1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/PhiValues.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/KnownBits.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <cstdlib> 61 #include <utility> 62 63 #define DEBUG_TYPE "basicaa" 64 65 using namespace llvm; 66 67 /// Enable analysis of recursive PHI nodes. 68 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 69 cl::init(false)); 70 71 /// By default, even on 32-bit architectures we use 64-bit integers for 72 /// calculations. This will allow us to more-aggressively decompose indexing 73 /// expressions calculated using i64 values (e.g., long long in C) which is 74 /// common enough to worry about. 75 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b", 76 cl::Hidden, cl::init(true)); 77 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits", 78 cl::Hidden, cl::init(false)); 79 80 /// SearchLimitReached / SearchTimes shows how often the limit of 81 /// to decompose GEPs is reached. It will affect the precision 82 /// of basic alias analysis. 83 STATISTIC(SearchLimitReached, "Number of times the limit to " 84 "decompose GEPs is reached"); 85 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 86 87 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 88 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 89 /// careful with value equivalence. We use reachability to make sure a value 90 /// cannot be involved in a cycle. 91 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 92 93 // The max limit of the search depth in DecomposeGEPExpression() and 94 // GetUnderlyingObject(), both functions need to use the same search 95 // depth otherwise the algorithm in aliasGEP will assert. 96 static const unsigned MaxLookupSearchDepth = 6; 97 98 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 99 FunctionAnalysisManager::Invalidator &Inv) { 100 // We don't care if this analysis itself is preserved, it has no state. But 101 // we need to check that the analyses it depends on have been. Note that we 102 // may be created without handles to some analyses and in that case don't 103 // depend on them. 104 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 105 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 106 (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) || 107 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 108 return true; 109 110 // Otherwise this analysis result remains valid. 111 return false; 112 } 113 114 //===----------------------------------------------------------------------===// 115 // Useful predicates 116 //===----------------------------------------------------------------------===// 117 118 /// Returns true if the pointer is to a function-local object that never 119 /// escapes from the function. 120 static bool isNonEscapingLocalObject( 121 const Value *V, 122 SmallDenseMap<const Value *, bool, 8> *IsCapturedCache = nullptr) { 123 SmallDenseMap<const Value *, bool, 8>::iterator CacheIt; 124 if (IsCapturedCache) { 125 bool Inserted; 126 std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false}); 127 if (!Inserted) 128 // Found cached result, return it! 129 return CacheIt->second; 130 } 131 132 // If this is a local allocation, check to see if it escapes. 133 if (isa<AllocaInst>(V) || isNoAliasCall(V)) { 134 // Set StoreCaptures to True so that we can assume in our callers that the 135 // pointer is not the result of a load instruction. Currently 136 // PointerMayBeCaptured doesn't have any special analysis for the 137 // StoreCaptures=false case; if it did, our callers could be refined to be 138 // more precise. 139 auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 140 if (IsCapturedCache) 141 CacheIt->second = Ret; 142 return Ret; 143 } 144 145 // If this is an argument that corresponds to a byval or noalias argument, 146 // then it has not escaped before entering the function. Check if it escapes 147 // inside the function. 148 if (const Argument *A = dyn_cast<Argument>(V)) 149 if (A->hasByValAttr() || A->hasNoAliasAttr()) { 150 // Note even if the argument is marked nocapture, we still need to check 151 // for copies made inside the function. The nocapture attribute only 152 // specifies that there are no copies made that outlive the function. 153 auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 154 if (IsCapturedCache) 155 CacheIt->second = Ret; 156 return Ret; 157 } 158 159 return false; 160 } 161 162 /// Returns true if the pointer is one which would have been considered an 163 /// escape by isNonEscapingLocalObject. 164 static bool isEscapeSource(const Value *V) { 165 if (isa<CallBase>(V)) 166 return true; 167 168 if (isa<Argument>(V)) 169 return true; 170 171 // The load case works because isNonEscapingLocalObject considers all 172 // stores to be escapes (it passes true for the StoreCaptures argument 173 // to PointerMayBeCaptured). 174 if (isa<LoadInst>(V)) 175 return true; 176 177 return false; 178 } 179 180 /// Returns the size of the object specified by V or UnknownSize if unknown. 181 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 182 const TargetLibraryInfo &TLI, 183 bool NullIsValidLoc, 184 bool RoundToAlign = false) { 185 uint64_t Size; 186 ObjectSizeOpts Opts; 187 Opts.RoundToAlign = RoundToAlign; 188 Opts.NullIsUnknownSize = NullIsValidLoc; 189 if (getObjectSize(V, Size, DL, &TLI, Opts)) 190 return Size; 191 return MemoryLocation::UnknownSize; 192 } 193 194 /// Returns true if we can prove that the object specified by V is smaller than 195 /// Size. 196 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 197 const DataLayout &DL, 198 const TargetLibraryInfo &TLI, 199 bool NullIsValidLoc) { 200 // Note that the meanings of the "object" are slightly different in the 201 // following contexts: 202 // c1: llvm::getObjectSize() 203 // c2: llvm.objectsize() intrinsic 204 // c3: isObjectSmallerThan() 205 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 206 // refers to the "entire object". 207 // 208 // Consider this example: 209 // char *p = (char*)malloc(100) 210 // char *q = p+80; 211 // 212 // In the context of c1 and c2, the "object" pointed by q refers to the 213 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 214 // 215 // However, in the context of c3, the "object" refers to the chunk of memory 216 // being allocated. So, the "object" has 100 bytes, and q points to the middle 217 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 218 // parameter, before the llvm::getObjectSize() is called to get the size of 219 // entire object, we should: 220 // - either rewind the pointer q to the base-address of the object in 221 // question (in this case rewind to p), or 222 // - just give up. It is up to caller to make sure the pointer is pointing 223 // to the base address the object. 224 // 225 // We go for 2nd option for simplicity. 226 if (!isIdentifiedObject(V)) 227 return false; 228 229 // This function needs to use the aligned object size because we allow 230 // reads a bit past the end given sufficient alignment. 231 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 232 /*RoundToAlign*/ true); 233 234 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 235 } 236 237 /// Return the minimal extent from \p V to the end of the underlying object, 238 /// assuming the result is used in an aliasing query. E.g., we do use the query 239 /// location size and the fact that null pointers cannot alias here. 240 static uint64_t getMinimalExtentFrom(const Value &V, 241 const LocationSize &LocSize, 242 const DataLayout &DL, 243 bool NullIsValidLoc) { 244 // If we have dereferenceability information we know a lower bound for the 245 // extent as accesses for a lower offset would be valid. We need to exclude 246 // the "or null" part if null is a valid pointer. 247 bool CanBeNull; 248 uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull); 249 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 250 // If queried with a precise location size, we assume that location size to be 251 // accessed, thus valid. 252 if (LocSize.isPrecise()) 253 DerefBytes = std::max(DerefBytes, LocSize.getValue()); 254 return DerefBytes; 255 } 256 257 /// Returns true if we can prove that the object specified by V has size Size. 258 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 259 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 260 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 261 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 262 } 263 264 //===----------------------------------------------------------------------===// 265 // GetElementPtr Instruction Decomposition and Analysis 266 //===----------------------------------------------------------------------===// 267 268 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 269 /// B are constant integers. 270 /// 271 /// Returns the scale and offset values as APInts and return V as a Value*, and 272 /// return whether we looked through any sign or zero extends. The incoming 273 /// Value is known to have IntegerType, and it may already be sign or zero 274 /// extended. 275 /// 276 /// Note that this looks through extends, so the high bits may not be 277 /// represented in the result. 278 /*static*/ const Value *BasicAAResult::GetLinearExpression( 279 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 280 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 281 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 282 assert(V->getType()->isIntegerTy() && "Not an integer value"); 283 284 // Limit our recursion depth. 285 if (Depth == 6) { 286 Scale = 1; 287 Offset = 0; 288 return V; 289 } 290 291 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 292 // If it's a constant, just convert it to an offset and remove the variable. 293 // If we've been called recursively, the Offset bit width will be greater 294 // than the constant's (the Offset's always as wide as the outermost call), 295 // so we'll zext here and process any extension in the isa<SExtInst> & 296 // isa<ZExtInst> cases below. 297 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 298 assert(Scale == 0 && "Constant values don't have a scale"); 299 return V; 300 } 301 302 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 303 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 304 // If we've been called recursively, then Offset and Scale will be wider 305 // than the BOp operands. We'll always zext it here as we'll process sign 306 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 307 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 308 309 switch (BOp->getOpcode()) { 310 default: 311 // We don't understand this instruction, so we can't decompose it any 312 // further. 313 Scale = 1; 314 Offset = 0; 315 return V; 316 case Instruction::Or: 317 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 318 // analyze it. 319 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 320 BOp, DT)) { 321 Scale = 1; 322 Offset = 0; 323 return V; 324 } 325 LLVM_FALLTHROUGH; 326 case Instruction::Add: 327 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 328 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 329 Offset += RHS; 330 break; 331 case Instruction::Sub: 332 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 333 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 334 Offset -= RHS; 335 break; 336 case Instruction::Mul: 337 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 338 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 339 Offset *= RHS; 340 Scale *= RHS; 341 break; 342 case Instruction::Shl: 343 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 344 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 345 346 // We're trying to linearize an expression of the kind: 347 // shl i8 -128, 36 348 // where the shift count exceeds the bitwidth of the type. 349 // We can't decompose this further (the expression would return 350 // a poison value). 351 if (Offset.getBitWidth() < RHS.getLimitedValue() || 352 Scale.getBitWidth() < RHS.getLimitedValue()) { 353 Scale = 1; 354 Offset = 0; 355 return V; 356 } 357 358 Offset <<= RHS.getLimitedValue(); 359 Scale <<= RHS.getLimitedValue(); 360 // the semantics of nsw and nuw for left shifts don't match those of 361 // multiplications, so we won't propagate them. 362 NSW = NUW = false; 363 return V; 364 } 365 366 if (isa<OverflowingBinaryOperator>(BOp)) { 367 NUW &= BOp->hasNoUnsignedWrap(); 368 NSW &= BOp->hasNoSignedWrap(); 369 } 370 return V; 371 } 372 } 373 374 // Since GEP indices are sign extended anyway, we don't care about the high 375 // bits of a sign or zero extended value - just scales and offsets. The 376 // extensions have to be consistent though. 377 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 378 Value *CastOp = cast<CastInst>(V)->getOperand(0); 379 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 380 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 381 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 382 const Value *Result = 383 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 384 Depth + 1, AC, DT, NSW, NUW); 385 386 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 387 // by just incrementing the number of bits we've extended by. 388 unsigned ExtendedBy = NewWidth - SmallWidth; 389 390 if (isa<SExtInst>(V) && ZExtBits == 0) { 391 // sext(sext(%x, a), b) == sext(%x, a + b) 392 393 if (NSW) { 394 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 395 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 396 unsigned OldWidth = Offset.getBitWidth(); 397 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 398 } else { 399 // We may have signed-wrapped, so don't decompose sext(%x + c) into 400 // sext(%x) + sext(c) 401 Scale = 1; 402 Offset = 0; 403 Result = CastOp; 404 ZExtBits = OldZExtBits; 405 SExtBits = OldSExtBits; 406 } 407 SExtBits += ExtendedBy; 408 } else { 409 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 410 411 if (!NUW) { 412 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 413 // zext(%x) + zext(c) 414 Scale = 1; 415 Offset = 0; 416 Result = CastOp; 417 ZExtBits = OldZExtBits; 418 SExtBits = OldSExtBits; 419 } 420 ZExtBits += ExtendedBy; 421 } 422 423 return Result; 424 } 425 426 Scale = 1; 427 Offset = 0; 428 return V; 429 } 430 431 /// To ensure a pointer offset fits in an integer of size PointerSize 432 /// (in bits) when that size is smaller than the maximum pointer size. This is 433 /// an issue, for example, in particular for 32b pointers with negative indices 434 /// that rely on two's complement wrap-arounds for precise alias information 435 /// where the maximum pointer size is 64b. 436 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) { 437 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!"); 438 unsigned ShiftBits = Offset.getBitWidth() - PointerSize; 439 return (Offset << ShiftBits).ashr(ShiftBits); 440 } 441 442 static unsigned getMaxPointerSize(const DataLayout &DL) { 443 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits(); 444 if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64; 445 if (DoubleCalcBits) MaxPointerSize *= 2; 446 447 return MaxPointerSize; 448 } 449 450 /// If V is a symbolic pointer expression, decompose it into a base pointer 451 /// with a constant offset and a number of scaled symbolic offsets. 452 /// 453 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 454 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 455 /// specified amount, but which may have other unrepresented high bits. As 456 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 457 /// 458 /// When DataLayout is around, this function is capable of analyzing everything 459 /// that GetUnderlyingObject can look through. To be able to do that 460 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 461 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 462 /// through pointer casts. 463 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 464 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 465 DominatorTree *DT) { 466 // Limit recursion depth to limit compile time in crazy cases. 467 unsigned MaxLookup = MaxLookupSearchDepth; 468 SearchTimes++; 469 470 unsigned MaxPointerSize = getMaxPointerSize(DL); 471 Decomposed.VarIndices.clear(); 472 do { 473 // See if this is a bitcast or GEP. 474 const Operator *Op = dyn_cast<Operator>(V); 475 if (!Op) { 476 // The only non-operator case we can handle are GlobalAliases. 477 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 478 if (!GA->isInterposable()) { 479 V = GA->getAliasee(); 480 continue; 481 } 482 } 483 Decomposed.Base = V; 484 return false; 485 } 486 487 if (Op->getOpcode() == Instruction::BitCast || 488 Op->getOpcode() == Instruction::AddrSpaceCast) { 489 V = Op->getOperand(0); 490 continue; 491 } 492 493 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 494 if (!GEPOp) { 495 if (const auto *PHI = dyn_cast<PHINode>(V)) { 496 // Look through single-arg phi nodes created by LCSSA. 497 if (PHI->getNumIncomingValues() == 1) { 498 V = PHI->getIncomingValue(0); 499 continue; 500 } 501 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 502 // CaptureTracking can know about special capturing properties of some 503 // intrinsics like launder.invariant.group, that can't be expressed with 504 // the attributes, but have properties like returning aliasing pointer. 505 // Because some analysis may assume that nocaptured pointer is not 506 // returned from some special intrinsic (because function would have to 507 // be marked with returns attribute), it is crucial to use this function 508 // because it should be in sync with CaptureTracking. Not using it may 509 // cause weird miscompilations where 2 aliasing pointers are assumed to 510 // noalias. 511 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 512 V = RP; 513 continue; 514 } 515 } 516 517 Decomposed.Base = V; 518 return false; 519 } 520 521 // Don't attempt to analyze GEPs over unsized objects. 522 if (!GEPOp->getSourceElementType()->isSized()) { 523 Decomposed.Base = V; 524 return false; 525 } 526 527 // Don't attempt to analyze GEPs if index scale is not a compile-time 528 // constant. 529 if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) { 530 Decomposed.Base = V; 531 Decomposed.HasCompileTimeConstantScale = false; 532 return false; 533 } 534 535 unsigned AS = GEPOp->getPointerAddressSpace(); 536 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 537 gep_type_iterator GTI = gep_type_begin(GEPOp); 538 unsigned PointerSize = DL.getPointerSizeInBits(AS); 539 // Assume all GEP operands are constants until proven otherwise. 540 bool GepHasConstantOffset = true; 541 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 542 I != E; ++I, ++GTI) { 543 const Value *Index = *I; 544 // Compute the (potentially symbolic) offset in bytes for this index. 545 if (StructType *STy = GTI.getStructTypeOrNull()) { 546 // For a struct, add the member offset. 547 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 548 if (FieldNo == 0) 549 continue; 550 551 Decomposed.StructOffset += 552 DL.getStructLayout(STy)->getElementOffset(FieldNo); 553 continue; 554 } 555 556 // For an array/pointer, add the element offset, explicitly scaled. 557 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 558 if (CIdx->isZero()) 559 continue; 560 Decomposed.OtherOffset += 561 (DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() * 562 CIdx->getValue().sextOrSelf(MaxPointerSize)) 563 .sextOrTrunc(MaxPointerSize); 564 continue; 565 } 566 567 GepHasConstantOffset = false; 568 569 APInt Scale(MaxPointerSize, 570 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 571 unsigned ZExtBits = 0, SExtBits = 0; 572 573 // If the integer type is smaller than the pointer size, it is implicitly 574 // sign extended to pointer size. 575 unsigned Width = Index->getType()->getIntegerBitWidth(); 576 if (PointerSize > Width) 577 SExtBits += PointerSize - Width; 578 579 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 580 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 581 bool NSW = true, NUW = true; 582 const Value *OrigIndex = Index; 583 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 584 SExtBits, DL, 0, AC, DT, NSW, NUW); 585 586 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 587 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 588 589 // It can be the case that, even through C1*V+C2 does not overflow for 590 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot 591 // decompose the expression in this way. 592 // 593 // FIXME: C1*Scale and the other operations in the decomposed 594 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this 595 // possibility. 596 APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) * 597 Scale.sext(MaxPointerSize*2); 598 if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) { 599 Index = OrigIndex; 600 IndexScale = 1; 601 IndexOffset = 0; 602 603 ZExtBits = SExtBits = 0; 604 if (PointerSize > Width) 605 SExtBits += PointerSize - Width; 606 } else { 607 Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale; 608 Scale *= IndexScale.sextOrTrunc(MaxPointerSize); 609 } 610 611 // If we already had an occurrence of this index variable, merge this 612 // scale into it. For example, we want to handle: 613 // A[x][x] -> x*16 + x*4 -> x*20 614 // This also ensures that 'x' only appears in the index list once. 615 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 616 if (Decomposed.VarIndices[i].V == Index && 617 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 618 Decomposed.VarIndices[i].SExtBits == SExtBits) { 619 Scale += Decomposed.VarIndices[i].Scale; 620 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 621 break; 622 } 623 } 624 625 // Make sure that we have a scale that makes sense for this target's 626 // pointer size. 627 Scale = adjustToPointerSize(Scale, PointerSize); 628 629 if (!!Scale) { 630 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale}; 631 Decomposed.VarIndices.push_back(Entry); 632 } 633 } 634 635 // Take care of wrap-arounds 636 if (GepHasConstantOffset) { 637 Decomposed.StructOffset = 638 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 639 Decomposed.OtherOffset = 640 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 641 } 642 643 // Analyze the base pointer next. 644 V = GEPOp->getOperand(0); 645 } while (--MaxLookup); 646 647 // If the chain of expressions is too deep, just return early. 648 Decomposed.Base = V; 649 SearchLimitReached++; 650 return true; 651 } 652 653 /// Returns whether the given pointer value points to memory that is local to 654 /// the function, with global constants being considered local to all 655 /// functions. 656 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 657 AAQueryInfo &AAQI, bool OrLocal) { 658 assert(Visited.empty() && "Visited must be cleared after use!"); 659 660 unsigned MaxLookup = 8; 661 SmallVector<const Value *, 16> Worklist; 662 Worklist.push_back(Loc.Ptr); 663 do { 664 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 665 if (!Visited.insert(V).second) { 666 Visited.clear(); 667 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 668 } 669 670 // An alloca instruction defines local memory. 671 if (OrLocal && isa<AllocaInst>(V)) 672 continue; 673 674 // A global constant counts as local memory for our purposes. 675 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 676 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 677 // global to be marked constant in some modules and non-constant in 678 // others. GV may even be a declaration, not a definition. 679 if (!GV->isConstant()) { 680 Visited.clear(); 681 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 682 } 683 continue; 684 } 685 686 // If both select values point to local memory, then so does the select. 687 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 688 Worklist.push_back(SI->getTrueValue()); 689 Worklist.push_back(SI->getFalseValue()); 690 continue; 691 } 692 693 // If all values incoming to a phi node point to local memory, then so does 694 // the phi. 695 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 696 // Don't bother inspecting phi nodes with many operands. 697 if (PN->getNumIncomingValues() > MaxLookup) { 698 Visited.clear(); 699 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 700 } 701 for (Value *IncValue : PN->incoming_values()) 702 Worklist.push_back(IncValue); 703 continue; 704 } 705 706 // Otherwise be conservative. 707 Visited.clear(); 708 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 709 } while (!Worklist.empty() && --MaxLookup); 710 711 Visited.clear(); 712 return Worklist.empty(); 713 } 714 715 /// Returns the behavior when calling the given call site. 716 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 717 if (Call->doesNotAccessMemory()) 718 // Can't do better than this. 719 return FMRB_DoesNotAccessMemory; 720 721 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 722 723 // If the callsite knows it only reads memory, don't return worse 724 // than that. 725 if (Call->onlyReadsMemory()) 726 Min = FMRB_OnlyReadsMemory; 727 else if (Call->doesNotReadMemory()) 728 Min = FMRB_OnlyWritesMemory; 729 730 if (Call->onlyAccessesArgMemory()) 731 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 732 else if (Call->onlyAccessesInaccessibleMemory()) 733 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 734 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 735 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 736 737 // If the call has operand bundles then aliasing attributes from the function 738 // it calls do not directly apply to the call. This can be made more precise 739 // in the future. 740 if (!Call->hasOperandBundles()) 741 if (const Function *F = Call->getCalledFunction()) 742 Min = 743 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 744 745 return Min; 746 } 747 748 /// Returns the behavior when calling the given function. For use when the call 749 /// site is not known. 750 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 751 // If the function declares it doesn't access memory, we can't do better. 752 if (F->doesNotAccessMemory()) 753 return FMRB_DoesNotAccessMemory; 754 755 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 756 757 // If the function declares it only reads memory, go with that. 758 if (F->onlyReadsMemory()) 759 Min = FMRB_OnlyReadsMemory; 760 else if (F->doesNotReadMemory()) 761 Min = FMRB_OnlyWritesMemory; 762 763 if (F->onlyAccessesArgMemory()) 764 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 765 else if (F->onlyAccessesInaccessibleMemory()) 766 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 767 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 768 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 769 770 return Min; 771 } 772 773 /// Returns true if this is a writeonly (i.e Mod only) parameter. 774 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 775 const TargetLibraryInfo &TLI) { 776 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 777 return true; 778 779 // We can bound the aliasing properties of memset_pattern16 just as we can 780 // for memcpy/memset. This is particularly important because the 781 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 782 // whenever possible. 783 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 784 // attributes. 785 LibFunc F; 786 if (Call->getCalledFunction() && 787 TLI.getLibFunc(*Call->getCalledFunction(), F) && 788 F == LibFunc_memset_pattern16 && TLI.has(F)) 789 if (ArgIdx == 0) 790 return true; 791 792 // TODO: memset_pattern4, memset_pattern8 793 // TODO: _chk variants 794 // TODO: strcmp, strcpy 795 796 return false; 797 } 798 799 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 800 unsigned ArgIdx) { 801 // Checking for known builtin intrinsics and target library functions. 802 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 803 return ModRefInfo::Mod; 804 805 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 806 return ModRefInfo::Ref; 807 808 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 809 return ModRefInfo::NoModRef; 810 811 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 812 } 813 814 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 815 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 816 return II && II->getIntrinsicID() == IID; 817 } 818 819 #ifndef NDEBUG 820 static const Function *getParent(const Value *V) { 821 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 822 if (!inst->getParent()) 823 return nullptr; 824 return inst->getParent()->getParent(); 825 } 826 827 if (const Argument *arg = dyn_cast<Argument>(V)) 828 return arg->getParent(); 829 830 return nullptr; 831 } 832 833 static bool notDifferentParent(const Value *O1, const Value *O2) { 834 835 const Function *F1 = getParent(O1); 836 const Function *F2 = getParent(O2); 837 838 return !F1 || !F2 || F1 == F2; 839 } 840 #endif 841 842 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 843 const MemoryLocation &LocB, 844 AAQueryInfo &AAQI) { 845 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 846 "BasicAliasAnalysis doesn't support interprocedural queries."); 847 848 // If we have a directly cached entry for these locations, we have recursed 849 // through this once, so just return the cached results. Notably, when this 850 // happens, we don't clear the cache. 851 auto CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocA, LocB)); 852 if (CacheIt != AAQI.AliasCache.end()) 853 return CacheIt->second; 854 855 CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocB, LocA)); 856 if (CacheIt != AAQI.AliasCache.end()) 857 return CacheIt->second; 858 859 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 860 LocB.Size, LocB.AATags, AAQI); 861 862 VisitedPhiBBs.clear(); 863 return Alias; 864 } 865 866 /// Checks to see if the specified callsite can clobber the specified memory 867 /// object. 868 /// 869 /// Since we only look at local properties of this function, we really can't 870 /// say much about this query. We do, however, use simple "address taken" 871 /// analysis on local objects. 872 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 873 const MemoryLocation &Loc, 874 AAQueryInfo &AAQI) { 875 assert(notDifferentParent(Call, Loc.Ptr) && 876 "AliasAnalysis query involving multiple functions!"); 877 878 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 879 880 // Calls marked 'tail' cannot read or write allocas from the current frame 881 // because the current frame might be destroyed by the time they run. However, 882 // a tail call may use an alloca with byval. Calling with byval copies the 883 // contents of the alloca into argument registers or stack slots, so there is 884 // no lifetime issue. 885 if (isa<AllocaInst>(Object)) 886 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 887 if (CI->isTailCall() && 888 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 889 return ModRefInfo::NoModRef; 890 891 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 892 // modify them even though the alloca is not escaped. 893 if (auto *AI = dyn_cast<AllocaInst>(Object)) 894 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 895 return ModRefInfo::Mod; 896 897 // If the pointer is to a locally allocated object that does not escape, 898 // then the call can not mod/ref the pointer unless the call takes the pointer 899 // as an argument, and itself doesn't capture it. 900 if (!isa<Constant>(Object) && Call != Object && 901 isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) { 902 903 // Optimistically assume that call doesn't touch Object and check this 904 // assumption in the following loop. 905 ModRefInfo Result = ModRefInfo::NoModRef; 906 bool IsMustAlias = true; 907 908 unsigned OperandNo = 0; 909 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 910 CI != CE; ++CI, ++OperandNo) { 911 // Only look at the no-capture or byval pointer arguments. If this 912 // pointer were passed to arguments that were neither of these, then it 913 // couldn't be no-capture. 914 if (!(*CI)->getType()->isPointerTy() || 915 (!Call->doesNotCapture(OperandNo) && 916 OperandNo < Call->getNumArgOperands() && 917 !Call->isByValArgument(OperandNo))) 918 continue; 919 920 // Call doesn't access memory through this operand, so we don't care 921 // if it aliases with Object. 922 if (Call->doesNotAccessMemory(OperandNo)) 923 continue; 924 925 // If this is a no-capture pointer argument, see if we can tell that it 926 // is impossible to alias the pointer we're checking. 927 AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI), 928 MemoryLocation(Object), AAQI); 929 if (AR != MustAlias) 930 IsMustAlias = false; 931 // Operand doesn't alias 'Object', continue looking for other aliases 932 if (AR == NoAlias) 933 continue; 934 // Operand aliases 'Object', but call doesn't modify it. Strengthen 935 // initial assumption and keep looking in case if there are more aliases. 936 if (Call->onlyReadsMemory(OperandNo)) { 937 Result = setRef(Result); 938 continue; 939 } 940 // Operand aliases 'Object' but call only writes into it. 941 if (Call->doesNotReadMemory(OperandNo)) { 942 Result = setMod(Result); 943 continue; 944 } 945 // This operand aliases 'Object' and call reads and writes into it. 946 // Setting ModRef will not yield an early return below, MustAlias is not 947 // used further. 948 Result = ModRefInfo::ModRef; 949 break; 950 } 951 952 // No operand aliases, reset Must bit. Add below if at least one aliases 953 // and all aliases found are MustAlias. 954 if (isNoModRef(Result)) 955 IsMustAlias = false; 956 957 // Early return if we improved mod ref information 958 if (!isModAndRefSet(Result)) { 959 if (isNoModRef(Result)) 960 return ModRefInfo::NoModRef; 961 return IsMustAlias ? setMust(Result) : clearMust(Result); 962 } 963 } 964 965 // If the call is malloc/calloc like, we can assume that it doesn't 966 // modify any IR visible value. This is only valid because we assume these 967 // routines do not read values visible in the IR. TODO: Consider special 968 // casing realloc and strdup routines which access only their arguments as 969 // well. Or alternatively, replace all of this with inaccessiblememonly once 970 // that's implemented fully. 971 if (isMallocOrCallocLikeFn(Call, &TLI)) { 972 // Be conservative if the accessed pointer may alias the allocation - 973 // fallback to the generic handling below. 974 if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias) 975 return ModRefInfo::NoModRef; 976 } 977 978 // The semantics of memcpy intrinsics forbid overlap between their respective 979 // operands, i.e., source and destination of any given memcpy must no-alias. 980 // If Loc must-aliases either one of these two locations, then it necessarily 981 // no-aliases the other. 982 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) { 983 AliasResult SrcAA, DestAA; 984 985 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst), 986 Loc, AAQI)) == MustAlias) 987 // Loc is exactly the memcpy source thus disjoint from memcpy dest. 988 return ModRefInfo::Ref; 989 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst), 990 Loc, AAQI)) == MustAlias) 991 // The converse case. 992 return ModRefInfo::Mod; 993 994 // It's also possible for Loc to alias both src and dest, or neither. 995 ModRefInfo rv = ModRefInfo::NoModRef; 996 if (SrcAA != NoAlias) 997 rv = setRef(rv); 998 if (DestAA != NoAlias) 999 rv = setMod(rv); 1000 return rv; 1001 } 1002 1003 // While the assume intrinsic is marked as arbitrarily writing so that 1004 // proper control dependencies will be maintained, it never aliases any 1005 // particular memory location. 1006 if (isIntrinsicCall(Call, Intrinsic::assume)) 1007 return ModRefInfo::NoModRef; 1008 1009 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 1010 // that proper control dependencies are maintained but they never mods any 1011 // particular memory location. 1012 // 1013 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1014 // heap state at the point the guard is issued needs to be consistent in case 1015 // the guard invokes the "deopt" continuation. 1016 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 1017 return ModRefInfo::Ref; 1018 1019 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 1020 // writing so that proper control dependencies are maintained but they never 1021 // mod any particular memory location visible to the IR. 1022 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 1023 // intrinsic is now modeled as reading memory. This prevents hoisting the 1024 // invariant.start intrinsic over stores. Consider: 1025 // *ptr = 40; 1026 // *ptr = 50; 1027 // invariant_start(ptr) 1028 // int val = *ptr; 1029 // print(val); 1030 // 1031 // This cannot be transformed to: 1032 // 1033 // *ptr = 40; 1034 // invariant_start(ptr) 1035 // *ptr = 50; 1036 // int val = *ptr; 1037 // print(val); 1038 // 1039 // The transformation will cause the second store to be ignored (based on 1040 // rules of invariant.start) and print 40, while the first program always 1041 // prints 50. 1042 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 1043 return ModRefInfo::Ref; 1044 1045 // The AAResultBase base class has some smarts, lets use them. 1046 return AAResultBase::getModRefInfo(Call, Loc, AAQI); 1047 } 1048 1049 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 1050 const CallBase *Call2, 1051 AAQueryInfo &AAQI) { 1052 // While the assume intrinsic is marked as arbitrarily writing so that 1053 // proper control dependencies will be maintained, it never aliases any 1054 // particular memory location. 1055 if (isIntrinsicCall(Call1, Intrinsic::assume) || 1056 isIntrinsicCall(Call2, Intrinsic::assume)) 1057 return ModRefInfo::NoModRef; 1058 1059 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 1060 // that proper control dependencies are maintained but they never mod any 1061 // particular memory location. 1062 // 1063 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1064 // heap state at the point the guard is issued needs to be consistent in case 1065 // the guard invokes the "deopt" continuation. 1066 1067 // NB! This function is *not* commutative, so we special case two 1068 // possibilities for guard intrinsics. 1069 1070 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1071 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 1072 ? ModRefInfo::Ref 1073 : ModRefInfo::NoModRef; 1074 1075 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1076 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 1077 ? ModRefInfo::Mod 1078 : ModRefInfo::NoModRef; 1079 1080 // The AAResultBase base class has some smarts, lets use them. 1081 return AAResultBase::getModRefInfo(Call1, Call2, AAQI); 1082 } 1083 1084 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 1085 /// both having the exact same pointer operand. 1086 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 1087 LocationSize MaybeV1Size, 1088 const GEPOperator *GEP2, 1089 LocationSize MaybeV2Size, 1090 const DataLayout &DL) { 1091 assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1092 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1093 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() && 1094 "Expected GEPs with the same pointer operand"); 1095 1096 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 1097 // such that the struct field accesses provably cannot alias. 1098 // We also need at least two indices (the pointer, and the struct field). 1099 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 1100 GEP1->getNumIndices() < 2) 1101 return MayAlias; 1102 1103 // If we don't know the size of the accesses through both GEPs, we can't 1104 // determine whether the struct fields accessed can't alias. 1105 if (MaybeV1Size == LocationSize::unknown() || 1106 MaybeV2Size == LocationSize::unknown()) 1107 return MayAlias; 1108 1109 const uint64_t V1Size = MaybeV1Size.getValue(); 1110 const uint64_t V2Size = MaybeV2Size.getValue(); 1111 1112 ConstantInt *C1 = 1113 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 1114 ConstantInt *C2 = 1115 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 1116 1117 // If the last (struct) indices are constants and are equal, the other indices 1118 // might be also be dynamically equal, so the GEPs can alias. 1119 if (C1 && C2) { 1120 unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth()); 1121 if (C1->getValue().sextOrSelf(BitWidth) == 1122 C2->getValue().sextOrSelf(BitWidth)) 1123 return MayAlias; 1124 } 1125 1126 // Find the last-indexed type of the GEP, i.e., the type you'd get if 1127 // you stripped the last index. 1128 // On the way, look at each indexed type. If there's something other 1129 // than an array, different indices can lead to different final types. 1130 SmallVector<Value *, 8> IntermediateIndices; 1131 1132 // Insert the first index; we don't need to check the type indexed 1133 // through it as it only drops the pointer indirection. 1134 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 1135 IntermediateIndices.push_back(GEP1->getOperand(1)); 1136 1137 // Insert all the remaining indices but the last one. 1138 // Also, check that they all index through arrays. 1139 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 1140 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 1141 GEP1->getSourceElementType(), IntermediateIndices))) 1142 return MayAlias; 1143 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 1144 } 1145 1146 auto *Ty = GetElementPtrInst::getIndexedType( 1147 GEP1->getSourceElementType(), IntermediateIndices); 1148 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 1149 1150 if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 1151 // We know that: 1152 // - both GEPs begin indexing from the exact same pointer; 1153 // - the last indices in both GEPs are constants, indexing into a sequential 1154 // type (array or vector); 1155 // - both GEPs only index through arrays prior to that. 1156 // 1157 // Because array indices greater than the number of elements are valid in 1158 // GEPs, unless we know the intermediate indices are identical between 1159 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 1160 // partially overlap. We also need to check that the loaded size matches 1161 // the element size, otherwise we could still have overlap. 1162 Type *LastElementTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0); 1163 const uint64_t ElementSize = 1164 DL.getTypeStoreSize(LastElementTy).getFixedSize(); 1165 if (V1Size != ElementSize || V2Size != ElementSize) 1166 return MayAlias; 1167 1168 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 1169 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 1170 return MayAlias; 1171 1172 // Now we know that the array/pointer that GEP1 indexes into and that 1173 // that GEP2 indexes into must either precisely overlap or be disjoint. 1174 // Because they cannot partially overlap and because fields in an array 1175 // cannot overlap, if we can prove the final indices are different between 1176 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1177 1178 // If the last indices are constants, we've already checked they don't 1179 // equal each other so we can exit early. 1180 if (C1 && C2) 1181 return NoAlias; 1182 { 1183 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1); 1184 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1); 1185 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) { 1186 // If one of the indices is a PHI node, be safe and only use 1187 // computeKnownBits so we don't make any assumptions about the 1188 // relationships between the two indices. This is important if we're 1189 // asking about values from different loop iterations. See PR32314. 1190 // TODO: We may be able to change the check so we only do this when 1191 // we definitely looked through a PHINode. 1192 if (GEP1LastIdx != GEP2LastIdx && 1193 GEP1LastIdx->getType() == GEP2LastIdx->getType()) { 1194 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL); 1195 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL); 1196 if (Known1.Zero.intersects(Known2.One) || 1197 Known1.One.intersects(Known2.Zero)) 1198 return NoAlias; 1199 } 1200 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL)) 1201 return NoAlias; 1202 } 1203 return MayAlias; 1204 } else if (!LastIndexedStruct || !C1 || !C2) { 1205 return MayAlias; 1206 } 1207 1208 if (C1->getValue().getActiveBits() > 64 || 1209 C2->getValue().getActiveBits() > 64) 1210 return MayAlias; 1211 1212 // We know that: 1213 // - both GEPs begin indexing from the exact same pointer; 1214 // - the last indices in both GEPs are constants, indexing into a struct; 1215 // - said indices are different, hence, the pointed-to fields are different; 1216 // - both GEPs only index through arrays prior to that. 1217 // 1218 // This lets us determine that the struct that GEP1 indexes into and the 1219 // struct that GEP2 indexes into must either precisely overlap or be 1220 // completely disjoint. Because they cannot partially overlap, indexing into 1221 // different non-overlapping fields of the struct will never alias. 1222 1223 // Therefore, the only remaining thing needed to show that both GEPs can't 1224 // alias is that the fields are not overlapping. 1225 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1226 const uint64_t StructSize = SL->getSizeInBytes(); 1227 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1228 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1229 1230 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1231 uint64_t V2Off, uint64_t V2Size) { 1232 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1233 ((V2Off + V2Size <= StructSize) || 1234 (V2Off + V2Size - StructSize <= V1Off)); 1235 }; 1236 1237 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1238 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1239 return NoAlias; 1240 1241 return MayAlias; 1242 } 1243 1244 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1245 // beginning of the object the GEP points would have a negative offset with 1246 // repsect to the alloca, that means the GEP can not alias pointer (b). 1247 // Note that the pointer based on the alloca may not be a GEP. For 1248 // example, it may be the alloca itself. 1249 // The same applies if (b) is based on a GlobalVariable. Note that just being 1250 // based on isIdentifiedObject() is not enough - we need an identified object 1251 // that does not permit access to negative offsets. For example, a negative 1252 // offset from a noalias argument or call can be inbounds w.r.t the actual 1253 // underlying object. 1254 // 1255 // For example, consider: 1256 // 1257 // struct { int f0, int f1, ...} foo; 1258 // foo alloca; 1259 // foo* random = bar(alloca); 1260 // int *f0 = &alloca.f0 1261 // int *f1 = &random->f1; 1262 // 1263 // Which is lowered, approximately, to: 1264 // 1265 // %alloca = alloca %struct.foo 1266 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1267 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1268 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1269 // 1270 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1271 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1272 // point into the same object. But since %f0 points to the beginning of %alloca, 1273 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1274 // than (%alloca - 1), and so is not inbounds, a contradiction. 1275 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1276 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1277 LocationSize MaybeObjectAccessSize) { 1278 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1279 if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds()) 1280 return false; 1281 1282 const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue(); 1283 1284 // We need the object to be an alloca or a globalvariable, and want to know 1285 // the offset of the pointer from the object precisely, so no variable 1286 // indices are allowed. 1287 if (!(isa<AllocaInst>(DecompObject.Base) || 1288 isa<GlobalVariable>(DecompObject.Base)) || 1289 !DecompObject.VarIndices.empty()) 1290 return false; 1291 1292 APInt ObjectBaseOffset = DecompObject.StructOffset + 1293 DecompObject.OtherOffset; 1294 1295 // If the GEP has no variable indices, we know the precise offset 1296 // from the base, then use it. If the GEP has variable indices, 1297 // we can't get exact GEP offset to identify pointer alias. So return 1298 // false in that case. 1299 if (!DecompGEP.VarIndices.empty()) 1300 return false; 1301 1302 APInt GEPBaseOffset = DecompGEP.StructOffset; 1303 GEPBaseOffset += DecompGEP.OtherOffset; 1304 1305 return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize); 1306 } 1307 1308 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1309 /// another pointer. 1310 /// 1311 /// We know that V1 is a GEP, but we don't know anything about V2. 1312 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1313 /// V2. 1314 AliasResult BasicAAResult::aliasGEP( 1315 const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo, 1316 const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo, 1317 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1318 DecomposedGEP DecompGEP1, DecompGEP2; 1319 unsigned MaxPointerSize = getMaxPointerSize(DL); 1320 DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0); 1321 DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0); 1322 DecompGEP1.HasCompileTimeConstantScale = 1323 DecompGEP2.HasCompileTimeConstantScale = true; 1324 1325 bool GEP1MaxLookupReached = 1326 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1327 bool GEP2MaxLookupReached = 1328 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1329 1330 // Don't attempt to analyze the decomposed GEP if index scale is not a 1331 // compile-time constant. 1332 if (!DecompGEP1.HasCompileTimeConstantScale || 1333 !DecompGEP2.HasCompileTimeConstantScale) 1334 return MayAlias; 1335 1336 APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1337 APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1338 1339 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1340 "DecomposeGEPExpression returned a result different from " 1341 "GetUnderlyingObject"); 1342 1343 // If the GEP's offset relative to its base is such that the base would 1344 // fall below the start of the object underlying V2, then the GEP and V2 1345 // cannot alias. 1346 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1347 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1348 return NoAlias; 1349 // If we have two gep instructions with must-alias or not-alias'ing base 1350 // pointers, figure out if the indexes to the GEP tell us anything about the 1351 // derived pointer. 1352 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1353 // Check for the GEP base being at a negative offset, this time in the other 1354 // direction. 1355 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1356 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1357 return NoAlias; 1358 // Do the base pointers alias? 1359 AliasResult BaseAlias = 1360 aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(), 1361 UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI); 1362 1363 // Check for geps of non-aliasing underlying pointers where the offsets are 1364 // identical. 1365 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1366 // Do the base pointers alias assuming type and size. 1367 AliasResult PreciseBaseAlias = aliasCheck( 1368 UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI); 1369 if (PreciseBaseAlias == NoAlias) { 1370 // See if the computed offset from the common pointer tells us about the 1371 // relation of the resulting pointer. 1372 // If the max search depth is reached the result is undefined 1373 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1374 return MayAlias; 1375 1376 // Same offsets. 1377 if (GEP1BaseOffset == GEP2BaseOffset && 1378 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1379 return NoAlias; 1380 } 1381 } 1382 1383 // If we get a No or May, then return it immediately, no amount of analysis 1384 // will improve this situation. 1385 if (BaseAlias != MustAlias) { 1386 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1387 return BaseAlias; 1388 } 1389 1390 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1391 // exactly, see if the computed offset from the common pointer tells us 1392 // about the relation of the resulting pointer. 1393 // If we know the two GEPs are based off of the exact same pointer (and not 1394 // just the same underlying object), see if that tells us anything about 1395 // the resulting pointers. 1396 if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1397 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1398 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) { 1399 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1400 // If we couldn't find anything interesting, don't abandon just yet. 1401 if (R != MayAlias) 1402 return R; 1403 } 1404 1405 // If the max search depth is reached, the result is undefined 1406 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1407 return MayAlias; 1408 1409 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1410 // symbolic difference. 1411 GEP1BaseOffset -= GEP2BaseOffset; 1412 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1413 1414 } else { 1415 // Check to see if these two pointers are related by the getelementptr 1416 // instruction. If one pointer is a GEP with a non-zero index of the other 1417 // pointer, we know they cannot alias. 1418 1419 // If both accesses are unknown size, we can't do anything useful here. 1420 if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown()) 1421 return MayAlias; 1422 1423 AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(), 1424 AAMDNodes(), V2, LocationSize::unknown(), 1425 V2AAInfo, AAQI, nullptr, UnderlyingV2); 1426 if (R != MustAlias) { 1427 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1428 // If V2 is known not to alias GEP base pointer, then the two values 1429 // cannot alias per GEP semantics: "Any memory access must be done through 1430 // a pointer value associated with an address range of the memory access, 1431 // otherwise the behavior is undefined.". 1432 assert(R == NoAlias || R == MayAlias); 1433 return R; 1434 } 1435 1436 // If the max search depth is reached the result is undefined 1437 if (GEP1MaxLookupReached) 1438 return MayAlias; 1439 } 1440 1441 // In the two GEP Case, if there is no difference in the offsets of the 1442 // computed pointers, the resultant pointers are a must alias. This 1443 // happens when we have two lexically identical GEP's (for example). 1444 // 1445 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1446 // must aliases the GEP, the end result is a must alias also. 1447 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1448 return MustAlias; 1449 1450 // If there is a constant difference between the pointers, but the difference 1451 // is less than the size of the associated memory object, then we know 1452 // that the objects are partially overlapping. If the difference is 1453 // greater, we know they do not overlap. 1454 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1455 if (GEP1BaseOffset.sge(0)) { 1456 if (V2Size != LocationSize::unknown()) { 1457 if (GEP1BaseOffset.ult(V2Size.getValue())) 1458 return PartialAlias; 1459 return NoAlias; 1460 } 1461 } else { 1462 // We have the situation where: 1463 // + + 1464 // | BaseOffset | 1465 // ---------------->| 1466 // |-->V1Size |-------> V2Size 1467 // GEP1 V2 1468 // We need to know that V2Size is not unknown, otherwise we might have 1469 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1470 if (V1Size != LocationSize::unknown() && 1471 V2Size != LocationSize::unknown()) { 1472 if ((-GEP1BaseOffset).ult(V1Size.getValue())) 1473 return PartialAlias; 1474 return NoAlias; 1475 } 1476 } 1477 } 1478 1479 if (!DecompGEP1.VarIndices.empty()) { 1480 APInt Modulo(MaxPointerSize, 0); 1481 bool AllPositive = true; 1482 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1483 1484 // Try to distinguish something like &A[i][1] against &A[42][0]. 1485 // Grab the least significant bit set in any of the scales. We 1486 // don't need std::abs here (even if the scale's negative) as we'll 1487 // be ^'ing Modulo with itself later. 1488 Modulo |= DecompGEP1.VarIndices[i].Scale; 1489 1490 if (AllPositive) { 1491 // If the Value could change between cycles, then any reasoning about 1492 // the Value this cycle may not hold in the next cycle. We'll just 1493 // give up if we can't determine conditions that hold for every cycle: 1494 const Value *V = DecompGEP1.VarIndices[i].V; 1495 1496 KnownBits Known = 1497 computeKnownBits(V, DL, 0, &AC, dyn_cast<Instruction>(GEP1), DT); 1498 bool SignKnownZero = Known.isNonNegative(); 1499 bool SignKnownOne = Known.isNegative(); 1500 1501 // Zero-extension widens the variable, and so forces the sign 1502 // bit to zero. 1503 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1504 SignKnownZero |= IsZExt; 1505 SignKnownOne &= !IsZExt; 1506 1507 // If the variable begins with a zero then we know it's 1508 // positive, regardless of whether the value is signed or 1509 // unsigned. 1510 APInt Scale = DecompGEP1.VarIndices[i].Scale; 1511 AllPositive = 1512 (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0)); 1513 } 1514 } 1515 1516 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1517 1518 // We can compute the difference between the two addresses 1519 // mod Modulo. Check whether that difference guarantees that the 1520 // two locations do not alias. 1521 APInt ModOffset = GEP1BaseOffset & (Modulo - 1); 1522 if (V1Size != LocationSize::unknown() && 1523 V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) && 1524 (Modulo - ModOffset).uge(V1Size.getValue())) 1525 return NoAlias; 1526 1527 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1528 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1529 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1530 if (AllPositive && GEP1BaseOffset.sgt(0) && 1531 V2Size != LocationSize::unknown() && 1532 GEP1BaseOffset.uge(V2Size.getValue())) 1533 return NoAlias; 1534 1535 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1536 GEP1BaseOffset, &AC, DT)) 1537 return NoAlias; 1538 } 1539 1540 // Statically, we can see that the base objects are the same, but the 1541 // pointers have dynamic offsets which we can't resolve. And none of our 1542 // little tricks above worked. 1543 return MayAlias; 1544 } 1545 1546 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1547 // If the results agree, take it. 1548 if (A == B) 1549 return A; 1550 // A mix of PartialAlias and MustAlias is PartialAlias. 1551 if ((A == PartialAlias && B == MustAlias) || 1552 (B == PartialAlias && A == MustAlias)) 1553 return PartialAlias; 1554 // Otherwise, we don't know anything. 1555 return MayAlias; 1556 } 1557 1558 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1559 /// against another. 1560 AliasResult 1561 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1562 const AAMDNodes &SIAAInfo, const Value *V2, 1563 LocationSize V2Size, const AAMDNodes &V2AAInfo, 1564 const Value *UnderV2, AAQueryInfo &AAQI) { 1565 // If the values are Selects with the same condition, we can do a more precise 1566 // check: just check for aliases between the values on corresponding arms. 1567 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1568 if (SI->getCondition() == SI2->getCondition()) { 1569 AliasResult Alias = 1570 aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(), 1571 V2Size, V2AAInfo, AAQI); 1572 if (Alias == MayAlias) 1573 return MayAlias; 1574 AliasResult ThisAlias = 1575 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1576 SI2->getFalseValue(), V2Size, V2AAInfo, AAQI); 1577 return MergeAliasResults(ThisAlias, Alias); 1578 } 1579 1580 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1581 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1582 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1583 SISize, SIAAInfo, AAQI, UnderV2); 1584 if (Alias == MayAlias) 1585 return MayAlias; 1586 1587 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), 1588 SISize, SIAAInfo, AAQI, UnderV2); 1589 return MergeAliasResults(ThisAlias, Alias); 1590 } 1591 1592 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1593 /// another. 1594 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1595 const AAMDNodes &PNAAInfo, const Value *V2, 1596 LocationSize V2Size, 1597 const AAMDNodes &V2AAInfo, 1598 const Value *UnderV2, AAQueryInfo &AAQI) { 1599 // Track phi nodes we have visited. We use this information when we determine 1600 // value equivalence. 1601 VisitedPhiBBs.insert(PN->getParent()); 1602 1603 // If the values are PHIs in the same block, we can do a more precise 1604 // as well as efficient check: just check for aliases between the values 1605 // on corresponding edges. 1606 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1607 if (PN2->getParent() == PN->getParent()) { 1608 AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1609 MemoryLocation(V2, V2Size, V2AAInfo)); 1610 if (PN > V2) 1611 std::swap(Locs.first, Locs.second); 1612 // Analyse the PHIs' inputs under the assumption that the PHIs are 1613 // NoAlias. 1614 // If the PHIs are May/MustAlias there must be (recursively) an input 1615 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1616 // there must be an operation on the PHIs within the PHIs' value cycle 1617 // that causes a MayAlias. 1618 // Pretend the phis do not alias. 1619 AliasResult Alias = NoAlias; 1620 AliasResult OrigAliasResult; 1621 { 1622 // Limited lifetime iterator invalidated by the aliasCheck call below. 1623 auto CacheIt = AAQI.AliasCache.find(Locs); 1624 assert((CacheIt != AAQI.AliasCache.end()) && 1625 "There must exist an entry for the phi node"); 1626 OrigAliasResult = CacheIt->second; 1627 CacheIt->second = NoAlias; 1628 } 1629 1630 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1631 AliasResult ThisAlias = 1632 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1633 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1634 V2Size, V2AAInfo, AAQI); 1635 Alias = MergeAliasResults(ThisAlias, Alias); 1636 if (Alias == MayAlias) 1637 break; 1638 } 1639 1640 // Reset if speculation failed. 1641 if (Alias != NoAlias) { 1642 auto Pair = 1643 AAQI.AliasCache.insert(std::make_pair(Locs, OrigAliasResult)); 1644 assert(!Pair.second && "Entry must have existed"); 1645 Pair.first->second = OrigAliasResult; 1646 } 1647 return Alias; 1648 } 1649 1650 SmallVector<Value *, 4> V1Srcs; 1651 // For a recursive phi, that recurses through a contant gep, we can perform 1652 // aliasing calculations using the other phi operands with an unknown size to 1653 // specify that an unknown number of elements after the initial value are 1654 // potentially accessed. 1655 bool isRecursive = false; 1656 auto CheckForRecPhi = [&](Value *PV) { 1657 if (!EnableRecPhiAnalysis) 1658 return false; 1659 if (GEPOperator *PVGEP = dyn_cast<GEPOperator>(PV)) { 1660 // Check whether the incoming value is a GEP that advances the pointer 1661 // result of this PHI node (e.g. in a loop). If this is the case, we 1662 // would recurse and always get a MayAlias. Handle this case specially 1663 // below. We need to ensure that the phi is inbounds and has a constant 1664 // positive operand so that we can check for alias with the initial value 1665 // and an unknown but positive size. 1666 if (PVGEP->getPointerOperand() == PN && PVGEP->isInBounds() && 1667 PVGEP->getNumIndices() == 1 && isa<ConstantInt>(PVGEP->idx_begin()) && 1668 !cast<ConstantInt>(PVGEP->idx_begin())->isNegative()) { 1669 isRecursive = true; 1670 return true; 1671 } 1672 } 1673 return false; 1674 }; 1675 1676 if (PV) { 1677 // If we have PhiValues then use it to get the underlying phi values. 1678 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1679 // If we have more phi values than the search depth then return MayAlias 1680 // conservatively to avoid compile time explosion. The worst possible case 1681 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1682 // where 'm' and 'n' are the number of PHI sources. 1683 if (PhiValueSet.size() > MaxLookupSearchDepth) 1684 return MayAlias; 1685 // Add the values to V1Srcs 1686 for (Value *PV1 : PhiValueSet) { 1687 if (CheckForRecPhi(PV1)) 1688 continue; 1689 V1Srcs.push_back(PV1); 1690 } 1691 } else { 1692 // If we don't have PhiInfo then just look at the operands of the phi itself 1693 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1694 SmallPtrSet<Value *, 4> UniqueSrc; 1695 for (Value *PV1 : PN->incoming_values()) { 1696 if (isa<PHINode>(PV1)) 1697 // If any of the source itself is a PHI, return MayAlias conservatively 1698 // to avoid compile time explosion. The worst possible case is if both 1699 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1700 // and 'n' are the number of PHI sources. 1701 return MayAlias; 1702 1703 if (CheckForRecPhi(PV1)) 1704 continue; 1705 1706 if (UniqueSrc.insert(PV1).second) 1707 V1Srcs.push_back(PV1); 1708 } 1709 } 1710 1711 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1712 // value. This should only be possible in blocks unreachable from the entry 1713 // block, but return MayAlias just in case. 1714 if (V1Srcs.empty()) 1715 return MayAlias; 1716 1717 // If this PHI node is recursive, set the size of the accessed memory to 1718 // unknown to represent all the possible values the GEP could advance the 1719 // pointer to. 1720 if (isRecursive) 1721 PNSize = LocationSize::unknown(); 1722 1723 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, 1724 PNAAInfo, AAQI, UnderV2); 1725 1726 // Early exit if the check of the first PHI source against V2 is MayAlias. 1727 // Other results are not possible. 1728 if (Alias == MayAlias) 1729 return MayAlias; 1730 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1731 // remain valid to all elements and needs to conservatively return MayAlias. 1732 if (isRecursive && Alias != NoAlias) 1733 return MayAlias; 1734 1735 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1736 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1737 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1738 Value *V = V1Srcs[i]; 1739 1740 AliasResult ThisAlias = 1741 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, AAQI, UnderV2); 1742 Alias = MergeAliasResults(ThisAlias, Alias); 1743 if (Alias == MayAlias) 1744 break; 1745 } 1746 1747 return Alias; 1748 } 1749 1750 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1751 /// array references. 1752 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1753 AAMDNodes V1AAInfo, const Value *V2, 1754 LocationSize V2Size, AAMDNodes V2AAInfo, 1755 AAQueryInfo &AAQI, const Value *O1, 1756 const Value *O2) { 1757 // If either of the memory references is empty, it doesn't matter what the 1758 // pointer values are. 1759 if (V1Size.isZero() || V2Size.isZero()) 1760 return NoAlias; 1761 1762 // Strip off any casts if they exist. 1763 V1 = V1->stripPointerCastsAndInvariantGroups(); 1764 V2 = V2->stripPointerCastsAndInvariantGroups(); 1765 1766 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1767 // value for undef that aliases nothing in the program. 1768 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1769 return NoAlias; 1770 1771 // Are we checking for alias of the same value? 1772 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1773 // different iterations. We must therefore make sure that this is not the 1774 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1775 // happen by looking at the visited phi nodes and making sure they cannot 1776 // reach the value. 1777 if (isValueEqualInPotentialCycles(V1, V2)) 1778 return MustAlias; 1779 1780 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1781 return NoAlias; // Scalars cannot alias each other 1782 1783 // Figure out what objects these things are pointing to if we can. 1784 if (O1 == nullptr) 1785 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1786 1787 if (O2 == nullptr) 1788 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1789 1790 // Null values in the default address space don't point to any object, so they 1791 // don't alias any other pointer. 1792 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1793 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1794 return NoAlias; 1795 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1796 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1797 return NoAlias; 1798 1799 if (O1 != O2) { 1800 // If V1/V2 point to two different objects, we know that we have no alias. 1801 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1802 return NoAlias; 1803 1804 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1805 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1806 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1807 return NoAlias; 1808 1809 // Function arguments can't alias with things that are known to be 1810 // unambigously identified at the function level. 1811 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1812 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1813 return NoAlias; 1814 1815 // If one pointer is the result of a call/invoke or load and the other is a 1816 // non-escaping local object within the same function, then we know the 1817 // object couldn't escape to a point where the call could return it. 1818 // 1819 // Note that if the pointers are in different functions, there are a 1820 // variety of complications. A call with a nocapture argument may still 1821 // temporary store the nocapture argument's value in a temporary memory 1822 // location if that memory location doesn't escape. Or it may pass a 1823 // nocapture value to other functions as long as they don't capture it. 1824 if (isEscapeSource(O1) && 1825 isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache)) 1826 return NoAlias; 1827 if (isEscapeSource(O2) && 1828 isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache)) 1829 return NoAlias; 1830 } 1831 1832 // If the size of one access is larger than the entire object on the other 1833 // side, then we know such behavior is undefined and can assume no alias. 1834 bool NullIsValidLocation = NullPointerIsDefined(&F); 1835 if ((isObjectSmallerThan( 1836 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1837 TLI, NullIsValidLocation)) || 1838 (isObjectSmallerThan( 1839 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1840 TLI, NullIsValidLocation))) 1841 return NoAlias; 1842 1843 // Check the cache before climbing up use-def chains. This also terminates 1844 // otherwise infinitely recursive queries. 1845 AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1846 MemoryLocation(V2, V2Size, V2AAInfo)); 1847 if (V1 > V2) 1848 std::swap(Locs.first, Locs.second); 1849 std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair = 1850 AAQI.AliasCache.try_emplace(Locs, MayAlias); 1851 if (!Pair.second) 1852 return Pair.first->second; 1853 1854 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1855 // GEP can't simplify, we don't even look at the PHI cases. 1856 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1857 std::swap(V1, V2); 1858 std::swap(V1Size, V2Size); 1859 std::swap(O1, O2); 1860 std::swap(V1AAInfo, V2AAInfo); 1861 } 1862 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1863 AliasResult Result = 1864 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI); 1865 if (Result != MayAlias) { 1866 auto ItInsPair = AAQI.AliasCache.insert(std::make_pair(Locs, Result)); 1867 assert(!ItInsPair.second && "Entry must have existed"); 1868 ItInsPair.first->second = Result; 1869 return Result; 1870 } 1871 } 1872 1873 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1874 std::swap(V1, V2); 1875 std::swap(O1, O2); 1876 std::swap(V1Size, V2Size); 1877 std::swap(V1AAInfo, V2AAInfo); 1878 } 1879 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1880 AliasResult Result = 1881 aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI); 1882 if (Result != MayAlias) { 1883 Pair = AAQI.AliasCache.try_emplace(Locs, Result); 1884 assert(!Pair.second && "Entry must have existed"); 1885 return Pair.first->second = Result; 1886 } 1887 } 1888 1889 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1890 std::swap(V1, V2); 1891 std::swap(O1, O2); 1892 std::swap(V1Size, V2Size); 1893 std::swap(V1AAInfo, V2AAInfo); 1894 } 1895 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1896 AliasResult Result = 1897 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI); 1898 if (Result != MayAlias) { 1899 Pair = AAQI.AliasCache.try_emplace(Locs, Result); 1900 assert(!Pair.second && "Entry must have existed"); 1901 return Pair.first->second = Result; 1902 } 1903 } 1904 1905 // If both pointers are pointing into the same object and one of them 1906 // accesses the entire object, then the accesses must overlap in some way. 1907 if (O1 == O2) 1908 if (V1Size.isPrecise() && V2Size.isPrecise() && 1909 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1910 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) { 1911 Pair = AAQI.AliasCache.try_emplace(Locs, PartialAlias); 1912 assert(!Pair.second && "Entry must have existed"); 1913 return Pair.first->second = PartialAlias; 1914 } 1915 1916 // Recurse back into the best AA results we have, potentially with refined 1917 // memory locations. We have already ensured that BasicAA has a MayAlias 1918 // cache result for these, so any recursion back into BasicAA won't loop. 1919 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI); 1920 Pair = AAQI.AliasCache.try_emplace(Locs, Result); 1921 assert(!Pair.second && "Entry must have existed"); 1922 return Pair.first->second = Result; 1923 } 1924 1925 /// Check whether two Values can be considered equivalent. 1926 /// 1927 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1928 /// they can not be part of a cycle in the value graph by looking at all 1929 /// visited phi nodes an making sure that the phis cannot reach the value. We 1930 /// have to do this because we are looking through phi nodes (That is we say 1931 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1932 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1933 const Value *V2) { 1934 if (V != V2) 1935 return false; 1936 1937 const Instruction *Inst = dyn_cast<Instruction>(V); 1938 if (!Inst) 1939 return true; 1940 1941 if (VisitedPhiBBs.empty()) 1942 return true; 1943 1944 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1945 return false; 1946 1947 // Make sure that the visited phis cannot reach the Value. This ensures that 1948 // the Values cannot come from different iterations of a potential cycle the 1949 // phi nodes could be involved in. 1950 for (auto *P : VisitedPhiBBs) 1951 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI)) 1952 return false; 1953 1954 return true; 1955 } 1956 1957 /// Computes the symbolic difference between two de-composed GEPs. 1958 /// 1959 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1960 /// instructions GEP1 and GEP2 which have common base pointers. 1961 void BasicAAResult::GetIndexDifference( 1962 SmallVectorImpl<VariableGEPIndex> &Dest, 1963 const SmallVectorImpl<VariableGEPIndex> &Src) { 1964 if (Src.empty()) 1965 return; 1966 1967 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1968 const Value *V = Src[i].V; 1969 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1970 APInt Scale = Src[i].Scale; 1971 1972 // Find V in Dest. This is N^2, but pointer indices almost never have more 1973 // than a few variable indexes. 1974 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1975 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1976 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1977 continue; 1978 1979 // If we found it, subtract off Scale V's from the entry in Dest. If it 1980 // goes to zero, remove the entry. 1981 if (Dest[j].Scale != Scale) 1982 Dest[j].Scale -= Scale; 1983 else 1984 Dest.erase(Dest.begin() + j); 1985 Scale = 0; 1986 break; 1987 } 1988 1989 // If we didn't consume this entry, add it to the end of the Dest list. 1990 if (!!Scale) { 1991 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1992 Dest.push_back(Entry); 1993 } 1994 } 1995 } 1996 1997 bool BasicAAResult::constantOffsetHeuristic( 1998 const SmallVectorImpl<VariableGEPIndex> &VarIndices, 1999 LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset, 2000 AssumptionCache *AC, DominatorTree *DT) { 2001 if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() || 2002 MaybeV2Size == LocationSize::unknown()) 2003 return false; 2004 2005 const uint64_t V1Size = MaybeV1Size.getValue(); 2006 const uint64_t V2Size = MaybeV2Size.getValue(); 2007 2008 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 2009 2010 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 2011 Var0.Scale != -Var1.Scale) 2012 return false; 2013 2014 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 2015 2016 // We'll strip off the Extensions of Var0 and Var1 and do another round 2017 // of GetLinearExpression decomposition. In the example above, if Var0 2018 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 2019 2020 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 2021 V1Offset(Width, 0); 2022 bool NSW = true, NUW = true; 2023 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 2024 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 2025 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 2026 NSW = true; 2027 NUW = true; 2028 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 2029 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 2030 2031 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 2032 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 2033 return false; 2034 2035 // We have a hit - Var0 and Var1 only differ by a constant offset! 2036 2037 // If we've been sext'ed then zext'd the maximum difference between Var0 and 2038 // Var1 is possible to calculate, but we're just interested in the absolute 2039 // minimum difference between the two. The minimum distance may occur due to 2040 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 2041 // the minimum distance between %i and %i + 5 is 3. 2042 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 2043 MinDiff = APIntOps::umin(MinDiff, Wrapped); 2044 APInt MinDiffBytes = 2045 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 2046 2047 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 2048 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 2049 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 2050 // V2Size can fit in the MinDiffBytes gap. 2051 return MinDiffBytes.uge(V1Size + BaseOffset.abs()) && 2052 MinDiffBytes.uge(V2Size + BaseOffset.abs()); 2053 } 2054 2055 //===----------------------------------------------------------------------===// 2056 // BasicAliasAnalysis Pass 2057 //===----------------------------------------------------------------------===// 2058 2059 AnalysisKey BasicAA::Key; 2060 2061 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 2062 return BasicAAResult(F.getParent()->getDataLayout(), 2063 F, 2064 AM.getResult<TargetLibraryAnalysis>(F), 2065 AM.getResult<AssumptionAnalysis>(F), 2066 &AM.getResult<DominatorTreeAnalysis>(F), 2067 AM.getCachedResult<LoopAnalysis>(F), 2068 AM.getCachedResult<PhiValuesAnalysis>(F)); 2069 } 2070 2071 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 2072 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 2073 } 2074 2075 char BasicAAWrapperPass::ID = 0; 2076 2077 void BasicAAWrapperPass::anchor() {} 2078 2079 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 2080 "Basic Alias Analysis (stateless AA impl)", true, true) 2081 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2082 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2083 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2084 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 2085 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 2086 "Basic Alias Analysis (stateless AA impl)", true, true) 2087 2088 FunctionPass *llvm::createBasicAAWrapperPass() { 2089 return new BasicAAWrapperPass(); 2090 } 2091 2092 bool BasicAAWrapperPass::runOnFunction(Function &F) { 2093 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 2094 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 2095 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 2096 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 2097 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 2098 2099 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 2100 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 2101 &DTWP.getDomTree(), 2102 LIWP ? &LIWP->getLoopInfo() : nullptr, 2103 PVWP ? &PVWP->getResult() : nullptr)); 2104 2105 return false; 2106 } 2107 2108 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2109 AU.setPreservesAll(); 2110 AU.addRequired<AssumptionCacheTracker>(); 2111 AU.addRequired<DominatorTreeWrapperPass>(); 2112 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2113 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 2114 } 2115 2116 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 2117 return BasicAAResult( 2118 F.getParent()->getDataLayout(), F, 2119 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 2120 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 2121 } 2122