a hit - Var0 and Var1 only differ by a constant offset!
1808 
1809   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1810   // Var1 is possible to calculate, but we're just interested in the absolute
1811   // minimum difference between the two. The minimum distance may occur due to
1812   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1813   // the minimum distance between %i and %i + 5 is 3.
1814   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1815   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1816   APInt MinDiffBytes =
1817     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1818 
1819   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1820   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1821   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1822   // V2Size can fit in the MinDiffBytes gap.
1823   return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
1824          MinDiffBytes.uge(V2Size + BaseOffset.abs());
1825 }
1826 
1827 //===----------------------------------------------------------------------===//
1828 // BasicAliasAnalysis Pass
1829 //===----------------------------------------------------------------------===//
1830 
1831 AnalysisKey BasicAA::Key;
1832 
1833 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1834   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1835   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1836   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1837   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
1838   auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F);
1839   return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, LI, PV);
1840 }
1841 
1842 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1843   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1844 }
1845 
1846 char BasicAAWrapperPass::ID = 0;
1847 
1848 void BasicAAWrapperPass::anchor() {}
1849 
1850 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1851                       "Basic Alias Analysis (stateless AA impl)", true, true)
1852 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1853 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1854 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1855 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1856 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1857                     "Basic Alias Analysis (stateless AA impl)", true, true)
1858 
1859 FunctionPass *llvm::createBasicAAWrapperPass() {
1860   return new BasicAAWrapperPass();
1861 }
1862 
1863 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1864   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1865   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1866   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1867   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1868   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
1869 
1870   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
1871                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1872                                  &DTWP.getDomTree(),
1873                                  LIWP ? &LIWP->getLoopInfo() : nullptr,
1874                                  PVWP ? &PVWP->getResult() : nullptr));
1875 
1876   return false;
1877 }
1878 
1879 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1880   AU.setPreservesAll();
1881   AU.addRequiredTransitive<AssumptionCacheTracker>();
1882   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1883   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1884   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
1885 }
1886 
1887 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1888   return BasicAAResult(
1889       F.getParent()->getDataLayout(), F,
1890       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
1891       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1892 }
1893