1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/Argument.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalAlias.h" 40 #include "llvm/IR/GlobalVariable.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/IR/PatternMatch.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/KnownBits.h" 57 #include "llvm/Support/SaveAndRestore.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <cstdlib> 61 #include <optional> 62 #include <utility> 63 64 #define DEBUG_TYPE "basicaa" 65 66 using namespace llvm; 67 68 /// Enable analysis of recursive PHI nodes. 69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 70 cl::init(true)); 71 72 static cl::opt<bool> EnableSeparateStorageAnalysis("basic-aa-separate-storage", 73 cl::Hidden, cl::init(true)); 74 75 /// SearchLimitReached / SearchTimes shows how often the limit of 76 /// to decompose GEPs is reached. It will affect the precision 77 /// of basic alias analysis. 78 STATISTIC(SearchLimitReached, "Number of times the limit to " 79 "decompose GEPs is reached"); 80 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 81 82 // The max limit of the search depth in DecomposeGEPExpression() and 83 // getUnderlyingObject(). 84 static const unsigned MaxLookupSearchDepth = 6; 85 86 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 87 FunctionAnalysisManager::Invalidator &Inv) { 88 // We don't care if this analysis itself is preserved, it has no state. But 89 // we need to check that the analyses it depends on have been. Note that we 90 // may be created without handles to some analyses and in that case don't 91 // depend on them. 92 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 93 (DT_ && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA))) 94 return true; 95 96 // Otherwise this analysis result remains valid. 97 return false; 98 } 99 100 //===----------------------------------------------------------------------===// 101 // Useful predicates 102 //===----------------------------------------------------------------------===// 103 104 /// Returns the size of the object specified by V or UnknownSize if unknown. 105 static std::optional<TypeSize> getObjectSize(const Value *V, 106 const DataLayout &DL, 107 const TargetLibraryInfo &TLI, 108 bool NullIsValidLoc, 109 bool RoundToAlign = false) { 110 uint64_t Size; 111 ObjectSizeOpts Opts; 112 Opts.RoundToAlign = RoundToAlign; 113 Opts.NullIsUnknownSize = NullIsValidLoc; 114 if (getObjectSize(V, Size, DL, &TLI, Opts)) 115 return TypeSize::getFixed(Size); 116 return std::nullopt; 117 } 118 119 /// Returns true if we can prove that the object specified by V is smaller than 120 /// Size. 121 static bool isObjectSmallerThan(const Value *V, TypeSize Size, 122 const DataLayout &DL, 123 const TargetLibraryInfo &TLI, 124 bool NullIsValidLoc) { 125 // Note that the meanings of the "object" are slightly different in the 126 // following contexts: 127 // c1: llvm::getObjectSize() 128 // c2: llvm.objectsize() intrinsic 129 // c3: isObjectSmallerThan() 130 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 131 // refers to the "entire object". 132 // 133 // Consider this example: 134 // char *p = (char*)malloc(100) 135 // char *q = p+80; 136 // 137 // In the context of c1 and c2, the "object" pointed by q refers to the 138 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 139 // 140 // However, in the context of c3, the "object" refers to the chunk of memory 141 // being allocated. So, the "object" has 100 bytes, and q points to the middle 142 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 143 // parameter, before the llvm::getObjectSize() is called to get the size of 144 // entire object, we should: 145 // - either rewind the pointer q to the base-address of the object in 146 // question (in this case rewind to p), or 147 // - just give up. It is up to caller to make sure the pointer is pointing 148 // to the base address the object. 149 // 150 // We go for 2nd option for simplicity. 151 if (!isIdentifiedObject(V)) 152 return false; 153 154 // This function needs to use the aligned object size because we allow 155 // reads a bit past the end given sufficient alignment. 156 std::optional<TypeSize> ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 157 /*RoundToAlign*/ true); 158 159 return ObjectSize && TypeSize::isKnownLT(*ObjectSize, Size); 160 } 161 162 /// Return the minimal extent from \p V to the end of the underlying object, 163 /// assuming the result is used in an aliasing query. E.g., we do use the query 164 /// location size and the fact that null pointers cannot alias here. 165 static TypeSize getMinimalExtentFrom(const Value &V, 166 const LocationSize &LocSize, 167 const DataLayout &DL, 168 bool NullIsValidLoc) { 169 // If we have dereferenceability information we know a lower bound for the 170 // extent as accesses for a lower offset would be valid. We need to exclude 171 // the "or null" part if null is a valid pointer. We can ignore frees, as an 172 // access after free would be undefined behavior. 173 bool CanBeNull, CanBeFreed; 174 uint64_t DerefBytes = 175 V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); 176 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 177 // If queried with a precise location size, we assume that location size to be 178 // accessed, thus valid. 179 if (LocSize.isPrecise()) 180 DerefBytes = std::max(DerefBytes, LocSize.getValue().getKnownMinValue()); 181 return TypeSize::getFixed(DerefBytes); 182 } 183 184 /// Returns true if we can prove that the object specified by V has size Size. 185 static bool isObjectSize(const Value *V, TypeSize Size, const DataLayout &DL, 186 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 187 std::optional<TypeSize> ObjectSize = 188 getObjectSize(V, DL, TLI, NullIsValidLoc); 189 return ObjectSize && *ObjectSize == Size; 190 } 191 192 /// Return true if both V1 and V2 are VScale 193 static bool areBothVScale(const Value *V1, const Value *V2) { 194 return PatternMatch::match(V1, PatternMatch::m_VScale()) && 195 PatternMatch::match(V2, PatternMatch::m_VScale()); 196 } 197 198 //===----------------------------------------------------------------------===// 199 // CaptureInfo implementations 200 //===----------------------------------------------------------------------===// 201 202 CaptureInfo::~CaptureInfo() = default; 203 204 bool SimpleCaptureInfo::isNotCapturedBefore(const Value *Object, 205 const Instruction *I, bool OrAt) { 206 return isNonEscapingLocalObject(Object, &IsCapturedCache); 207 } 208 209 static bool isNotInCycle(const Instruction *I, const DominatorTree *DT, 210 const LoopInfo *LI) { 211 BasicBlock *BB = const_cast<BasicBlock *>(I->getParent()); 212 SmallVector<BasicBlock *> Succs(successors(BB)); 213 return Succs.empty() || 214 !isPotentiallyReachableFromMany(Succs, BB, nullptr, DT, LI); 215 } 216 217 bool EarliestEscapeInfo::isNotCapturedBefore(const Value *Object, 218 const Instruction *I, bool OrAt) { 219 if (!isIdentifiedFunctionLocal(Object)) 220 return false; 221 222 auto Iter = EarliestEscapes.insert({Object, nullptr}); 223 if (Iter.second) { 224 Instruction *EarliestCapture = FindEarliestCapture( 225 Object, *const_cast<Function *>(DT.getRoot()->getParent()), 226 /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT); 227 if (EarliestCapture) { 228 auto Ins = Inst2Obj.insert({EarliestCapture, {}}); 229 Ins.first->second.push_back(Object); 230 } 231 Iter.first->second = EarliestCapture; 232 } 233 234 // No capturing instruction. 235 if (!Iter.first->second) 236 return true; 237 238 // No context instruction means any use is capturing. 239 if (!I) 240 return false; 241 242 if (I == Iter.first->second) { 243 if (OrAt) 244 return false; 245 return isNotInCycle(I, &DT, LI); 246 } 247 248 return !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, LI); 249 } 250 251 void EarliestEscapeInfo::removeInstruction(Instruction *I) { 252 auto Iter = Inst2Obj.find(I); 253 if (Iter != Inst2Obj.end()) { 254 for (const Value *Obj : Iter->second) 255 EarliestEscapes.erase(Obj); 256 Inst2Obj.erase(I); 257 } 258 } 259 260 //===----------------------------------------------------------------------===// 261 // GetElementPtr Instruction Decomposition and Analysis 262 //===----------------------------------------------------------------------===// 263 264 namespace { 265 /// Represents zext(sext(trunc(V))). 266 struct CastedValue { 267 const Value *V; 268 unsigned ZExtBits = 0; 269 unsigned SExtBits = 0; 270 unsigned TruncBits = 0; 271 /// Whether trunc(V) is non-negative. 272 bool IsNonNegative = false; 273 274 explicit CastedValue(const Value *V) : V(V) {} 275 explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits, 276 unsigned TruncBits, bool IsNonNegative) 277 : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits), 278 IsNonNegative(IsNonNegative) {} 279 280 unsigned getBitWidth() const { 281 return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits + 282 SExtBits; 283 } 284 285 CastedValue withValue(const Value *NewV, bool PreserveNonNeg) const { 286 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits, 287 IsNonNegative && PreserveNonNeg); 288 } 289 290 /// Replace V with zext(NewV) 291 CastedValue withZExtOfValue(const Value *NewV, bool ZExtNonNegative) const { 292 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 293 NewV->getType()->getPrimitiveSizeInBits(); 294 if (ExtendBy <= TruncBits) 295 // zext<nneg>(trunc(zext(NewV))) == zext<nneg>(trunc(NewV)) 296 // The nneg can be preserved on the outer zext here. 297 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy, 298 IsNonNegative); 299 300 // zext(sext(zext(NewV))) == zext(zext(zext(NewV))) 301 ExtendBy -= TruncBits; 302 // zext<nneg>(zext(NewV)) == zext(NewV) 303 // zext(zext<nneg>(NewV)) == zext<nneg>(NewV) 304 // The nneg can be preserved from the inner zext here but must be dropped 305 // from the outer. 306 return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0, 307 ZExtNonNegative); 308 } 309 310 /// Replace V with sext(NewV) 311 CastedValue withSExtOfValue(const Value *NewV) const { 312 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 313 NewV->getType()->getPrimitiveSizeInBits(); 314 if (ExtendBy <= TruncBits) 315 // zext<nneg>(trunc(sext(NewV))) == zext<nneg>(trunc(NewV)) 316 // The nneg can be preserved on the outer zext here 317 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy, 318 IsNonNegative); 319 320 // zext(sext(sext(NewV))) 321 ExtendBy -= TruncBits; 322 // zext<nneg>(sext(sext(NewV))) = zext<nneg>(sext(NewV)) 323 // The nneg can be preserved on the outer zext here 324 return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0, IsNonNegative); 325 } 326 327 APInt evaluateWith(APInt N) const { 328 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 329 "Incompatible bit width"); 330 if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits); 331 if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits); 332 if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits); 333 return N; 334 } 335 336 ConstantRange evaluateWith(ConstantRange N) const { 337 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 338 "Incompatible bit width"); 339 if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits); 340 if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits); 341 if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits); 342 return N; 343 } 344 345 bool canDistributeOver(bool NUW, bool NSW) const { 346 // zext(x op<nuw> y) == zext(x) op<nuw> zext(y) 347 // sext(x op<nsw> y) == sext(x) op<nsw> sext(y) 348 // trunc(x op y) == trunc(x) op trunc(y) 349 return (!ZExtBits || NUW) && (!SExtBits || NSW); 350 } 351 352 bool hasSameCastsAs(const CastedValue &Other) const { 353 if (ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits && 354 TruncBits == Other.TruncBits) 355 return true; 356 // If either CastedValue has a nneg zext then the sext/zext bits are 357 // interchangable for that value. 358 if (IsNonNegative || Other.IsNonNegative) 359 return (ZExtBits + SExtBits == Other.ZExtBits + Other.SExtBits && 360 TruncBits == Other.TruncBits); 361 return false; 362 } 363 }; 364 365 /// Represents zext(sext(trunc(V))) * Scale + Offset. 366 struct LinearExpression { 367 CastedValue Val; 368 APInt Scale; 369 APInt Offset; 370 371 /// True if all operations in this expression are NSW. 372 bool IsNSW; 373 374 LinearExpression(const CastedValue &Val, const APInt &Scale, 375 const APInt &Offset, bool IsNSW) 376 : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {} 377 378 LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) { 379 unsigned BitWidth = Val.getBitWidth(); 380 Scale = APInt(BitWidth, 1); 381 Offset = APInt(BitWidth, 0); 382 } 383 384 LinearExpression mul(const APInt &Other, bool MulIsNSW) const { 385 // The check for zero offset is necessary, because generally 386 // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z). 387 bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero())); 388 return LinearExpression(Val, Scale * Other, Offset * Other, NSW); 389 } 390 }; 391 } 392 393 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 394 /// B are constant integers. 395 static LinearExpression GetLinearExpression( 396 const CastedValue &Val, const DataLayout &DL, unsigned Depth, 397 AssumptionCache *AC, DominatorTree *DT) { 398 // Limit our recursion depth. 399 if (Depth == 6) 400 return Val; 401 402 if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V)) 403 return LinearExpression(Val, APInt(Val.getBitWidth(), 0), 404 Val.evaluateWith(Const->getValue()), true); 405 406 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) { 407 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 408 APInt RHS = Val.evaluateWith(RHSC->getValue()); 409 // The only non-OBO case we deal with is or, and only limited to the 410 // case where it is both nuw and nsw. 411 bool NUW = true, NSW = true; 412 if (isa<OverflowingBinaryOperator>(BOp)) { 413 NUW &= BOp->hasNoUnsignedWrap(); 414 NSW &= BOp->hasNoSignedWrap(); 415 } 416 if (!Val.canDistributeOver(NUW, NSW)) 417 return Val; 418 419 // While we can distribute over trunc, we cannot preserve nowrap flags 420 // in that case. 421 if (Val.TruncBits) 422 NUW = NSW = false; 423 424 LinearExpression E(Val); 425 switch (BOp->getOpcode()) { 426 default: 427 // We don't understand this instruction, so we can't decompose it any 428 // further. 429 return Val; 430 case Instruction::Or: 431 // X|C == X+C if it is disjoint. Otherwise we can't analyze it. 432 if (!cast<PossiblyDisjointInst>(BOp)->isDisjoint()) 433 return Val; 434 435 [[fallthrough]]; 436 case Instruction::Add: { 437 E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL, 438 Depth + 1, AC, DT); 439 E.Offset += RHS; 440 E.IsNSW &= NSW; 441 break; 442 } 443 case Instruction::Sub: { 444 E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL, 445 Depth + 1, AC, DT); 446 E.Offset -= RHS; 447 E.IsNSW &= NSW; 448 break; 449 } 450 case Instruction::Mul: 451 E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL, 452 Depth + 1, AC, DT) 453 .mul(RHS, NSW); 454 break; 455 case Instruction::Shl: 456 // We're trying to linearize an expression of the kind: 457 // shl i8 -128, 36 458 // where the shift count exceeds the bitwidth of the type. 459 // We can't decompose this further (the expression would return 460 // a poison value). 461 if (RHS.getLimitedValue() > Val.getBitWidth()) 462 return Val; 463 464 E = GetLinearExpression(Val.withValue(BOp->getOperand(0), NSW), DL, 465 Depth + 1, AC, DT); 466 E.Offset <<= RHS.getLimitedValue(); 467 E.Scale <<= RHS.getLimitedValue(); 468 E.IsNSW &= NSW; 469 break; 470 } 471 return E; 472 } 473 } 474 475 if (const auto *ZExt = dyn_cast<ZExtInst>(Val.V)) 476 return GetLinearExpression( 477 Val.withZExtOfValue(ZExt->getOperand(0), ZExt->hasNonNeg()), DL, 478 Depth + 1, AC, DT); 479 480 if (isa<SExtInst>(Val.V)) 481 return GetLinearExpression( 482 Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 483 DL, Depth + 1, AC, DT); 484 485 return Val; 486 } 487 488 /// To ensure a pointer offset fits in an integer of size IndexSize 489 /// (in bits) when that size is smaller than the maximum index size. This is 490 /// an issue, for example, in particular for 32b pointers with negative indices 491 /// that rely on two's complement wrap-arounds for precise alias information 492 /// where the maximum index size is 64b. 493 static void adjustToIndexSize(APInt &Offset, unsigned IndexSize) { 494 assert(IndexSize <= Offset.getBitWidth() && "Invalid IndexSize!"); 495 unsigned ShiftBits = Offset.getBitWidth() - IndexSize; 496 if (ShiftBits != 0) { 497 Offset <<= ShiftBits; 498 Offset.ashrInPlace(ShiftBits); 499 } 500 } 501 502 namespace { 503 // A linear transformation of a Value; this class represents 504 // ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale. 505 struct VariableGEPIndex { 506 CastedValue Val; 507 APInt Scale; 508 509 // Context instruction to use when querying information about this index. 510 const Instruction *CxtI; 511 512 /// True if all operations in this expression are NSW. 513 bool IsNSW; 514 515 /// True if the index should be subtracted rather than added. We don't simply 516 /// negate the Scale, to avoid losing the NSW flag: X - INT_MIN*1 may be 517 /// non-wrapping, while X + INT_MIN*(-1) wraps. 518 bool IsNegated; 519 520 bool hasNegatedScaleOf(const VariableGEPIndex &Other) const { 521 if (IsNegated == Other.IsNegated) 522 return Scale == -Other.Scale; 523 return Scale == Other.Scale; 524 } 525 526 void dump() const { 527 print(dbgs()); 528 dbgs() << "\n"; 529 } 530 void print(raw_ostream &OS) const { 531 OS << "(V=" << Val.V->getName() 532 << ", zextbits=" << Val.ZExtBits 533 << ", sextbits=" << Val.SExtBits 534 << ", truncbits=" << Val.TruncBits 535 << ", scale=" << Scale 536 << ", nsw=" << IsNSW 537 << ", negated=" << IsNegated << ")"; 538 } 539 }; 540 } 541 542 // Represents the internal structure of a GEP, decomposed into a base pointer, 543 // constant offsets, and variable scaled indices. 544 struct BasicAAResult::DecomposedGEP { 545 // Base pointer of the GEP 546 const Value *Base; 547 // Total constant offset from base. 548 APInt Offset; 549 // Scaled variable (non-constant) indices. 550 SmallVector<VariableGEPIndex, 4> VarIndices; 551 // Are all operations inbounds GEPs or non-indexing operations? 552 // (std::nullopt iff expression doesn't involve any geps) 553 std::optional<bool> InBounds; 554 555 void dump() const { 556 print(dbgs()); 557 dbgs() << "\n"; 558 } 559 void print(raw_ostream &OS) const { 560 OS << "(DecomposedGEP Base=" << Base->getName() 561 << ", Offset=" << Offset 562 << ", VarIndices=["; 563 for (size_t i = 0; i < VarIndices.size(); i++) { 564 if (i != 0) 565 OS << ", "; 566 VarIndices[i].print(OS); 567 } 568 OS << "])"; 569 } 570 }; 571 572 573 /// If V is a symbolic pointer expression, decompose it into a base pointer 574 /// with a constant offset and a number of scaled symbolic offsets. 575 /// 576 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 577 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 578 /// specified amount, but which may have other unrepresented high bits. As 579 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 580 BasicAAResult::DecomposedGEP 581 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, 582 AssumptionCache *AC, DominatorTree *DT) { 583 // Limit recursion depth to limit compile time in crazy cases. 584 unsigned MaxLookup = MaxLookupSearchDepth; 585 SearchTimes++; 586 const Instruction *CxtI = dyn_cast<Instruction>(V); 587 588 unsigned MaxIndexSize = DL.getMaxIndexSizeInBits(); 589 DecomposedGEP Decomposed; 590 Decomposed.Offset = APInt(MaxIndexSize, 0); 591 do { 592 // See if this is a bitcast or GEP. 593 const Operator *Op = dyn_cast<Operator>(V); 594 if (!Op) { 595 // The only non-operator case we can handle are GlobalAliases. 596 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 597 if (!GA->isInterposable()) { 598 V = GA->getAliasee(); 599 continue; 600 } 601 } 602 Decomposed.Base = V; 603 return Decomposed; 604 } 605 606 if (Op->getOpcode() == Instruction::BitCast || 607 Op->getOpcode() == Instruction::AddrSpaceCast) { 608 V = Op->getOperand(0); 609 continue; 610 } 611 612 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 613 if (!GEPOp) { 614 if (const auto *PHI = dyn_cast<PHINode>(V)) { 615 // Look through single-arg phi nodes created by LCSSA. 616 if (PHI->getNumIncomingValues() == 1) { 617 V = PHI->getIncomingValue(0); 618 continue; 619 } 620 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 621 // CaptureTracking can know about special capturing properties of some 622 // intrinsics like launder.invariant.group, that can't be expressed with 623 // the attributes, but have properties like returning aliasing pointer. 624 // Because some analysis may assume that nocaptured pointer is not 625 // returned from some special intrinsic (because function would have to 626 // be marked with returns attribute), it is crucial to use this function 627 // because it should be in sync with CaptureTracking. Not using it may 628 // cause weird miscompilations where 2 aliasing pointers are assumed to 629 // noalias. 630 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 631 V = RP; 632 continue; 633 } 634 } 635 636 Decomposed.Base = V; 637 return Decomposed; 638 } 639 640 // Track whether we've seen at least one in bounds gep, and if so, whether 641 // all geps parsed were in bounds. 642 if (Decomposed.InBounds == std::nullopt) 643 Decomposed.InBounds = GEPOp->isInBounds(); 644 else if (!GEPOp->isInBounds()) 645 Decomposed.InBounds = false; 646 647 assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized"); 648 649 unsigned AS = GEPOp->getPointerAddressSpace(); 650 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 651 gep_type_iterator GTI = gep_type_begin(GEPOp); 652 unsigned IndexSize = DL.getIndexSizeInBits(AS); 653 // Assume all GEP operands are constants until proven otherwise. 654 bool GepHasConstantOffset = true; 655 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 656 I != E; ++I, ++GTI) { 657 const Value *Index = *I; 658 // Compute the (potentially symbolic) offset in bytes for this index. 659 if (StructType *STy = GTI.getStructTypeOrNull()) { 660 // For a struct, add the member offset. 661 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 662 if (FieldNo == 0) 663 continue; 664 665 Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); 666 continue; 667 } 668 669 // For an array/pointer, add the element offset, explicitly scaled. 670 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 671 if (CIdx->isZero()) 672 continue; 673 674 // Don't attempt to analyze GEPs if the scalable index is not zero. 675 TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL); 676 if (AllocTypeSize.isScalable()) { 677 Decomposed.Base = V; 678 return Decomposed; 679 } 680 681 Decomposed.Offset += AllocTypeSize.getFixedValue() * 682 CIdx->getValue().sextOrTrunc(MaxIndexSize); 683 continue; 684 } 685 686 TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL); 687 if (AllocTypeSize.isScalable()) { 688 Decomposed.Base = V; 689 return Decomposed; 690 } 691 692 GepHasConstantOffset = false; 693 694 // If the integer type is smaller than the index size, it is implicitly 695 // sign extended or truncated to index size. 696 unsigned Width = Index->getType()->getIntegerBitWidth(); 697 unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0; 698 unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0; 699 LinearExpression LE = GetLinearExpression( 700 CastedValue(Index, 0, SExtBits, TruncBits, false), DL, 0, AC, DT); 701 702 // Scale by the type size. 703 unsigned TypeSize = AllocTypeSize.getFixedValue(); 704 LE = LE.mul(APInt(IndexSize, TypeSize), GEPOp->isInBounds()); 705 Decomposed.Offset += LE.Offset.sext(MaxIndexSize); 706 APInt Scale = LE.Scale.sext(MaxIndexSize); 707 708 // If we already had an occurrence of this index variable, merge this 709 // scale into it. For example, we want to handle: 710 // A[x][x] -> x*16 + x*4 -> x*20 711 // This also ensures that 'x' only appears in the index list once. 712 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 713 if ((Decomposed.VarIndices[i].Val.V == LE.Val.V || 714 areBothVScale(Decomposed.VarIndices[i].Val.V, LE.Val.V)) && 715 Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) { 716 Scale += Decomposed.VarIndices[i].Scale; 717 LE.IsNSW = false; // We cannot guarantee nsw for the merge. 718 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 719 break; 720 } 721 } 722 723 // Make sure that we have a scale that makes sense for this target's 724 // index size. 725 adjustToIndexSize(Scale, IndexSize); 726 727 if (!!Scale) { 728 VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW, 729 /* IsNegated */ false}; 730 Decomposed.VarIndices.push_back(Entry); 731 } 732 } 733 734 // Take care of wrap-arounds 735 if (GepHasConstantOffset) 736 adjustToIndexSize(Decomposed.Offset, IndexSize); 737 738 // Analyze the base pointer next. 739 V = GEPOp->getOperand(0); 740 } while (--MaxLookup); 741 742 // If the chain of expressions is too deep, just return early. 743 Decomposed.Base = V; 744 SearchLimitReached++; 745 return Decomposed; 746 } 747 748 ModRefInfo BasicAAResult::getModRefInfoMask(const MemoryLocation &Loc, 749 AAQueryInfo &AAQI, 750 bool IgnoreLocals) { 751 assert(Visited.empty() && "Visited must be cleared after use!"); 752 auto _ = make_scope_exit([&] { Visited.clear(); }); 753 754 unsigned MaxLookup = 8; 755 SmallVector<const Value *, 16> Worklist; 756 Worklist.push_back(Loc.Ptr); 757 ModRefInfo Result = ModRefInfo::NoModRef; 758 759 do { 760 const Value *V = getUnderlyingObject(Worklist.pop_back_val()); 761 if (!Visited.insert(V).second) 762 continue; 763 764 // Ignore allocas if we were instructed to do so. 765 if (IgnoreLocals && isa<AllocaInst>(V)) 766 continue; 767 768 // If the location points to memory that is known to be invariant for 769 // the life of the underlying SSA value, then we can exclude Mod from 770 // the set of valid memory effects. 771 // 772 // An argument that is marked readonly and noalias is known to be 773 // invariant while that function is executing. 774 if (const Argument *Arg = dyn_cast<Argument>(V)) { 775 if (Arg->hasNoAliasAttr() && Arg->onlyReadsMemory()) { 776 Result |= ModRefInfo::Ref; 777 continue; 778 } 779 } 780 781 // A global constant can't be mutated. 782 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 783 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 784 // global to be marked constant in some modules and non-constant in 785 // others. GV may even be a declaration, not a definition. 786 if (!GV->isConstant()) 787 return ModRefInfo::ModRef; 788 continue; 789 } 790 791 // If both select values point to local memory, then so does the select. 792 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 793 Worklist.push_back(SI->getTrueValue()); 794 Worklist.push_back(SI->getFalseValue()); 795 continue; 796 } 797 798 // If all values incoming to a phi node point to local memory, then so does 799 // the phi. 800 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 801 // Don't bother inspecting phi nodes with many operands. 802 if (PN->getNumIncomingValues() > MaxLookup) 803 return ModRefInfo::ModRef; 804 append_range(Worklist, PN->incoming_values()); 805 continue; 806 } 807 808 // Otherwise be conservative. 809 return ModRefInfo::ModRef; 810 } while (!Worklist.empty() && --MaxLookup); 811 812 // If we hit the maximum number of instructions to examine, be conservative. 813 if (!Worklist.empty()) 814 return ModRefInfo::ModRef; 815 816 return Result; 817 } 818 819 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 820 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 821 return II && II->getIntrinsicID() == IID; 822 } 823 824 /// Returns the behavior when calling the given call site. 825 MemoryEffects BasicAAResult::getMemoryEffects(const CallBase *Call, 826 AAQueryInfo &AAQI) { 827 MemoryEffects Min = Call->getAttributes().getMemoryEffects(); 828 829 if (const Function *F = dyn_cast<Function>(Call->getCalledOperand())) { 830 MemoryEffects FuncME = AAQI.AAR.getMemoryEffects(F); 831 // Operand bundles on the call may also read or write memory, in addition 832 // to the behavior of the called function. 833 if (Call->hasReadingOperandBundles()) 834 FuncME |= MemoryEffects::readOnly(); 835 if (Call->hasClobberingOperandBundles()) 836 FuncME |= MemoryEffects::writeOnly(); 837 Min &= FuncME; 838 } 839 840 return Min; 841 } 842 843 /// Returns the behavior when calling the given function. For use when the call 844 /// site is not known. 845 MemoryEffects BasicAAResult::getMemoryEffects(const Function *F) { 846 switch (F->getIntrinsicID()) { 847 case Intrinsic::experimental_guard: 848 case Intrinsic::experimental_deoptimize: 849 // These intrinsics can read arbitrary memory, and additionally modref 850 // inaccessible memory to model control dependence. 851 return MemoryEffects::readOnly() | 852 MemoryEffects::inaccessibleMemOnly(ModRefInfo::ModRef); 853 } 854 855 return F->getMemoryEffects(); 856 } 857 858 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 859 unsigned ArgIdx) { 860 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 861 return ModRefInfo::Mod; 862 863 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 864 return ModRefInfo::Ref; 865 866 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 867 return ModRefInfo::NoModRef; 868 869 return ModRefInfo::ModRef; 870 } 871 872 #ifndef NDEBUG 873 static const Function *getParent(const Value *V) { 874 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 875 if (!inst->getParent()) 876 return nullptr; 877 return inst->getParent()->getParent(); 878 } 879 880 if (const Argument *arg = dyn_cast<Argument>(V)) 881 return arg->getParent(); 882 883 return nullptr; 884 } 885 886 static bool notDifferentParent(const Value *O1, const Value *O2) { 887 888 const Function *F1 = getParent(O1); 889 const Function *F2 = getParent(O2); 890 891 return !F1 || !F2 || F1 == F2; 892 } 893 #endif 894 895 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 896 const MemoryLocation &LocB, AAQueryInfo &AAQI, 897 const Instruction *CtxI) { 898 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 899 "BasicAliasAnalysis doesn't support interprocedural queries."); 900 return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI, CtxI); 901 } 902 903 /// Checks to see if the specified callsite can clobber the specified memory 904 /// object. 905 /// 906 /// Since we only look at local properties of this function, we really can't 907 /// say much about this query. We do, however, use simple "address taken" 908 /// analysis on local objects. 909 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 910 const MemoryLocation &Loc, 911 AAQueryInfo &AAQI) { 912 assert(notDifferentParent(Call, Loc.Ptr) && 913 "AliasAnalysis query involving multiple functions!"); 914 915 const Value *Object = getUnderlyingObject(Loc.Ptr); 916 917 // Calls marked 'tail' cannot read or write allocas from the current frame 918 // because the current frame might be destroyed by the time they run. However, 919 // a tail call may use an alloca with byval. Calling with byval copies the 920 // contents of the alloca into argument registers or stack slots, so there is 921 // no lifetime issue. 922 if (isa<AllocaInst>(Object)) 923 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 924 if (CI->isTailCall() && 925 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 926 return ModRefInfo::NoModRef; 927 928 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 929 // modify them even though the alloca is not escaped. 930 if (auto *AI = dyn_cast<AllocaInst>(Object)) 931 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 932 return ModRefInfo::Mod; 933 934 // A call can access a locally allocated object either because it is passed as 935 // an argument to the call, or because it has escaped prior to the call. 936 // 937 // Make sure the object has not escaped here, and then check that none of the 938 // call arguments alias the object below. 939 if (!isa<Constant>(Object) && Call != Object && 940 AAQI.CI->isNotCapturedBefore(Object, Call, /*OrAt*/ false)) { 941 942 // Optimistically assume that call doesn't touch Object and check this 943 // assumption in the following loop. 944 ModRefInfo Result = ModRefInfo::NoModRef; 945 946 unsigned OperandNo = 0; 947 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 948 CI != CE; ++CI, ++OperandNo) { 949 if (!(*CI)->getType()->isPointerTy()) 950 continue; 951 952 // Call doesn't access memory through this operand, so we don't care 953 // if it aliases with Object. 954 if (Call->doesNotAccessMemory(OperandNo)) 955 continue; 956 957 // If this is a no-capture pointer argument, see if we can tell that it 958 // is impossible to alias the pointer we're checking. 959 AliasResult AR = 960 AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(*CI), 961 MemoryLocation::getBeforeOrAfter(Object), AAQI); 962 // Operand doesn't alias 'Object', continue looking for other aliases 963 if (AR == AliasResult::NoAlias) 964 continue; 965 // Operand aliases 'Object', but call doesn't modify it. Strengthen 966 // initial assumption and keep looking in case if there are more aliases. 967 if (Call->onlyReadsMemory(OperandNo)) { 968 Result |= ModRefInfo::Ref; 969 continue; 970 } 971 // Operand aliases 'Object' but call only writes into it. 972 if (Call->onlyWritesMemory(OperandNo)) { 973 Result |= ModRefInfo::Mod; 974 continue; 975 } 976 // This operand aliases 'Object' and call reads and writes into it. 977 // Setting ModRef will not yield an early return below, MustAlias is not 978 // used further. 979 Result = ModRefInfo::ModRef; 980 break; 981 } 982 983 // Early return if we improved mod ref information 984 if (!isModAndRefSet(Result)) 985 return Result; 986 } 987 988 // If the call is malloc/calloc like, we can assume that it doesn't 989 // modify any IR visible value. This is only valid because we assume these 990 // routines do not read values visible in the IR. TODO: Consider special 991 // casing realloc and strdup routines which access only their arguments as 992 // well. Or alternatively, replace all of this with inaccessiblememonly once 993 // that's implemented fully. 994 if (isMallocOrCallocLikeFn(Call, &TLI)) { 995 // Be conservative if the accessed pointer may alias the allocation - 996 // fallback to the generic handling below. 997 if (AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(Call), Loc, AAQI) == 998 AliasResult::NoAlias) 999 return ModRefInfo::NoModRef; 1000 } 1001 1002 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 1003 // writing so that proper control dependencies are maintained but they never 1004 // mod any particular memory location visible to the IR. 1005 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 1006 // intrinsic is now modeled as reading memory. This prevents hoisting the 1007 // invariant.start intrinsic over stores. Consider: 1008 // *ptr = 40; 1009 // *ptr = 50; 1010 // invariant_start(ptr) 1011 // int val = *ptr; 1012 // print(val); 1013 // 1014 // This cannot be transformed to: 1015 // 1016 // *ptr = 40; 1017 // invariant_start(ptr) 1018 // *ptr = 50; 1019 // int val = *ptr; 1020 // print(val); 1021 // 1022 // The transformation will cause the second store to be ignored (based on 1023 // rules of invariant.start) and print 40, while the first program always 1024 // prints 50. 1025 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 1026 return ModRefInfo::Ref; 1027 1028 // Be conservative. 1029 return ModRefInfo::ModRef; 1030 } 1031 1032 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 1033 const CallBase *Call2, 1034 AAQueryInfo &AAQI) { 1035 // Guard intrinsics are marked as arbitrarily writing so that proper control 1036 // dependencies are maintained but they never mods any particular memory 1037 // location. 1038 // 1039 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1040 // heap state at the point the guard is issued needs to be consistent in case 1041 // the guard invokes the "deopt" continuation. 1042 1043 // NB! This function is *not* commutative, so we special case two 1044 // possibilities for guard intrinsics. 1045 1046 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1047 return isModSet(getMemoryEffects(Call2, AAQI).getModRef()) 1048 ? ModRefInfo::Ref 1049 : ModRefInfo::NoModRef; 1050 1051 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1052 return isModSet(getMemoryEffects(Call1, AAQI).getModRef()) 1053 ? ModRefInfo::Mod 1054 : ModRefInfo::NoModRef; 1055 1056 // Be conservative. 1057 return ModRefInfo::ModRef; 1058 } 1059 1060 /// Return true if we know V to the base address of the corresponding memory 1061 /// object. This implies that any address less than V must be out of bounds 1062 /// for the underlying object. Note that just being isIdentifiedObject() is 1063 /// not enough - For example, a negative offset from a noalias argument or call 1064 /// can be inbounds w.r.t the actual underlying object. 1065 static bool isBaseOfObject(const Value *V) { 1066 // TODO: We can handle other cases here 1067 // 1) For GC languages, arguments to functions are often required to be 1068 // base pointers. 1069 // 2) Result of allocation routines are often base pointers. Leverage TLI. 1070 return (isa<AllocaInst>(V) || isa<GlobalVariable>(V)); 1071 } 1072 1073 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1074 /// another pointer. 1075 /// 1076 /// We know that V1 is a GEP, but we don't know anything about V2. 1077 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for 1078 /// V2. 1079 AliasResult BasicAAResult::aliasGEP( 1080 const GEPOperator *GEP1, LocationSize V1Size, 1081 const Value *V2, LocationSize V2Size, 1082 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1083 if (!V1Size.hasValue() && !V2Size.hasValue()) { 1084 // TODO: This limitation exists for compile-time reasons. Relax it if we 1085 // can avoid exponential pathological cases. 1086 if (!isa<GEPOperator>(V2)) 1087 return AliasResult::MayAlias; 1088 1089 // If both accesses have unknown size, we can only check whether the base 1090 // objects don't alias. 1091 AliasResult BaseAlias = 1092 AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1093 MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); 1094 return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias 1095 : AliasResult::MayAlias; 1096 } 1097 1098 DominatorTree *DT = getDT(AAQI); 1099 DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); 1100 DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); 1101 1102 // Bail if we were not able to decompose anything. 1103 if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2) 1104 return AliasResult::MayAlias; 1105 1106 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1107 // symbolic difference. 1108 subtractDecomposedGEPs(DecompGEP1, DecompGEP2, AAQI); 1109 1110 // If an inbounds GEP would have to start from an out of bounds address 1111 // for the two to alias, then we can assume noalias. 1112 // TODO: Remove !isScalable() once BasicAA fully support scalable location 1113 // size 1114 if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() && 1115 V2Size.hasValue() && !V2Size.isScalable() && 1116 DecompGEP1.Offset.sge(V2Size.getValue()) && 1117 isBaseOfObject(DecompGEP2.Base)) 1118 return AliasResult::NoAlias; 1119 1120 if (isa<GEPOperator>(V2)) { 1121 // Symmetric case to above. 1122 if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() && 1123 V1Size.hasValue() && !V1Size.isScalable() && 1124 DecompGEP1.Offset.sle(-V1Size.getValue()) && 1125 isBaseOfObject(DecompGEP1.Base)) 1126 return AliasResult::NoAlias; 1127 } 1128 1129 // For GEPs with identical offsets, we can preserve the size and AAInfo 1130 // when performing the alias check on the underlying objects. 1131 if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) 1132 return AAQI.AAR.alias(MemoryLocation(DecompGEP1.Base, V1Size), 1133 MemoryLocation(DecompGEP2.Base, V2Size), AAQI); 1134 1135 // Do the base pointers alias? 1136 AliasResult BaseAlias = 1137 AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(DecompGEP1.Base), 1138 MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI); 1139 1140 // If we get a No or May, then return it immediately, no amount of analysis 1141 // will improve this situation. 1142 if (BaseAlias != AliasResult::MustAlias) { 1143 assert(BaseAlias == AliasResult::NoAlias || 1144 BaseAlias == AliasResult::MayAlias); 1145 return BaseAlias; 1146 } 1147 1148 // If there is a constant difference between the pointers, but the difference 1149 // is less than the size of the associated memory object, then we know 1150 // that the objects are partially overlapping. If the difference is 1151 // greater, we know they do not overlap. 1152 if (DecompGEP1.VarIndices.empty()) { 1153 APInt &Off = DecompGEP1.Offset; 1154 1155 // Initialize for Off >= 0 (V2 <= GEP1) case. 1156 const Value *LeftPtr = V2; 1157 const Value *RightPtr = GEP1; 1158 LocationSize VLeftSize = V2Size; 1159 LocationSize VRightSize = V1Size; 1160 const bool Swapped = Off.isNegative(); 1161 1162 if (Swapped) { 1163 // Swap if we have the situation where: 1164 // + + 1165 // | BaseOffset | 1166 // ---------------->| 1167 // |-->V1Size |-------> V2Size 1168 // GEP1 V2 1169 std::swap(LeftPtr, RightPtr); 1170 std::swap(VLeftSize, VRightSize); 1171 Off = -Off; 1172 } 1173 1174 if (!VLeftSize.hasValue()) 1175 return AliasResult::MayAlias; 1176 1177 const TypeSize LSize = VLeftSize.getValue(); 1178 if (!LSize.isScalable()) { 1179 if (Off.ult(LSize)) { 1180 // Conservatively drop processing if a phi was visited and/or offset is 1181 // too big. 1182 AliasResult AR = AliasResult::PartialAlias; 1183 if (VRightSize.hasValue() && !VRightSize.isScalable() && 1184 Off.ule(INT32_MAX) && (Off + VRightSize.getValue()).ule(LSize)) { 1185 // Memory referenced by right pointer is nested. Save the offset in 1186 // cache. Note that originally offset estimated as GEP1-V2, but 1187 // AliasResult contains the shift that represents GEP1+Offset=V2. 1188 AR.setOffset(-Off.getSExtValue()); 1189 AR.swap(Swapped); 1190 } 1191 return AR; 1192 } 1193 return AliasResult::NoAlias; 1194 } else { 1195 // We can use the getVScaleRange to prove that Off >= (CR.upper * LSize). 1196 ConstantRange CR = getVScaleRange(&F, Off.getBitWidth()); 1197 bool Overflow; 1198 APInt UpperRange = CR.getUnsignedMax().umul_ov( 1199 APInt(Off.getBitWidth(), LSize.getKnownMinValue()), Overflow); 1200 if (!Overflow && Off.uge(UpperRange)) 1201 return AliasResult::NoAlias; 1202 } 1203 } 1204 1205 // VScale Alias Analysis - Given one scalable offset between accesses and a 1206 // scalable typesize, we can divide each side by vscale, treating both values 1207 // as a constant. We prove that Offset/vscale >= TypeSize/vscale. 1208 if (DecompGEP1.VarIndices.size() == 1 && 1209 DecompGEP1.VarIndices[0].Val.TruncBits == 0 && 1210 DecompGEP1.Offset.isZero() && 1211 PatternMatch::match(DecompGEP1.VarIndices[0].Val.V, 1212 PatternMatch::m_VScale())) { 1213 const VariableGEPIndex &ScalableVar = DecompGEP1.VarIndices[0]; 1214 APInt Scale = 1215 ScalableVar.IsNegated ? -ScalableVar.Scale : ScalableVar.Scale; 1216 LocationSize VLeftSize = Scale.isNegative() ? V1Size : V2Size; 1217 1218 // Check if the offset is known to not overflow, if it does then attempt to 1219 // prove it with the known values of vscale_range. 1220 bool Overflows = !DecompGEP1.VarIndices[0].IsNSW; 1221 if (Overflows) { 1222 ConstantRange CR = getVScaleRange(&F, Scale.getBitWidth()); 1223 (void)CR.getSignedMax().smul_ov(Scale, Overflows); 1224 } 1225 1226 if (!Overflows) { 1227 // Note that we do not check that the typesize is scalable, as vscale >= 1 1228 // so noalias still holds so long as the dependency distance is at least 1229 // as big as the typesize. 1230 if (VLeftSize.hasValue() && 1231 Scale.abs().uge(VLeftSize.getValue().getKnownMinValue())) 1232 return AliasResult::NoAlias; 1233 } 1234 } 1235 1236 // Bail on analysing scalable LocationSize 1237 if (V1Size.isScalable() || V2Size.isScalable()) 1238 return AliasResult::MayAlias; 1239 1240 // We need to know both acess sizes for all the following heuristics. 1241 if (!V1Size.hasValue() || !V2Size.hasValue()) 1242 return AliasResult::MayAlias; 1243 1244 APInt GCD; 1245 ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset); 1246 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1247 const VariableGEPIndex &Index = DecompGEP1.VarIndices[i]; 1248 const APInt &Scale = Index.Scale; 1249 APInt ScaleForGCD = Scale; 1250 if (!Index.IsNSW) 1251 ScaleForGCD = 1252 APInt::getOneBitSet(Scale.getBitWidth(), Scale.countr_zero()); 1253 1254 if (i == 0) 1255 GCD = ScaleForGCD.abs(); 1256 else 1257 GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs()); 1258 1259 ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false, 1260 true, &AC, Index.CxtI); 1261 KnownBits Known = 1262 computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT); 1263 CR = CR.intersectWith( 1264 ConstantRange::fromKnownBits(Known, /* Signed */ true), 1265 ConstantRange::Signed); 1266 CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth()); 1267 1268 assert(OffsetRange.getBitWidth() == Scale.getBitWidth() && 1269 "Bit widths are normalized to MaxIndexSize"); 1270 if (Index.IsNSW) 1271 CR = CR.smul_sat(ConstantRange(Scale)); 1272 else 1273 CR = CR.smul_fast(ConstantRange(Scale)); 1274 1275 if (Index.IsNegated) 1276 OffsetRange = OffsetRange.sub(CR); 1277 else 1278 OffsetRange = OffsetRange.add(CR); 1279 } 1280 1281 // We now have accesses at two offsets from the same base: 1282 // 1. (...)*GCD + DecompGEP1.Offset with size V1Size 1283 // 2. 0 with size V2Size 1284 // Using arithmetic modulo GCD, the accesses are at 1285 // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits 1286 // into the range [V2Size..GCD), then we know they cannot overlap. 1287 APInt ModOffset = DecompGEP1.Offset.srem(GCD); 1288 if (ModOffset.isNegative()) 1289 ModOffset += GCD; // We want mod, not rem. 1290 if (ModOffset.uge(V2Size.getValue()) && 1291 (GCD - ModOffset).uge(V1Size.getValue())) 1292 return AliasResult::NoAlias; 1293 1294 // Compute ranges of potentially accessed bytes for both accesses. If the 1295 // interseciton is empty, there can be no overlap. 1296 unsigned BW = OffsetRange.getBitWidth(); 1297 ConstantRange Range1 = OffsetRange.add( 1298 ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue()))); 1299 ConstantRange Range2 = 1300 ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue())); 1301 if (Range1.intersectWith(Range2).isEmptySet()) 1302 return AliasResult::NoAlias; 1303 1304 // Try to determine the range of values for VarIndex such that 1305 // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex. 1306 std::optional<APInt> MinAbsVarIndex; 1307 if (DecompGEP1.VarIndices.size() == 1) { 1308 // VarIndex = Scale*V. 1309 const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; 1310 if (Var.Val.TruncBits == 0 && 1311 isKnownNonZero(Var.Val.V, SimplifyQuery(DL, DT, &AC, Var.CxtI))) { 1312 // Check if abs(V*Scale) >= abs(Scale) holds in the presence of 1313 // potentially wrapping math. 1314 auto MultiplyByScaleNoWrap = [](const VariableGEPIndex &Var) { 1315 if (Var.IsNSW) 1316 return true; 1317 1318 int ValOrigBW = Var.Val.V->getType()->getPrimitiveSizeInBits(); 1319 // If Scale is small enough so that abs(V*Scale) >= abs(Scale) holds. 1320 // The max value of abs(V) is 2^ValOrigBW - 1. Multiplying with a 1321 // constant smaller than 2^(bitwidth(Val) - ValOrigBW) won't wrap. 1322 int MaxScaleValueBW = Var.Val.getBitWidth() - ValOrigBW; 1323 if (MaxScaleValueBW <= 0) 1324 return false; 1325 return Var.Scale.ule( 1326 APInt::getMaxValue(MaxScaleValueBW).zext(Var.Scale.getBitWidth())); 1327 }; 1328 // Refine MinAbsVarIndex, if abs(Scale*V) >= abs(Scale) holds in the 1329 // presence of potentially wrapping math. 1330 if (MultiplyByScaleNoWrap(Var)) { 1331 // If V != 0 then abs(VarIndex) >= abs(Scale). 1332 MinAbsVarIndex = Var.Scale.abs(); 1333 } 1334 } 1335 } else if (DecompGEP1.VarIndices.size() == 2) { 1336 // VarIndex = Scale*V0 + (-Scale)*V1. 1337 // If V0 != V1 then abs(VarIndex) >= abs(Scale). 1338 // Check that MayBeCrossIteration is false, to avoid reasoning about 1339 // inequality of values across loop iterations. 1340 const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; 1341 const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; 1342 if (Var0.hasNegatedScaleOf(Var1) && Var0.Val.TruncBits == 0 && 1343 Var0.Val.hasSameCastsAs(Var1.Val) && !AAQI.MayBeCrossIteration && 1344 isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr, 1345 DT)) 1346 MinAbsVarIndex = Var0.Scale.abs(); 1347 } 1348 1349 if (MinAbsVarIndex) { 1350 // The constant offset will have added at least +/-MinAbsVarIndex to it. 1351 APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; 1352 APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; 1353 // We know that Offset <= OffsetLo || Offset >= OffsetHi 1354 if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && 1355 OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) 1356 return AliasResult::NoAlias; 1357 } 1358 1359 if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT, AAQI)) 1360 return AliasResult::NoAlias; 1361 1362 // Statically, we can see that the base objects are the same, but the 1363 // pointers have dynamic offsets which we can't resolve. And none of our 1364 // little tricks above worked. 1365 return AliasResult::MayAlias; 1366 } 1367 1368 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1369 // If the results agree, take it. 1370 if (A == B) 1371 return A; 1372 // A mix of PartialAlias and MustAlias is PartialAlias. 1373 if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) || 1374 (B == AliasResult::PartialAlias && A == AliasResult::MustAlias)) 1375 return AliasResult::PartialAlias; 1376 // Otherwise, we don't know anything. 1377 return AliasResult::MayAlias; 1378 } 1379 1380 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1381 /// against another. 1382 AliasResult 1383 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1384 const Value *V2, LocationSize V2Size, 1385 AAQueryInfo &AAQI) { 1386 // If the values are Selects with the same condition, we can do a more precise 1387 // check: just check for aliases between the values on corresponding arms. 1388 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1389 if (isValueEqualInPotentialCycles(SI->getCondition(), SI2->getCondition(), 1390 AAQI)) { 1391 AliasResult Alias = 1392 AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize), 1393 MemoryLocation(SI2->getTrueValue(), V2Size), AAQI); 1394 if (Alias == AliasResult::MayAlias) 1395 return AliasResult::MayAlias; 1396 AliasResult ThisAlias = 1397 AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize), 1398 MemoryLocation(SI2->getFalseValue(), V2Size), AAQI); 1399 return MergeAliasResults(ThisAlias, Alias); 1400 } 1401 1402 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1403 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1404 AliasResult Alias = AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize), 1405 MemoryLocation(V2, V2Size), AAQI); 1406 if (Alias == AliasResult::MayAlias) 1407 return AliasResult::MayAlias; 1408 1409 AliasResult ThisAlias = 1410 AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize), 1411 MemoryLocation(V2, V2Size), AAQI); 1412 return MergeAliasResults(ThisAlias, Alias); 1413 } 1414 1415 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1416 /// another. 1417 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1418 const Value *V2, LocationSize V2Size, 1419 AAQueryInfo &AAQI) { 1420 if (!PN->getNumIncomingValues()) 1421 return AliasResult::NoAlias; 1422 // If the values are PHIs in the same block, we can do a more precise 1423 // as well as efficient check: just check for aliases between the values 1424 // on corresponding edges. 1425 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1426 if (PN2->getParent() == PN->getParent()) { 1427 std::optional<AliasResult> Alias; 1428 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1429 AliasResult ThisAlias = AAQI.AAR.alias( 1430 MemoryLocation(PN->getIncomingValue(i), PNSize), 1431 MemoryLocation( 1432 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size), 1433 AAQI); 1434 if (Alias) 1435 *Alias = MergeAliasResults(*Alias, ThisAlias); 1436 else 1437 Alias = ThisAlias; 1438 if (*Alias == AliasResult::MayAlias) 1439 break; 1440 } 1441 return *Alias; 1442 } 1443 1444 SmallVector<Value *, 4> V1Srcs; 1445 // If a phi operand recurses back to the phi, we can still determine NoAlias 1446 // if we don't alias the underlying objects of the other phi operands, as we 1447 // know that the recursive phi needs to be based on them in some way. 1448 bool isRecursive = false; 1449 auto CheckForRecPhi = [&](Value *PV) { 1450 if (!EnableRecPhiAnalysis) 1451 return false; 1452 if (getUnderlyingObject(PV) == PN) { 1453 isRecursive = true; 1454 return true; 1455 } 1456 return false; 1457 }; 1458 1459 SmallPtrSet<Value *, 4> UniqueSrc; 1460 Value *OnePhi = nullptr; 1461 for (Value *PV1 : PN->incoming_values()) { 1462 // Skip the phi itself being the incoming value. 1463 if (PV1 == PN) 1464 continue; 1465 1466 if (isa<PHINode>(PV1)) { 1467 if (OnePhi && OnePhi != PV1) { 1468 // To control potential compile time explosion, we choose to be 1469 // conserviate when we have more than one Phi input. It is important 1470 // that we handle the single phi case as that lets us handle LCSSA 1471 // phi nodes and (combined with the recursive phi handling) simple 1472 // pointer induction variable patterns. 1473 return AliasResult::MayAlias; 1474 } 1475 OnePhi = PV1; 1476 } 1477 1478 if (CheckForRecPhi(PV1)) 1479 continue; 1480 1481 if (UniqueSrc.insert(PV1).second) 1482 V1Srcs.push_back(PV1); 1483 } 1484 1485 if (OnePhi && UniqueSrc.size() > 1) 1486 // Out of an abundance of caution, allow only the trivial lcssa and 1487 // recursive phi cases. 1488 return AliasResult::MayAlias; 1489 1490 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1491 // value. This should only be possible in blocks unreachable from the entry 1492 // block, but return MayAlias just in case. 1493 if (V1Srcs.empty()) 1494 return AliasResult::MayAlias; 1495 1496 // If this PHI node is recursive, indicate that the pointer may be moved 1497 // across iterations. We can only prove NoAlias if different underlying 1498 // objects are involved. 1499 if (isRecursive) 1500 PNSize = LocationSize::beforeOrAfterPointer(); 1501 1502 // In the recursive alias queries below, we may compare values from two 1503 // different loop iterations. 1504 SaveAndRestore SavedMayBeCrossIteration(AAQI.MayBeCrossIteration, true); 1505 1506 AliasResult Alias = AAQI.AAR.alias(MemoryLocation(V1Srcs[0], PNSize), 1507 MemoryLocation(V2, V2Size), AAQI); 1508 1509 // Early exit if the check of the first PHI source against V2 is MayAlias. 1510 // Other results are not possible. 1511 if (Alias == AliasResult::MayAlias) 1512 return AliasResult::MayAlias; 1513 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1514 // remain valid to all elements and needs to conservatively return MayAlias. 1515 if (isRecursive && Alias != AliasResult::NoAlias) 1516 return AliasResult::MayAlias; 1517 1518 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1519 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1520 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1521 Value *V = V1Srcs[i]; 1522 1523 AliasResult ThisAlias = AAQI.AAR.alias( 1524 MemoryLocation(V, PNSize), MemoryLocation(V2, V2Size), AAQI); 1525 Alias = MergeAliasResults(ThisAlias, Alias); 1526 if (Alias == AliasResult::MayAlias) 1527 break; 1528 } 1529 1530 return Alias; 1531 } 1532 1533 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1534 /// array references. 1535 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1536 const Value *V2, LocationSize V2Size, 1537 AAQueryInfo &AAQI, 1538 const Instruction *CtxI) { 1539 // If either of the memory references is empty, it doesn't matter what the 1540 // pointer values are. 1541 if (V1Size.isZero() || V2Size.isZero()) 1542 return AliasResult::NoAlias; 1543 1544 // Strip off any casts if they exist. 1545 V1 = V1->stripPointerCastsForAliasAnalysis(); 1546 V2 = V2->stripPointerCastsForAliasAnalysis(); 1547 1548 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1549 // value for undef that aliases nothing in the program. 1550 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1551 return AliasResult::NoAlias; 1552 1553 // Are we checking for alias of the same value? 1554 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1555 // different iterations. We must therefore make sure that this is not the 1556 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1557 // happen by looking at the visited phi nodes and making sure they cannot 1558 // reach the value. 1559 if (isValueEqualInPotentialCycles(V1, V2, AAQI)) 1560 return AliasResult::MustAlias; 1561 1562 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1563 return AliasResult::NoAlias; // Scalars cannot alias each other 1564 1565 // Figure out what objects these things are pointing to if we can. 1566 const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); 1567 const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); 1568 1569 // Null values in the default address space don't point to any object, so they 1570 // don't alias any other pointer. 1571 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1572 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1573 return AliasResult::NoAlias; 1574 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1575 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1576 return AliasResult::NoAlias; 1577 1578 if (O1 != O2) { 1579 // If V1/V2 point to two different objects, we know that we have no alias. 1580 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1581 return AliasResult::NoAlias; 1582 1583 // Function arguments can't alias with things that are known to be 1584 // unambigously identified at the function level. 1585 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1586 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1587 return AliasResult::NoAlias; 1588 1589 // If one pointer is the result of a call/invoke or load and the other is a 1590 // non-escaping local object within the same function, then we know the 1591 // object couldn't escape to a point where the call could return it. 1592 // 1593 // Note that if the pointers are in different functions, there are a 1594 // variety of complications. A call with a nocapture argument may still 1595 // temporary store the nocapture argument's value in a temporary memory 1596 // location if that memory location doesn't escape. Or it may pass a 1597 // nocapture value to other functions as long as they don't capture it. 1598 if (isEscapeSource(O1) && AAQI.CI->isNotCapturedBefore( 1599 O2, dyn_cast<Instruction>(O1), /*OrAt*/ true)) 1600 return AliasResult::NoAlias; 1601 if (isEscapeSource(O2) && AAQI.CI->isNotCapturedBefore( 1602 O1, dyn_cast<Instruction>(O2), /*OrAt*/ true)) 1603 return AliasResult::NoAlias; 1604 } 1605 1606 // If the size of one access is larger than the entire object on the other 1607 // side, then we know such behavior is undefined and can assume no alias. 1608 bool NullIsValidLocation = NullPointerIsDefined(&F); 1609 if ((isObjectSmallerThan( 1610 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1611 TLI, NullIsValidLocation)) || 1612 (isObjectSmallerThan( 1613 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1614 TLI, NullIsValidLocation))) 1615 return AliasResult::NoAlias; 1616 1617 if (EnableSeparateStorageAnalysis) { 1618 for (AssumptionCache::ResultElem &Elem : AC.assumptionsFor(O1)) { 1619 if (!Elem || Elem.Index == AssumptionCache::ExprResultIdx) 1620 continue; 1621 1622 AssumeInst *Assume = cast<AssumeInst>(Elem); 1623 OperandBundleUse OBU = Assume->getOperandBundleAt(Elem.Index); 1624 if (OBU.getTagName() == "separate_storage") { 1625 assert(OBU.Inputs.size() == 2); 1626 const Value *Hint1 = OBU.Inputs[0].get(); 1627 const Value *Hint2 = OBU.Inputs[1].get(); 1628 // This is often a no-op; instcombine rewrites this for us. No-op 1629 // getUnderlyingObject calls are fast, though. 1630 const Value *HintO1 = getUnderlyingObject(Hint1); 1631 const Value *HintO2 = getUnderlyingObject(Hint2); 1632 1633 DominatorTree *DT = getDT(AAQI); 1634 auto ValidAssumeForPtrContext = [&](const Value *Ptr) { 1635 if (const Instruction *PtrI = dyn_cast<Instruction>(Ptr)) { 1636 return isValidAssumeForContext(Assume, PtrI, DT, 1637 /* AllowEphemerals */ true); 1638 } 1639 if (const Argument *PtrA = dyn_cast<Argument>(Ptr)) { 1640 const Instruction *FirstI = 1641 &*PtrA->getParent()->getEntryBlock().begin(); 1642 return isValidAssumeForContext(Assume, FirstI, DT, 1643 /* AllowEphemerals */ true); 1644 } 1645 return false; 1646 }; 1647 1648 if ((O1 == HintO1 && O2 == HintO2) || (O1 == HintO2 && O2 == HintO1)) { 1649 // Note that we go back to V1 and V2 for the 1650 // ValidAssumeForPtrContext checks; they're dominated by O1 and O2, 1651 // so strictly more assumptions are valid for them. 1652 if ((CtxI && isValidAssumeForContext(Assume, CtxI, DT, 1653 /* AllowEphemerals */ true)) || 1654 ValidAssumeForPtrContext(V1) || ValidAssumeForPtrContext(V2)) { 1655 return AliasResult::NoAlias; 1656 } 1657 } 1658 } 1659 } 1660 } 1661 1662 // If one the accesses may be before the accessed pointer, canonicalize this 1663 // by using unknown after-pointer sizes for both accesses. This is 1664 // equivalent, because regardless of which pointer is lower, one of them 1665 // will always came after the other, as long as the underlying objects aren't 1666 // disjoint. We do this so that the rest of BasicAA does not have to deal 1667 // with accesses before the base pointer, and to improve cache utilization by 1668 // merging equivalent states. 1669 if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { 1670 V1Size = LocationSize::afterPointer(); 1671 V2Size = LocationSize::afterPointer(); 1672 } 1673 1674 // FIXME: If this depth limit is hit, then we may cache sub-optimal results 1675 // for recursive queries. For this reason, this limit is chosen to be large 1676 // enough to be very rarely hit, while still being small enough to avoid 1677 // stack overflows. 1678 if (AAQI.Depth >= 512) 1679 return AliasResult::MayAlias; 1680 1681 // Check the cache before climbing up use-def chains. This also terminates 1682 // otherwise infinitely recursive queries. Include MayBeCrossIteration in the 1683 // cache key, because some cases where MayBeCrossIteration==false returns 1684 // MustAlias or NoAlias may become MayAlias under MayBeCrossIteration==true. 1685 AAQueryInfo::LocPair Locs({V1, V1Size, AAQI.MayBeCrossIteration}, 1686 {V2, V2Size, AAQI.MayBeCrossIteration}); 1687 const bool Swapped = V1 > V2; 1688 if (Swapped) 1689 std::swap(Locs.first, Locs.second); 1690 const auto &Pair = AAQI.AliasCache.try_emplace( 1691 Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0}); 1692 if (!Pair.second) { 1693 auto &Entry = Pair.first->second; 1694 if (!Entry.isDefinitive()) { 1695 // Remember that we used an assumption. This may either be a direct use 1696 // of an assumption, or a use of an entry that may itself be based on an 1697 // assumption. 1698 ++AAQI.NumAssumptionUses; 1699 if (Entry.isAssumption()) 1700 ++Entry.NumAssumptionUses; 1701 } 1702 // Cache contains sorted {V1,V2} pairs but we should return original order. 1703 auto Result = Entry.Result; 1704 Result.swap(Swapped); 1705 return Result; 1706 } 1707 1708 int OrigNumAssumptionUses = AAQI.NumAssumptionUses; 1709 unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); 1710 AliasResult Result = 1711 aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2); 1712 1713 auto It = AAQI.AliasCache.find(Locs); 1714 assert(It != AAQI.AliasCache.end() && "Must be in cache"); 1715 auto &Entry = It->second; 1716 1717 // Check whether a NoAlias assumption has been used, but disproven. 1718 bool AssumptionDisproven = 1719 Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias; 1720 if (AssumptionDisproven) 1721 Result = AliasResult::MayAlias; 1722 1723 // This is a definitive result now, when considered as a root query. 1724 AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; 1725 Entry.Result = Result; 1726 // Cache contains sorted {V1,V2} pairs. 1727 Entry.Result.swap(Swapped); 1728 1729 // If the assumption has been disproven, remove any results that may have 1730 // been based on this assumption. Do this after the Entry updates above to 1731 // avoid iterator invalidation. 1732 if (AssumptionDisproven) 1733 while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) 1734 AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val()); 1735 1736 // The result may still be based on assumptions higher up in the chain. 1737 // Remember it, so it can be purged from the cache later. 1738 if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && 1739 Result != AliasResult::MayAlias) { 1740 AAQI.AssumptionBasedResults.push_back(Locs); 1741 Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::AssumptionBased; 1742 } else { 1743 Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive; 1744 } 1745 1746 // Depth is incremented before this function is called, so Depth==1 indicates 1747 // a root query. 1748 if (AAQI.Depth == 1) { 1749 // Any remaining assumption based results must be based on proven 1750 // assumptions, so convert them to definitive results. 1751 for (const auto &Loc : AAQI.AssumptionBasedResults) { 1752 auto It = AAQI.AliasCache.find(Loc); 1753 if (It != AAQI.AliasCache.end()) 1754 It->second.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive; 1755 } 1756 AAQI.AssumptionBasedResults.clear(); 1757 AAQI.NumAssumptionUses = 0; 1758 } 1759 return Result; 1760 } 1761 1762 AliasResult BasicAAResult::aliasCheckRecursive( 1763 const Value *V1, LocationSize V1Size, 1764 const Value *V2, LocationSize V2Size, 1765 AAQueryInfo &AAQI, const Value *O1, const Value *O2) { 1766 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1767 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI); 1768 if (Result != AliasResult::MayAlias) 1769 return Result; 1770 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { 1771 AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI); 1772 Result.swap(); 1773 if (Result != AliasResult::MayAlias) 1774 return Result; 1775 } 1776 1777 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1778 AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI); 1779 if (Result != AliasResult::MayAlias) 1780 return Result; 1781 } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { 1782 AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI); 1783 Result.swap(); 1784 if (Result != AliasResult::MayAlias) 1785 return Result; 1786 } 1787 1788 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1789 AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI); 1790 if (Result != AliasResult::MayAlias) 1791 return Result; 1792 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { 1793 AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI); 1794 Result.swap(); 1795 if (Result != AliasResult::MayAlias) 1796 return Result; 1797 } 1798 1799 // If both pointers are pointing into the same object and one of them 1800 // accesses the entire object, then the accesses must overlap in some way. 1801 if (O1 == O2) { 1802 bool NullIsValidLocation = NullPointerIsDefined(&F); 1803 if (V1Size.isPrecise() && V2Size.isPrecise() && 1804 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1805 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) 1806 return AliasResult::PartialAlias; 1807 } 1808 1809 return AliasResult::MayAlias; 1810 } 1811 1812 /// Check whether two Values can be considered equivalent. 1813 /// 1814 /// If the values may come from different cycle iterations, this will also 1815 /// check that the values are not part of cycle. We have to do this because we 1816 /// are looking through phi nodes, that is we say 1817 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1818 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1819 const Value *V2, 1820 const AAQueryInfo &AAQI) { 1821 if (V != V2) 1822 return false; 1823 1824 if (!AAQI.MayBeCrossIteration) 1825 return true; 1826 1827 // Non-instructions and instructions in the entry block cannot be part of 1828 // a loop. 1829 const Instruction *Inst = dyn_cast<Instruction>(V); 1830 if (!Inst || Inst->getParent()->isEntryBlock()) 1831 return true; 1832 1833 return isNotInCycle(Inst, getDT(AAQI), /*LI*/ nullptr); 1834 } 1835 1836 /// Computes the symbolic difference between two de-composed GEPs. 1837 void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP, 1838 const DecomposedGEP &SrcGEP, 1839 const AAQueryInfo &AAQI) { 1840 DestGEP.Offset -= SrcGEP.Offset; 1841 for (const VariableGEPIndex &Src : SrcGEP.VarIndices) { 1842 // Find V in Dest. This is N^2, but pointer indices almost never have more 1843 // than a few variable indexes. 1844 bool Found = false; 1845 for (auto I : enumerate(DestGEP.VarIndices)) { 1846 VariableGEPIndex &Dest = I.value(); 1847 if ((!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V, AAQI) && 1848 !areBothVScale(Dest.Val.V, Src.Val.V)) || 1849 !Dest.Val.hasSameCastsAs(Src.Val)) 1850 continue; 1851 1852 // Normalize IsNegated if we're going to lose the NSW flag anyway. 1853 if (Dest.IsNegated) { 1854 Dest.Scale = -Dest.Scale; 1855 Dest.IsNegated = false; 1856 Dest.IsNSW = false; 1857 } 1858 1859 // If we found it, subtract off Scale V's from the entry in Dest. If it 1860 // goes to zero, remove the entry. 1861 if (Dest.Scale != Src.Scale) { 1862 Dest.Scale -= Src.Scale; 1863 Dest.IsNSW = false; 1864 } else { 1865 DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index()); 1866 } 1867 Found = true; 1868 break; 1869 } 1870 1871 // If we didn't consume this entry, add it to the end of the Dest list. 1872 if (!Found) { 1873 VariableGEPIndex Entry = {Src.Val, Src.Scale, Src.CxtI, Src.IsNSW, 1874 /* IsNegated */ true}; 1875 DestGEP.VarIndices.push_back(Entry); 1876 } 1877 } 1878 } 1879 1880 bool BasicAAResult::constantOffsetHeuristic(const DecomposedGEP &GEP, 1881 LocationSize MaybeV1Size, 1882 LocationSize MaybeV2Size, 1883 AssumptionCache *AC, 1884 DominatorTree *DT, 1885 const AAQueryInfo &AAQI) { 1886 if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() || 1887 !MaybeV2Size.hasValue()) 1888 return false; 1889 1890 const uint64_t V1Size = MaybeV1Size.getValue(); 1891 const uint64_t V2Size = MaybeV2Size.getValue(); 1892 1893 const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1]; 1894 1895 if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) || 1896 !Var0.hasNegatedScaleOf(Var1) || 1897 Var0.Val.V->getType() != Var1.Val.V->getType()) 1898 return false; 1899 1900 // We'll strip off the Extensions of Var0 and Var1 and do another round 1901 // of GetLinearExpression decomposition. In the example above, if Var0 1902 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1903 1904 LinearExpression E0 = 1905 GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT); 1906 LinearExpression E1 = 1907 GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT); 1908 if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) || 1909 !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V, AAQI)) 1910 return false; 1911 1912 // We have a hit - Var0 and Var1 only differ by a constant offset! 1913 1914 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1915 // Var1 is possible to calculate, but we're just interested in the absolute 1916 // minimum difference between the two. The minimum distance may occur due to 1917 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1918 // the minimum distance between %i and %i + 5 is 3. 1919 APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff; 1920 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1921 APInt MinDiffBytes = 1922 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1923 1924 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1925 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1926 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1927 // V2Size can fit in the MinDiffBytes gap. 1928 return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) && 1929 MinDiffBytes.uge(V2Size + GEP.Offset.abs()); 1930 } 1931 1932 //===----------------------------------------------------------------------===// 1933 // BasicAliasAnalysis Pass 1934 //===----------------------------------------------------------------------===// 1935 1936 AnalysisKey BasicAA::Key; 1937 1938 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1939 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1940 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1941 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1942 return BasicAAResult(F.getDataLayout(), F, TLI, AC, DT); 1943 } 1944 1945 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1946 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1947 } 1948 1949 char BasicAAWrapperPass::ID = 0; 1950 1951 void BasicAAWrapperPass::anchor() {} 1952 1953 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 1954 "Basic Alias Analysis (stateless AA impl)", true, true) 1955 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1956 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1957 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1958 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 1959 "Basic Alias Analysis (stateless AA impl)", true, true) 1960 1961 FunctionPass *llvm::createBasicAAWrapperPass() { 1962 return new BasicAAWrapperPass(); 1963 } 1964 1965 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1966 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1967 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1968 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1969 1970 Result.reset(new BasicAAResult(F.getDataLayout(), F, 1971 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 1972 &DTWP.getDomTree())); 1973 1974 return false; 1975 } 1976 1977 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1978 AU.setPreservesAll(); 1979 AU.addRequiredTransitive<AssumptionCacheTracker>(); 1980 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1981 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1982 } 1983