1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/PhiValues.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/KnownBits.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <cstdlib> 61 #include <utility> 62 63 #define DEBUG_TYPE "basicaa" 64 65 using namespace llvm; 66 67 /// Enable analysis of recursive PHI nodes. 68 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 69 cl::init(true)); 70 71 /// By default, even on 32-bit architectures we use 64-bit integers for 72 /// calculations. This will allow us to more-aggressively decompose indexing 73 /// expressions calculated using i64 values (e.g., long long in C) which is 74 /// common enough to worry about. 75 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b", 76 cl::Hidden, cl::init(true)); 77 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits", 78 cl::Hidden, cl::init(false)); 79 80 /// SearchLimitReached / SearchTimes shows how often the limit of 81 /// to decompose GEPs is reached. It will affect the precision 82 /// of basic alias analysis. 83 STATISTIC(SearchLimitReached, "Number of times the limit to " 84 "decompose GEPs is reached"); 85 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 86 87 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 88 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 89 /// careful with value equivalence. We use reachability to make sure a value 90 /// cannot be involved in a cycle. 91 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 92 93 // The max limit of the search depth in DecomposeGEPExpression() and 94 // getUnderlyingObject(), both functions need to use the same search 95 // depth otherwise the algorithm in aliasGEP will assert. 96 static const unsigned MaxLookupSearchDepth = 6; 97 98 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 99 FunctionAnalysisManager::Invalidator &Inv) { 100 // We don't care if this analysis itself is preserved, it has no state. But 101 // we need to check that the analyses it depends on have been. Note that we 102 // may be created without handles to some analyses and in that case don't 103 // depend on them. 104 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 105 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 106 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 107 return true; 108 109 // Otherwise this analysis result remains valid. 110 return false; 111 } 112 113 //===----------------------------------------------------------------------===// 114 // Useful predicates 115 //===----------------------------------------------------------------------===// 116 117 /// Returns true if the pointer is one which would have been considered an 118 /// escape by isNonEscapingLocalObject. 119 static bool isEscapeSource(const Value *V) { 120 if (isa<CallBase>(V)) 121 return true; 122 123 if (isa<Argument>(V)) 124 return true; 125 126 // The load case works because isNonEscapingLocalObject considers all 127 // stores to be escapes (it passes true for the StoreCaptures argument 128 // to PointerMayBeCaptured). 129 if (isa<LoadInst>(V)) 130 return true; 131 132 // The inttoptr case works because isNonEscapingLocalObject considers all 133 // means of converting or equating a pointer to an int (ptrtoint, ptr store 134 // which could be followed by an integer load, ptr<->int compare) as 135 // escaping, and objects located at well-known addresses via platform-specific 136 // means cannot be considered non-escaping local objects. 137 if (isa<IntToPtrInst>(V)) 138 return true; 139 140 return false; 141 } 142 143 /// Returns the size of the object specified by V or UnknownSize if unknown. 144 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 145 const TargetLibraryInfo &TLI, 146 bool NullIsValidLoc, 147 bool RoundToAlign = false) { 148 uint64_t Size; 149 ObjectSizeOpts Opts; 150 Opts.RoundToAlign = RoundToAlign; 151 Opts.NullIsUnknownSize = NullIsValidLoc; 152 if (getObjectSize(V, Size, DL, &TLI, Opts)) 153 return Size; 154 return MemoryLocation::UnknownSize; 155 } 156 157 /// Returns true if we can prove that the object specified by V is smaller than 158 /// Size. 159 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 160 const DataLayout &DL, 161 const TargetLibraryInfo &TLI, 162 bool NullIsValidLoc) { 163 // Note that the meanings of the "object" are slightly different in the 164 // following contexts: 165 // c1: llvm::getObjectSize() 166 // c2: llvm.objectsize() intrinsic 167 // c3: isObjectSmallerThan() 168 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 169 // refers to the "entire object". 170 // 171 // Consider this example: 172 // char *p = (char*)malloc(100) 173 // char *q = p+80; 174 // 175 // In the context of c1 and c2, the "object" pointed by q refers to the 176 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 177 // 178 // However, in the context of c3, the "object" refers to the chunk of memory 179 // being allocated. So, the "object" has 100 bytes, and q points to the middle 180 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 181 // parameter, before the llvm::getObjectSize() is called to get the size of 182 // entire object, we should: 183 // - either rewind the pointer q to the base-address of the object in 184 // question (in this case rewind to p), or 185 // - just give up. It is up to caller to make sure the pointer is pointing 186 // to the base address the object. 187 // 188 // We go for 2nd option for simplicity. 189 if (!isIdentifiedObject(V)) 190 return false; 191 192 // This function needs to use the aligned object size because we allow 193 // reads a bit past the end given sufficient alignment. 194 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 195 /*RoundToAlign*/ true); 196 197 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 198 } 199 200 /// Return the minimal extent from \p V to the end of the underlying object, 201 /// assuming the result is used in an aliasing query. E.g., we do use the query 202 /// location size and the fact that null pointers cannot alias here. 203 static uint64_t getMinimalExtentFrom(const Value &V, 204 const LocationSize &LocSize, 205 const DataLayout &DL, 206 bool NullIsValidLoc) { 207 // If we have dereferenceability information we know a lower bound for the 208 // extent as accesses for a lower offset would be valid. We need to exclude 209 // the "or null" part if null is a valid pointer. 210 bool CanBeNull, CanBeFreed; 211 uint64_t DerefBytes = 212 V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); 213 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 214 DerefBytes = CanBeFreed ? 0 : DerefBytes; 215 // If queried with a precise location size, we assume that location size to be 216 // accessed, thus valid. 217 if (LocSize.isPrecise()) 218 DerefBytes = std::max(DerefBytes, LocSize.getValue()); 219 return DerefBytes; 220 } 221 222 /// Returns true if we can prove that the object specified by V has size Size. 223 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 224 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 225 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 226 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 227 } 228 229 //===----------------------------------------------------------------------===// 230 // GetElementPtr Instruction Decomposition and Analysis 231 //===----------------------------------------------------------------------===// 232 233 namespace { 234 /// Represents zext(sext(V)). 235 struct ExtendedValue { 236 const Value *V; 237 unsigned ZExtBits; 238 unsigned SExtBits; 239 240 explicit ExtendedValue(const Value *V, unsigned ZExtBits = 0, 241 unsigned SExtBits = 0) 242 : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits) {} 243 244 unsigned getBitWidth() const { 245 return V->getType()->getPrimitiveSizeInBits() + ZExtBits + SExtBits; 246 } 247 248 ExtendedValue withValue(const Value *NewV) const { 249 return ExtendedValue(NewV, ZExtBits, SExtBits); 250 } 251 252 ExtendedValue withZExtOfValue(const Value *NewV) const { 253 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 254 NewV->getType()->getPrimitiveSizeInBits(); 255 // zext(sext(zext(NewV))) == zext(zext(zext(NewV))) 256 return ExtendedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0); 257 } 258 259 ExtendedValue withSExtOfValue(const Value *NewV) const { 260 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 261 NewV->getType()->getPrimitiveSizeInBits(); 262 // zext(sext(sext(NewV))) 263 return ExtendedValue(NewV, ZExtBits, SExtBits + ExtendBy); 264 } 265 266 APInt evaluateWith(APInt N) const { 267 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 268 "Incompatible bit width"); 269 if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits); 270 if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits); 271 return N; 272 } 273 274 bool canDistributeOver(bool NUW, bool NSW) const { 275 // zext(x op<nuw> y) == zext(x) op<nuw> zext(y) 276 // sext(x op<nsw> y) == sext(x) op<nsw> sext(y) 277 return (!ZExtBits || NUW) && (!SExtBits || NSW); 278 } 279 }; 280 281 /// Represents zext(sext(V)) * Scale + Offset. 282 struct LinearExpression { 283 ExtendedValue Val; 284 APInt Scale; 285 APInt Offset; 286 287 /// True if all operations in this expression are NSW. 288 bool IsNSW; 289 290 LinearExpression(const ExtendedValue &Val, const APInt &Scale, 291 const APInt &Offset, bool IsNSW) 292 : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {} 293 294 LinearExpression(const ExtendedValue &Val) : Val(Val), IsNSW(true) { 295 unsigned BitWidth = Val.getBitWidth(); 296 Scale = APInt(BitWidth, 1); 297 Offset = APInt(BitWidth, 0); 298 } 299 }; 300 } 301 302 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 303 /// B are constant integers. 304 static LinearExpression GetLinearExpression( 305 const ExtendedValue &Val, const DataLayout &DL, unsigned Depth, 306 AssumptionCache *AC, DominatorTree *DT) { 307 // Limit our recursion depth. 308 if (Depth == 6) 309 return Val; 310 311 if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V)) 312 return LinearExpression(Val, APInt(Val.getBitWidth(), 0), 313 Val.evaluateWith(Const->getValue()), true); 314 315 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) { 316 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 317 APInt RHS = Val.evaluateWith(RHSC->getValue()); 318 // The only non-OBO case we deal with is or, and only limited to the 319 // case where it is both nuw and nsw. 320 bool NUW = true, NSW = true; 321 if (isa<OverflowingBinaryOperator>(BOp)) { 322 NUW &= BOp->hasNoUnsignedWrap(); 323 NSW &= BOp->hasNoSignedWrap(); 324 } 325 if (!Val.canDistributeOver(NUW, NSW)) 326 return Val; 327 328 LinearExpression E(Val); 329 switch (BOp->getOpcode()) { 330 default: 331 // We don't understand this instruction, so we can't decompose it any 332 // further. 333 return Val; 334 case Instruction::Or: 335 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 336 // analyze it. 337 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 338 BOp, DT)) 339 return Val; 340 341 LLVM_FALLTHROUGH; 342 case Instruction::Add: { 343 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 344 Depth + 1, AC, DT); 345 E.Offset += RHS; 346 E.IsNSW &= NSW; 347 break; 348 } 349 case Instruction::Sub: { 350 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 351 Depth + 1, AC, DT); 352 E.Offset -= RHS; 353 E.IsNSW &= NSW; 354 break; 355 } 356 case Instruction::Mul: { 357 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 358 Depth + 1, AC, DT); 359 E.Offset *= RHS; 360 E.Scale *= RHS; 361 E.IsNSW &= NSW; 362 break; 363 } 364 case Instruction::Shl: 365 // We're trying to linearize an expression of the kind: 366 // shl i8 -128, 36 367 // where the shift count exceeds the bitwidth of the type. 368 // We can't decompose this further (the expression would return 369 // a poison value). 370 if (RHS.getLimitedValue() > Val.getBitWidth()) 371 return Val; 372 373 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 374 Depth + 1, AC, DT); 375 E.Offset <<= RHS.getLimitedValue(); 376 E.Scale <<= RHS.getLimitedValue(); 377 E.IsNSW &= NSW; 378 break; 379 } 380 return E; 381 } 382 } 383 384 if (isa<ZExtInst>(Val.V)) 385 return GetLinearExpression( 386 Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 387 DL, Depth + 1, AC, DT); 388 389 if (isa<SExtInst>(Val.V)) 390 return GetLinearExpression( 391 Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 392 DL, Depth + 1, AC, DT); 393 394 return Val; 395 } 396 397 /// To ensure a pointer offset fits in an integer of size PointerSize 398 /// (in bits) when that size is smaller than the maximum pointer size. This is 399 /// an issue, for example, in particular for 32b pointers with negative indices 400 /// that rely on two's complement wrap-arounds for precise alias information 401 /// where the maximum pointer size is 64b. 402 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) { 403 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!"); 404 unsigned ShiftBits = Offset.getBitWidth() - PointerSize; 405 return (Offset << ShiftBits).ashr(ShiftBits); 406 } 407 408 static unsigned getMaxPointerSize(const DataLayout &DL) { 409 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits(); 410 if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64; 411 if (DoubleCalcBits) MaxPointerSize *= 2; 412 413 return MaxPointerSize; 414 } 415 416 /// If V is a symbolic pointer expression, decompose it into a base pointer 417 /// with a constant offset and a number of scaled symbolic offsets. 418 /// 419 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 420 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 421 /// specified amount, but which may have other unrepresented high bits. As 422 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 423 /// 424 /// This function is capable of analyzing everything that getUnderlyingObject 425 /// can look through. To be able to do that getUnderlyingObject and 426 /// DecomposeGEPExpression must use the same search depth 427 /// (MaxLookupSearchDepth). 428 BasicAAResult::DecomposedGEP 429 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, 430 AssumptionCache *AC, DominatorTree *DT) { 431 // Limit recursion depth to limit compile time in crazy cases. 432 unsigned MaxLookup = MaxLookupSearchDepth; 433 SearchTimes++; 434 const Instruction *CxtI = dyn_cast<Instruction>(V); 435 436 unsigned MaxPointerSize = getMaxPointerSize(DL); 437 DecomposedGEP Decomposed; 438 Decomposed.Offset = APInt(MaxPointerSize, 0); 439 Decomposed.HasCompileTimeConstantScale = true; 440 do { 441 // See if this is a bitcast or GEP. 442 const Operator *Op = dyn_cast<Operator>(V); 443 if (!Op) { 444 // The only non-operator case we can handle are GlobalAliases. 445 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 446 if (!GA->isInterposable()) { 447 V = GA->getAliasee(); 448 continue; 449 } 450 } 451 Decomposed.Base = V; 452 return Decomposed; 453 } 454 455 if (Op->getOpcode() == Instruction::BitCast || 456 Op->getOpcode() == Instruction::AddrSpaceCast) { 457 V = Op->getOperand(0); 458 continue; 459 } 460 461 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 462 if (!GEPOp) { 463 if (const auto *PHI = dyn_cast<PHINode>(V)) { 464 // Look through single-arg phi nodes created by LCSSA. 465 if (PHI->getNumIncomingValues() == 1) { 466 V = PHI->getIncomingValue(0); 467 continue; 468 } 469 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 470 // CaptureTracking can know about special capturing properties of some 471 // intrinsics like launder.invariant.group, that can't be expressed with 472 // the attributes, but have properties like returning aliasing pointer. 473 // Because some analysis may assume that nocaptured pointer is not 474 // returned from some special intrinsic (because function would have to 475 // be marked with returns attribute), it is crucial to use this function 476 // because it should be in sync with CaptureTracking. Not using it may 477 // cause weird miscompilations where 2 aliasing pointers are assumed to 478 // noalias. 479 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 480 V = RP; 481 continue; 482 } 483 } 484 485 Decomposed.Base = V; 486 return Decomposed; 487 } 488 489 // Track whether we've seen at least one in bounds gep, and if so, whether 490 // all geps parsed were in bounds. 491 if (Decomposed.InBounds == None) 492 Decomposed.InBounds = GEPOp->isInBounds(); 493 else if (!GEPOp->isInBounds()) 494 Decomposed.InBounds = false; 495 496 // Don't attempt to analyze GEPs over unsized objects. 497 if (!GEPOp->getSourceElementType()->isSized()) { 498 Decomposed.Base = V; 499 return Decomposed; 500 } 501 502 // Don't attempt to analyze GEPs if index scale is not a compile-time 503 // constant. 504 if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) { 505 Decomposed.Base = V; 506 Decomposed.HasCompileTimeConstantScale = false; 507 return Decomposed; 508 } 509 510 unsigned AS = GEPOp->getPointerAddressSpace(); 511 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 512 gep_type_iterator GTI = gep_type_begin(GEPOp); 513 unsigned PointerSize = DL.getPointerSizeInBits(AS); 514 // Assume all GEP operands are constants until proven otherwise. 515 bool GepHasConstantOffset = true; 516 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 517 I != E; ++I, ++GTI) { 518 const Value *Index = *I; 519 // Compute the (potentially symbolic) offset in bytes for this index. 520 if (StructType *STy = GTI.getStructTypeOrNull()) { 521 // For a struct, add the member offset. 522 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 523 if (FieldNo == 0) 524 continue; 525 526 Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); 527 continue; 528 } 529 530 // For an array/pointer, add the element offset, explicitly scaled. 531 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 532 if (CIdx->isZero()) 533 continue; 534 Decomposed.Offset += 535 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() * 536 CIdx->getValue().sextOrTrunc(MaxPointerSize); 537 continue; 538 } 539 540 GepHasConstantOffset = false; 541 542 APInt Scale(MaxPointerSize, 543 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 544 // If the integer type is smaller than the pointer size, it is implicitly 545 // sign extended to pointer size. 546 unsigned Width = Index->getType()->getIntegerBitWidth(); 547 unsigned SExtBits = PointerSize > Width ? PointerSize - Width : 0; 548 LinearExpression LE = GetLinearExpression( 549 ExtendedValue(Index, 0, SExtBits), DL, 0, AC, DT); 550 551 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 552 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 553 554 // It can be the case that, even through C1*V+C2 does not overflow for 555 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot 556 // decompose the expression in this way. 557 // 558 // FIXME: C1*Scale and the other operations in the decomposed 559 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this 560 // possibility. 561 bool Overflow; 562 APInt ScaledOffset = LE.Offset.sextOrTrunc(MaxPointerSize) 563 .smul_ov(Scale, Overflow); 564 if (Overflow) { 565 LE = LinearExpression(ExtendedValue(Index, 0, SExtBits)); 566 } else { 567 Decomposed.Offset += ScaledOffset; 568 Scale *= LE.Scale.sextOrTrunc(MaxPointerSize); 569 } 570 571 // If we already had an occurrence of this index variable, merge this 572 // scale into it. For example, we want to handle: 573 // A[x][x] -> x*16 + x*4 -> x*20 574 // This also ensures that 'x' only appears in the index list once. 575 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 576 if (Decomposed.VarIndices[i].V == LE.Val.V && 577 Decomposed.VarIndices[i].ZExtBits == LE.Val.ZExtBits && 578 Decomposed.VarIndices[i].SExtBits == LE.Val.SExtBits) { 579 Scale += Decomposed.VarIndices[i].Scale; 580 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 581 break; 582 } 583 } 584 585 // Make sure that we have a scale that makes sense for this target's 586 // pointer size. 587 Scale = adjustToPointerSize(Scale, PointerSize); 588 589 if (!!Scale) { 590 VariableGEPIndex Entry = { 591 LE.Val.V, LE.Val.ZExtBits, LE.Val.SExtBits, Scale, CxtI, LE.IsNSW}; 592 Decomposed.VarIndices.push_back(Entry); 593 } 594 } 595 596 // Take care of wrap-arounds 597 if (GepHasConstantOffset) 598 Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize); 599 600 // Analyze the base pointer next. 601 V = GEPOp->getOperand(0); 602 } while (--MaxLookup); 603 604 // If the chain of expressions is too deep, just return early. 605 Decomposed.Base = V; 606 SearchLimitReached++; 607 return Decomposed; 608 } 609 610 /// Returns whether the given pointer value points to memory that is local to 611 /// the function, with global constants being considered local to all 612 /// functions. 613 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 614 AAQueryInfo &AAQI, bool OrLocal) { 615 assert(Visited.empty() && "Visited must be cleared after use!"); 616 617 unsigned MaxLookup = 8; 618 SmallVector<const Value *, 16> Worklist; 619 Worklist.push_back(Loc.Ptr); 620 do { 621 const Value *V = getUnderlyingObject(Worklist.pop_back_val()); 622 if (!Visited.insert(V).second) { 623 Visited.clear(); 624 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 625 } 626 627 // An alloca instruction defines local memory. 628 if (OrLocal && isa<AllocaInst>(V)) 629 continue; 630 631 // A global constant counts as local memory for our purposes. 632 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 633 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 634 // global to be marked constant in some modules and non-constant in 635 // others. GV may even be a declaration, not a definition. 636 if (!GV->isConstant()) { 637 Visited.clear(); 638 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 639 } 640 continue; 641 } 642 643 // If both select values point to local memory, then so does the select. 644 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 645 Worklist.push_back(SI->getTrueValue()); 646 Worklist.push_back(SI->getFalseValue()); 647 continue; 648 } 649 650 // If all values incoming to a phi node point to local memory, then so does 651 // the phi. 652 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 653 // Don't bother inspecting phi nodes with many operands. 654 if (PN->getNumIncomingValues() > MaxLookup) { 655 Visited.clear(); 656 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 657 } 658 append_range(Worklist, PN->incoming_values()); 659 continue; 660 } 661 662 // Otherwise be conservative. 663 Visited.clear(); 664 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 665 } while (!Worklist.empty() && --MaxLookup); 666 667 Visited.clear(); 668 return Worklist.empty(); 669 } 670 671 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 672 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 673 return II && II->getIntrinsicID() == IID; 674 } 675 676 /// Returns the behavior when calling the given call site. 677 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 678 if (Call->doesNotAccessMemory()) 679 // Can't do better than this. 680 return FMRB_DoesNotAccessMemory; 681 682 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 683 684 // If the callsite knows it only reads memory, don't return worse 685 // than that. 686 if (Call->onlyReadsMemory()) 687 Min = FMRB_OnlyReadsMemory; 688 else if (Call->doesNotReadMemory()) 689 Min = FMRB_OnlyWritesMemory; 690 691 if (Call->onlyAccessesArgMemory()) 692 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 693 else if (Call->onlyAccessesInaccessibleMemory()) 694 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 695 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 696 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 697 698 // If the call has operand bundles then aliasing attributes from the function 699 // it calls do not directly apply to the call. This can be made more precise 700 // in the future. 701 if (!Call->hasOperandBundles()) 702 if (const Function *F = Call->getCalledFunction()) 703 Min = 704 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 705 706 return Min; 707 } 708 709 /// Returns the behavior when calling the given function. For use when the call 710 /// site is not known. 711 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 712 // If the function declares it doesn't access memory, we can't do better. 713 if (F->doesNotAccessMemory()) 714 return FMRB_DoesNotAccessMemory; 715 716 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 717 718 // If the function declares it only reads memory, go with that. 719 if (F->onlyReadsMemory()) 720 Min = FMRB_OnlyReadsMemory; 721 else if (F->doesNotReadMemory()) 722 Min = FMRB_OnlyWritesMemory; 723 724 if (F->onlyAccessesArgMemory()) 725 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 726 else if (F->onlyAccessesInaccessibleMemory()) 727 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 728 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 729 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 730 731 return Min; 732 } 733 734 /// Returns true if this is a writeonly (i.e Mod only) parameter. 735 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 736 const TargetLibraryInfo &TLI) { 737 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 738 return true; 739 740 // We can bound the aliasing properties of memset_pattern16 just as we can 741 // for memcpy/memset. This is particularly important because the 742 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 743 // whenever possible. 744 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 745 // attributes. 746 LibFunc F; 747 if (Call->getCalledFunction() && 748 TLI.getLibFunc(*Call->getCalledFunction(), F) && 749 F == LibFunc_memset_pattern16 && TLI.has(F)) 750 if (ArgIdx == 0) 751 return true; 752 753 // TODO: memset_pattern4, memset_pattern8 754 // TODO: _chk variants 755 // TODO: strcmp, strcpy 756 757 return false; 758 } 759 760 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 761 unsigned ArgIdx) { 762 // Checking for known builtin intrinsics and target library functions. 763 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 764 return ModRefInfo::Mod; 765 766 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 767 return ModRefInfo::Ref; 768 769 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 770 return ModRefInfo::NoModRef; 771 772 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 773 } 774 775 #ifndef NDEBUG 776 static const Function *getParent(const Value *V) { 777 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 778 if (!inst->getParent()) 779 return nullptr; 780 return inst->getParent()->getParent(); 781 } 782 783 if (const Argument *arg = dyn_cast<Argument>(V)) 784 return arg->getParent(); 785 786 return nullptr; 787 } 788 789 static bool notDifferentParent(const Value *O1, const Value *O2) { 790 791 const Function *F1 = getParent(O1); 792 const Function *F2 = getParent(O2); 793 794 return !F1 || !F2 || F1 == F2; 795 } 796 #endif 797 798 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 799 const MemoryLocation &LocB, 800 AAQueryInfo &AAQI) { 801 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 802 "BasicAliasAnalysis doesn't support interprocedural queries."); 803 return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI); 804 } 805 806 /// Checks to see if the specified callsite can clobber the specified memory 807 /// object. 808 /// 809 /// Since we only look at local properties of this function, we really can't 810 /// say much about this query. We do, however, use simple "address taken" 811 /// analysis on local objects. 812 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 813 const MemoryLocation &Loc, 814 AAQueryInfo &AAQI) { 815 assert(notDifferentParent(Call, Loc.Ptr) && 816 "AliasAnalysis query involving multiple functions!"); 817 818 const Value *Object = getUnderlyingObject(Loc.Ptr); 819 820 // Calls marked 'tail' cannot read or write allocas from the current frame 821 // because the current frame might be destroyed by the time they run. However, 822 // a tail call may use an alloca with byval. Calling with byval copies the 823 // contents of the alloca into argument registers or stack slots, so there is 824 // no lifetime issue. 825 if (isa<AllocaInst>(Object)) 826 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 827 if (CI->isTailCall() && 828 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 829 return ModRefInfo::NoModRef; 830 831 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 832 // modify them even though the alloca is not escaped. 833 if (auto *AI = dyn_cast<AllocaInst>(Object)) 834 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 835 return ModRefInfo::Mod; 836 837 // If the pointer is to a locally allocated object that does not escape, 838 // then the call can not mod/ref the pointer unless the call takes the pointer 839 // as an argument, and itself doesn't capture it. 840 if (!isa<Constant>(Object) && Call != Object && 841 isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) { 842 843 // Optimistically assume that call doesn't touch Object and check this 844 // assumption in the following loop. 845 ModRefInfo Result = ModRefInfo::NoModRef; 846 bool IsMustAlias = true; 847 848 unsigned OperandNo = 0; 849 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 850 CI != CE; ++CI, ++OperandNo) { 851 // Only look at the no-capture or byval pointer arguments. If this 852 // pointer were passed to arguments that were neither of these, then it 853 // couldn't be no-capture. 854 if (!(*CI)->getType()->isPointerTy() || 855 (!Call->doesNotCapture(OperandNo) && 856 OperandNo < Call->getNumArgOperands() && 857 !Call->isByValArgument(OperandNo))) 858 continue; 859 860 // Call doesn't access memory through this operand, so we don't care 861 // if it aliases with Object. 862 if (Call->doesNotAccessMemory(OperandNo)) 863 continue; 864 865 // If this is a no-capture pointer argument, see if we can tell that it 866 // is impossible to alias the pointer we're checking. 867 AliasResult AR = getBestAAResults().alias( 868 MemoryLocation::getBeforeOrAfter(*CI), 869 MemoryLocation::getBeforeOrAfter(Object), AAQI); 870 if (AR != AliasResult::MustAlias) 871 IsMustAlias = false; 872 // Operand doesn't alias 'Object', continue looking for other aliases 873 if (AR == AliasResult::NoAlias) 874 continue; 875 // Operand aliases 'Object', but call doesn't modify it. Strengthen 876 // initial assumption and keep looking in case if there are more aliases. 877 if (Call->onlyReadsMemory(OperandNo)) { 878 Result = setRef(Result); 879 continue; 880 } 881 // Operand aliases 'Object' but call only writes into it. 882 if (Call->doesNotReadMemory(OperandNo)) { 883 Result = setMod(Result); 884 continue; 885 } 886 // This operand aliases 'Object' and call reads and writes into it. 887 // Setting ModRef will not yield an early return below, MustAlias is not 888 // used further. 889 Result = ModRefInfo::ModRef; 890 break; 891 } 892 893 // No operand aliases, reset Must bit. Add below if at least one aliases 894 // and all aliases found are MustAlias. 895 if (isNoModRef(Result)) 896 IsMustAlias = false; 897 898 // Early return if we improved mod ref information 899 if (!isModAndRefSet(Result)) { 900 if (isNoModRef(Result)) 901 return ModRefInfo::NoModRef; 902 return IsMustAlias ? setMust(Result) : clearMust(Result); 903 } 904 } 905 906 // If the call is malloc/calloc like, we can assume that it doesn't 907 // modify any IR visible value. This is only valid because we assume these 908 // routines do not read values visible in the IR. TODO: Consider special 909 // casing realloc and strdup routines which access only their arguments as 910 // well. Or alternatively, replace all of this with inaccessiblememonly once 911 // that's implemented fully. 912 if (isMallocOrCallocLikeFn(Call, &TLI)) { 913 // Be conservative if the accessed pointer may alias the allocation - 914 // fallback to the generic handling below. 915 if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc, 916 AAQI) == AliasResult::NoAlias) 917 return ModRefInfo::NoModRef; 918 } 919 920 // The semantics of memcpy intrinsics either exactly overlap or do not 921 // overlap, i.e., source and destination of any given memcpy are either 922 // no-alias or must-alias. 923 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) { 924 AliasResult SrcAA = 925 getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI); 926 AliasResult DestAA = 927 getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI); 928 // It's also possible for Loc to alias both src and dest, or neither. 929 ModRefInfo rv = ModRefInfo::NoModRef; 930 if (SrcAA != AliasResult::NoAlias) 931 rv = setRef(rv); 932 if (DestAA != AliasResult::NoAlias) 933 rv = setMod(rv); 934 return rv; 935 } 936 937 // Guard intrinsics are marked as arbitrarily writing so that proper control 938 // dependencies are maintained but they never mods any particular memory 939 // location. 940 // 941 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 942 // heap state at the point the guard is issued needs to be consistent in case 943 // the guard invokes the "deopt" continuation. 944 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 945 return ModRefInfo::Ref; 946 // The same applies to deoptimize which is essentially a guard(false). 947 if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize)) 948 return ModRefInfo::Ref; 949 950 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 951 // writing so that proper control dependencies are maintained but they never 952 // mod any particular memory location visible to the IR. 953 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 954 // intrinsic is now modeled as reading memory. This prevents hoisting the 955 // invariant.start intrinsic over stores. Consider: 956 // *ptr = 40; 957 // *ptr = 50; 958 // invariant_start(ptr) 959 // int val = *ptr; 960 // print(val); 961 // 962 // This cannot be transformed to: 963 // 964 // *ptr = 40; 965 // invariant_start(ptr) 966 // *ptr = 50; 967 // int val = *ptr; 968 // print(val); 969 // 970 // The transformation will cause the second store to be ignored (based on 971 // rules of invariant.start) and print 40, while the first program always 972 // prints 50. 973 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 974 return ModRefInfo::Ref; 975 976 // The AAResultBase base class has some smarts, lets use them. 977 return AAResultBase::getModRefInfo(Call, Loc, AAQI); 978 } 979 980 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 981 const CallBase *Call2, 982 AAQueryInfo &AAQI) { 983 // Guard intrinsics are marked as arbitrarily writing so that proper control 984 // dependencies are maintained but they never mods any particular memory 985 // location. 986 // 987 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 988 // heap state at the point the guard is issued needs to be consistent in case 989 // the guard invokes the "deopt" continuation. 990 991 // NB! This function is *not* commutative, so we special case two 992 // possibilities for guard intrinsics. 993 994 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 995 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 996 ? ModRefInfo::Ref 997 : ModRefInfo::NoModRef; 998 999 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1000 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 1001 ? ModRefInfo::Mod 1002 : ModRefInfo::NoModRef; 1003 1004 // The AAResultBase base class has some smarts, lets use them. 1005 return AAResultBase::getModRefInfo(Call1, Call2, AAQI); 1006 } 1007 1008 /// Return true if we know V to the base address of the corresponding memory 1009 /// object. This implies that any address less than V must be out of bounds 1010 /// for the underlying object. Note that just being isIdentifiedObject() is 1011 /// not enough - For example, a negative offset from a noalias argument or call 1012 /// can be inbounds w.r.t the actual underlying object. 1013 static bool isBaseOfObject(const Value *V) { 1014 // TODO: We can handle other cases here 1015 // 1) For GC languages, arguments to functions are often required to be 1016 // base pointers. 1017 // 2) Result of allocation routines are often base pointers. Leverage TLI. 1018 return (isa<AllocaInst>(V) || isa<GlobalVariable>(V)); 1019 } 1020 1021 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1022 /// another pointer. 1023 /// 1024 /// We know that V1 is a GEP, but we don't know anything about V2. 1025 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for 1026 /// V2. 1027 AliasResult BasicAAResult::aliasGEP( 1028 const GEPOperator *GEP1, LocationSize V1Size, 1029 const Value *V2, LocationSize V2Size, 1030 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1031 if (!V1Size.hasValue() && !V2Size.hasValue()) { 1032 // TODO: This limitation exists for compile-time reasons. Relax it if we 1033 // can avoid exponential pathological cases. 1034 if (!isa<GEPOperator>(V2)) 1035 return AliasResult::MayAlias; 1036 1037 // If both accesses have unknown size, we can only check whether the base 1038 // objects don't alias. 1039 AliasResult BaseAlias = getBestAAResults().alias( 1040 MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1041 MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); 1042 return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias 1043 : AliasResult::MayAlias; 1044 } 1045 1046 DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); 1047 DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); 1048 1049 // Don't attempt to analyze the decomposed GEP if index scale is not a 1050 // compile-time constant. 1051 if (!DecompGEP1.HasCompileTimeConstantScale || 1052 !DecompGEP2.HasCompileTimeConstantScale) 1053 return AliasResult::MayAlias; 1054 1055 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1056 "DecomposeGEPExpression returned a result different from " 1057 "getUnderlyingObject"); 1058 1059 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1060 // symbolic difference. 1061 DecompGEP1.Offset -= DecompGEP2.Offset; 1062 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1063 1064 // If an inbounds GEP would have to start from an out of bounds address 1065 // for the two to alias, then we can assume noalias. 1066 if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() && 1067 V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) && 1068 isBaseOfObject(DecompGEP2.Base)) 1069 return AliasResult::NoAlias; 1070 1071 if (isa<GEPOperator>(V2)) { 1072 // Symmetric case to above. 1073 if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() && 1074 V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) && 1075 isBaseOfObject(DecompGEP1.Base)) 1076 return AliasResult::NoAlias; 1077 } 1078 1079 // For GEPs with identical offsets, we can preserve the size and AAInfo 1080 // when performing the alias check on the underlying objects. 1081 if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) 1082 return getBestAAResults().alias( 1083 MemoryLocation(UnderlyingV1, V1Size), 1084 MemoryLocation(UnderlyingV2, V2Size), AAQI); 1085 1086 // Do the base pointers alias? 1087 AliasResult BaseAlias = getBestAAResults().alias( 1088 MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1089 MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); 1090 1091 // If we get a No or May, then return it immediately, no amount of analysis 1092 // will improve this situation. 1093 if (BaseAlias != AliasResult::MustAlias) { 1094 assert(BaseAlias == AliasResult::NoAlias || 1095 BaseAlias == AliasResult::MayAlias); 1096 return BaseAlias; 1097 } 1098 1099 // If there is a constant difference between the pointers, but the difference 1100 // is less than the size of the associated memory object, then we know 1101 // that the objects are partially overlapping. If the difference is 1102 // greater, we know they do not overlap. 1103 if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) { 1104 APInt &Off = DecompGEP1.Offset; 1105 1106 // Initialize for Off >= 0 (V2 <= GEP1) case. 1107 const Value *LeftPtr = V2; 1108 const Value *RightPtr = GEP1; 1109 LocationSize VLeftSize = V2Size; 1110 LocationSize VRightSize = V1Size; 1111 const bool Swapped = Off.isNegative(); 1112 1113 if (Swapped) { 1114 // Swap if we have the situation where: 1115 // + + 1116 // | BaseOffset | 1117 // ---------------->| 1118 // |-->V1Size |-------> V2Size 1119 // GEP1 V2 1120 std::swap(LeftPtr, RightPtr); 1121 std::swap(VLeftSize, VRightSize); 1122 Off = -Off; 1123 } 1124 1125 if (VLeftSize.hasValue()) { 1126 const uint64_t LSize = VLeftSize.getValue(); 1127 if (Off.ult(LSize)) { 1128 // Conservatively drop processing if a phi was visited and/or offset is 1129 // too big. 1130 AliasResult AR = AliasResult::PartialAlias; 1131 if (VRightSize.hasValue() && Off.ule(INT32_MAX) && 1132 (Off + VRightSize.getValue()).ule(LSize)) { 1133 // Memory referenced by right pointer is nested. Save the offset in 1134 // cache. Note that originally offset estimated as GEP1-V2, but 1135 // AliasResult contains the shift that represents GEP1+Offset=V2. 1136 AR.setOffset(-Off.getSExtValue()); 1137 AR.swap(Swapped); 1138 } 1139 return AR; 1140 } 1141 return AliasResult::NoAlias; 1142 } 1143 } 1144 1145 if (!DecompGEP1.VarIndices.empty()) { 1146 APInt GCD; 1147 bool AllNonNegative = DecompGEP1.Offset.isNonNegative(); 1148 bool AllNonPositive = DecompGEP1.Offset.isNonPositive(); 1149 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1150 APInt Scale = DecompGEP1.VarIndices[i].Scale; 1151 APInt ScaleForGCD = DecompGEP1.VarIndices[i].Scale; 1152 if (!DecompGEP1.VarIndices[i].IsNSW) 1153 ScaleForGCD = APInt::getOneBitSet(Scale.getBitWidth(), 1154 Scale.countTrailingZeros()); 1155 1156 if (i == 0) 1157 GCD = ScaleForGCD.abs(); 1158 else 1159 GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs()); 1160 1161 if (AllNonNegative || AllNonPositive) { 1162 // If the Value could change between cycles, then any reasoning about 1163 // the Value this cycle may not hold in the next cycle. We'll just 1164 // give up if we can't determine conditions that hold for every cycle: 1165 const Value *V = DecompGEP1.VarIndices[i].V; 1166 const Instruction *CxtI = DecompGEP1.VarIndices[i].CxtI; 1167 1168 KnownBits Known = computeKnownBits(V, DL, 0, &AC, CxtI, DT); 1169 bool SignKnownZero = Known.isNonNegative(); 1170 bool SignKnownOne = Known.isNegative(); 1171 1172 // Zero-extension widens the variable, and so forces the sign 1173 // bit to zero. 1174 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1175 SignKnownZero |= IsZExt; 1176 SignKnownOne &= !IsZExt; 1177 1178 AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) || 1179 (SignKnownOne && Scale.isNonPositive()); 1180 AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) || 1181 (SignKnownOne && Scale.isNonNegative()); 1182 } 1183 } 1184 1185 // We now have accesses at two offsets from the same base: 1186 // 1. (...)*GCD + DecompGEP1.Offset with size V1Size 1187 // 2. 0 with size V2Size 1188 // Using arithmetic modulo GCD, the accesses are at 1189 // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits 1190 // into the range [V2Size..GCD), then we know they cannot overlap. 1191 APInt ModOffset = DecompGEP1.Offset.srem(GCD); 1192 if (ModOffset.isNegative()) 1193 ModOffset += GCD; // We want mod, not rem. 1194 if (V1Size.hasValue() && V2Size.hasValue() && 1195 ModOffset.uge(V2Size.getValue()) && 1196 (GCD - ModOffset).uge(V1Size.getValue())) 1197 return AliasResult::NoAlias; 1198 1199 // If we know all the variables are non-negative, then the total offset is 1200 // also non-negative and >= DecompGEP1.Offset. We have the following layout: 1201 // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size] 1202 // If DecompGEP1.Offset >= V2Size, the accesses don't alias. 1203 if (AllNonNegative && V2Size.hasValue() && 1204 DecompGEP1.Offset.uge(V2Size.getValue())) 1205 return AliasResult::NoAlias; 1206 // Similarly, if the variables are non-positive, then the total offset is 1207 // also non-positive and <= DecompGEP1.Offset. We have the following layout: 1208 // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size) 1209 // If -DecompGEP1.Offset >= V1Size, the accesses don't alias. 1210 if (AllNonPositive && V1Size.hasValue() && 1211 (-DecompGEP1.Offset).uge(V1Size.getValue())) 1212 return AliasResult::NoAlias; 1213 1214 if (V1Size.hasValue() && V2Size.hasValue()) { 1215 // Try to determine whether abs(VarIndex) > 0. 1216 Optional<APInt> MinAbsVarIndex; 1217 if (DecompGEP1.VarIndices.size() == 1) { 1218 // VarIndex = Scale*V. If V != 0 then abs(VarIndex) >= abs(Scale). 1219 const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; 1220 if (isKnownNonZero(Var.V, DL, 0, &AC, Var.CxtI, DT)) 1221 MinAbsVarIndex = Var.Scale.abs(); 1222 } else if (DecompGEP1.VarIndices.size() == 2) { 1223 // VarIndex = Scale*V0 + (-Scale)*V1. 1224 // If V0 != V1 then abs(VarIndex) >= abs(Scale). 1225 // Check that VisitedPhiBBs is empty, to avoid reasoning about 1226 // inequality of values across loop iterations. 1227 const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; 1228 const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; 1229 if (Var0.Scale == -Var1.Scale && Var0.ZExtBits == Var1.ZExtBits && 1230 Var0.SExtBits == Var1.SExtBits && VisitedPhiBBs.empty() && 1231 isKnownNonEqual(Var0.V, Var1.V, DL, &AC, /* CxtI */ nullptr, DT)) 1232 MinAbsVarIndex = Var0.Scale.abs(); 1233 } 1234 1235 if (MinAbsVarIndex) { 1236 // The constant offset will have added at least +/-MinAbsVarIndex to it. 1237 APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; 1238 APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; 1239 // Check that an access at OffsetLo or lower, and an access at OffsetHi 1240 // or higher both do not alias. 1241 if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && 1242 OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) 1243 return AliasResult::NoAlias; 1244 } 1245 } 1246 1247 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1248 DecompGEP1.Offset, &AC, DT)) 1249 return AliasResult::NoAlias; 1250 } 1251 1252 // Statically, we can see that the base objects are the same, but the 1253 // pointers have dynamic offsets which we can't resolve. And none of our 1254 // little tricks above worked. 1255 return AliasResult::MayAlias; 1256 } 1257 1258 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1259 // If the results agree, take it. 1260 if (A == B) 1261 return A; 1262 // A mix of PartialAlias and MustAlias is PartialAlias. 1263 if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) || 1264 (B == AliasResult::PartialAlias && A == AliasResult::MustAlias)) 1265 return AliasResult::PartialAlias; 1266 // Otherwise, we don't know anything. 1267 return AliasResult::MayAlias; 1268 } 1269 1270 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1271 /// against another. 1272 AliasResult 1273 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1274 const Value *V2, LocationSize V2Size, 1275 AAQueryInfo &AAQI) { 1276 // If the values are Selects with the same condition, we can do a more precise 1277 // check: just check for aliases between the values on corresponding arms. 1278 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1279 if (SI->getCondition() == SI2->getCondition()) { 1280 AliasResult Alias = getBestAAResults().alias( 1281 MemoryLocation(SI->getTrueValue(), SISize), 1282 MemoryLocation(SI2->getTrueValue(), V2Size), AAQI); 1283 if (Alias == AliasResult::MayAlias) 1284 return AliasResult::MayAlias; 1285 AliasResult ThisAlias = getBestAAResults().alias( 1286 MemoryLocation(SI->getFalseValue(), SISize), 1287 MemoryLocation(SI2->getFalseValue(), V2Size), AAQI); 1288 return MergeAliasResults(ThisAlias, Alias); 1289 } 1290 1291 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1292 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1293 AliasResult Alias = getBestAAResults().alias( 1294 MemoryLocation(V2, V2Size), 1295 MemoryLocation(SI->getTrueValue(), SISize), AAQI); 1296 if (Alias == AliasResult::MayAlias) 1297 return AliasResult::MayAlias; 1298 1299 AliasResult ThisAlias = getBestAAResults().alias( 1300 MemoryLocation(V2, V2Size), 1301 MemoryLocation(SI->getFalseValue(), SISize), AAQI); 1302 return MergeAliasResults(ThisAlias, Alias); 1303 } 1304 1305 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1306 /// another. 1307 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1308 const Value *V2, LocationSize V2Size, 1309 AAQueryInfo &AAQI) { 1310 if (!PN->getNumIncomingValues()) 1311 return AliasResult::NoAlias; 1312 // If the values are PHIs in the same block, we can do a more precise 1313 // as well as efficient check: just check for aliases between the values 1314 // on corresponding edges. 1315 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1316 if (PN2->getParent() == PN->getParent()) { 1317 Optional<AliasResult> Alias; 1318 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1319 AliasResult ThisAlias = getBestAAResults().alias( 1320 MemoryLocation(PN->getIncomingValue(i), PNSize), 1321 MemoryLocation( 1322 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size), 1323 AAQI); 1324 if (Alias) 1325 *Alias = MergeAliasResults(*Alias, ThisAlias); 1326 else 1327 Alias = ThisAlias; 1328 if (*Alias == AliasResult::MayAlias) 1329 break; 1330 } 1331 return *Alias; 1332 } 1333 1334 SmallVector<Value *, 4> V1Srcs; 1335 // If a phi operand recurses back to the phi, we can still determine NoAlias 1336 // if we don't alias the underlying objects of the other phi operands, as we 1337 // know that the recursive phi needs to be based on them in some way. 1338 bool isRecursive = false; 1339 auto CheckForRecPhi = [&](Value *PV) { 1340 if (!EnableRecPhiAnalysis) 1341 return false; 1342 if (getUnderlyingObject(PV) == PN) { 1343 isRecursive = true; 1344 return true; 1345 } 1346 return false; 1347 }; 1348 1349 if (PV) { 1350 // If we have PhiValues then use it to get the underlying phi values. 1351 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1352 // If we have more phi values than the search depth then return MayAlias 1353 // conservatively to avoid compile time explosion. The worst possible case 1354 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1355 // where 'm' and 'n' are the number of PHI sources. 1356 if (PhiValueSet.size() > MaxLookupSearchDepth) 1357 return AliasResult::MayAlias; 1358 // Add the values to V1Srcs 1359 for (Value *PV1 : PhiValueSet) { 1360 if (CheckForRecPhi(PV1)) 1361 continue; 1362 V1Srcs.push_back(PV1); 1363 } 1364 } else { 1365 // If we don't have PhiInfo then just look at the operands of the phi itself 1366 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1367 SmallPtrSet<Value *, 4> UniqueSrc; 1368 Value *OnePhi = nullptr; 1369 for (Value *PV1 : PN->incoming_values()) { 1370 if (isa<PHINode>(PV1)) { 1371 if (OnePhi && OnePhi != PV1) { 1372 // To control potential compile time explosion, we choose to be 1373 // conserviate when we have more than one Phi input. It is important 1374 // that we handle the single phi case as that lets us handle LCSSA 1375 // phi nodes and (combined with the recursive phi handling) simple 1376 // pointer induction variable patterns. 1377 return AliasResult::MayAlias; 1378 } 1379 OnePhi = PV1; 1380 } 1381 1382 if (CheckForRecPhi(PV1)) 1383 continue; 1384 1385 if (UniqueSrc.insert(PV1).second) 1386 V1Srcs.push_back(PV1); 1387 } 1388 1389 if (OnePhi && UniqueSrc.size() > 1) 1390 // Out of an abundance of caution, allow only the trivial lcssa and 1391 // recursive phi cases. 1392 return AliasResult::MayAlias; 1393 } 1394 1395 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1396 // value. This should only be possible in blocks unreachable from the entry 1397 // block, but return MayAlias just in case. 1398 if (V1Srcs.empty()) 1399 return AliasResult::MayAlias; 1400 1401 // If this PHI node is recursive, indicate that the pointer may be moved 1402 // across iterations. We can only prove NoAlias if different underlying 1403 // objects are involved. 1404 if (isRecursive) 1405 PNSize = LocationSize::beforeOrAfterPointer(); 1406 1407 // In the recursive alias queries below, we may compare values from two 1408 // different loop iterations. Keep track of visited phi blocks, which will 1409 // be used when determining value equivalence. 1410 bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second; 1411 auto _ = make_scope_exit([&]() { 1412 if (BlockInserted) 1413 VisitedPhiBBs.erase(PN->getParent()); 1414 }); 1415 1416 // If we inserted a block into VisitedPhiBBs, alias analysis results that 1417 // have been cached earlier may no longer be valid. Perform recursive queries 1418 // with a new AAQueryInfo. 1419 AAQueryInfo NewAAQI = AAQI.withEmptyCache(); 1420 AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI; 1421 1422 AliasResult Alias = getBestAAResults().alias( 1423 MemoryLocation(V2, V2Size), 1424 MemoryLocation(V1Srcs[0], PNSize), *UseAAQI); 1425 1426 // Early exit if the check of the first PHI source against V2 is MayAlias. 1427 // Other results are not possible. 1428 if (Alias == AliasResult::MayAlias) 1429 return AliasResult::MayAlias; 1430 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1431 // remain valid to all elements and needs to conservatively return MayAlias. 1432 if (isRecursive && Alias != AliasResult::NoAlias) 1433 return AliasResult::MayAlias; 1434 1435 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1436 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1437 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1438 Value *V = V1Srcs[i]; 1439 1440 AliasResult ThisAlias = getBestAAResults().alias( 1441 MemoryLocation(V2, V2Size), MemoryLocation(V, PNSize), *UseAAQI); 1442 Alias = MergeAliasResults(ThisAlias, Alias); 1443 if (Alias == AliasResult::MayAlias) 1444 break; 1445 } 1446 1447 return Alias; 1448 } 1449 1450 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1451 /// array references. 1452 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1453 const Value *V2, LocationSize V2Size, 1454 AAQueryInfo &AAQI) { 1455 // If either of the memory references is empty, it doesn't matter what the 1456 // pointer values are. 1457 if (V1Size.isZero() || V2Size.isZero()) 1458 return AliasResult::NoAlias; 1459 1460 // Strip off any casts if they exist. 1461 V1 = V1->stripPointerCastsForAliasAnalysis(); 1462 V2 = V2->stripPointerCastsForAliasAnalysis(); 1463 1464 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1465 // value for undef that aliases nothing in the program. 1466 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1467 return AliasResult::NoAlias; 1468 1469 // Are we checking for alias of the same value? 1470 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1471 // different iterations. We must therefore make sure that this is not the 1472 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1473 // happen by looking at the visited phi nodes and making sure they cannot 1474 // reach the value. 1475 if (isValueEqualInPotentialCycles(V1, V2)) 1476 return AliasResult::MustAlias; 1477 1478 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1479 return AliasResult::NoAlias; // Scalars cannot alias each other 1480 1481 // Figure out what objects these things are pointing to if we can. 1482 const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); 1483 const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); 1484 1485 // Null values in the default address space don't point to any object, so they 1486 // don't alias any other pointer. 1487 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1488 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1489 return AliasResult::NoAlias; 1490 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1491 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1492 return AliasResult::NoAlias; 1493 1494 if (O1 != O2) { 1495 // If V1/V2 point to two different objects, we know that we have no alias. 1496 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1497 return AliasResult::NoAlias; 1498 1499 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1500 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1501 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1502 return AliasResult::NoAlias; 1503 1504 // Function arguments can't alias with things that are known to be 1505 // unambigously identified at the function level. 1506 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1507 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1508 return AliasResult::NoAlias; 1509 1510 // If one pointer is the result of a call/invoke or load and the other is a 1511 // non-escaping local object within the same function, then we know the 1512 // object couldn't escape to a point where the call could return it. 1513 // 1514 // Note that if the pointers are in different functions, there are a 1515 // variety of complications. A call with a nocapture argument may still 1516 // temporary store the nocapture argument's value in a temporary memory 1517 // location if that memory location doesn't escape. Or it may pass a 1518 // nocapture value to other functions as long as they don't capture it. 1519 if (isEscapeSource(O1) && 1520 isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache)) 1521 return AliasResult::NoAlias; 1522 if (isEscapeSource(O2) && 1523 isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache)) 1524 return AliasResult::NoAlias; 1525 } 1526 1527 // If the size of one access is larger than the entire object on the other 1528 // side, then we know such behavior is undefined and can assume no alias. 1529 bool NullIsValidLocation = NullPointerIsDefined(&F); 1530 if ((isObjectSmallerThan( 1531 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1532 TLI, NullIsValidLocation)) || 1533 (isObjectSmallerThan( 1534 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1535 TLI, NullIsValidLocation))) 1536 return AliasResult::NoAlias; 1537 1538 // If one the accesses may be before the accessed pointer, canonicalize this 1539 // by using unknown after-pointer sizes for both accesses. This is 1540 // equivalent, because regardless of which pointer is lower, one of them 1541 // will always came after the other, as long as the underlying objects aren't 1542 // disjoint. We do this so that the rest of BasicAA does not have to deal 1543 // with accesses before the base pointer, and to improve cache utilization by 1544 // merging equivalent states. 1545 if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { 1546 V1Size = LocationSize::afterPointer(); 1547 V2Size = LocationSize::afterPointer(); 1548 } 1549 1550 // FIXME: If this depth limit is hit, then we may cache sub-optimal results 1551 // for recursive queries. For this reason, this limit is chosen to be large 1552 // enough to be very rarely hit, while still being small enough to avoid 1553 // stack overflows. 1554 if (AAQI.Depth >= 512) 1555 return AliasResult::MayAlias; 1556 1557 // Check the cache before climbing up use-def chains. This also terminates 1558 // otherwise infinitely recursive queries. 1559 AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size}); 1560 const bool Swapped = V1 > V2; 1561 if (Swapped) 1562 std::swap(Locs.first, Locs.second); 1563 const auto &Pair = AAQI.AliasCache.try_emplace( 1564 Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0}); 1565 if (!Pair.second) { 1566 auto &Entry = Pair.first->second; 1567 if (!Entry.isDefinitive()) { 1568 // Remember that we used an assumption. 1569 ++Entry.NumAssumptionUses; 1570 ++AAQI.NumAssumptionUses; 1571 } 1572 // Cache contains sorted {V1,V2} pairs but we should return original order. 1573 auto Result = Entry.Result; 1574 Result.swap(Swapped); 1575 return Result; 1576 } 1577 1578 int OrigNumAssumptionUses = AAQI.NumAssumptionUses; 1579 unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); 1580 AliasResult Result = 1581 aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2); 1582 1583 auto It = AAQI.AliasCache.find(Locs); 1584 assert(It != AAQI.AliasCache.end() && "Must be in cache"); 1585 auto &Entry = It->second; 1586 1587 // Check whether a NoAlias assumption has been used, but disproven. 1588 bool AssumptionDisproven = 1589 Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias; 1590 if (AssumptionDisproven) 1591 Result = AliasResult::MayAlias; 1592 1593 // This is a definitive result now, when considered as a root query. 1594 AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; 1595 Entry.Result = Result; 1596 // Cache contains sorted {V1,V2} pairs. 1597 Entry.Result.swap(Swapped); 1598 Entry.NumAssumptionUses = -1; 1599 1600 // If the assumption has been disproven, remove any results that may have 1601 // been based on this assumption. Do this after the Entry updates above to 1602 // avoid iterator invalidation. 1603 if (AssumptionDisproven) 1604 while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) 1605 AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val()); 1606 1607 // The result may still be based on assumptions higher up in the chain. 1608 // Remember it, so it can be purged from the cache later. 1609 if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && 1610 Result != AliasResult::MayAlias) 1611 AAQI.AssumptionBasedResults.push_back(Locs); 1612 return Result; 1613 } 1614 1615 AliasResult BasicAAResult::aliasCheckRecursive( 1616 const Value *V1, LocationSize V1Size, 1617 const Value *V2, LocationSize V2Size, 1618 AAQueryInfo &AAQI, const Value *O1, const Value *O2) { 1619 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1620 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI); 1621 if (Result != AliasResult::MayAlias) 1622 return Result; 1623 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { 1624 AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI); 1625 if (Result != AliasResult::MayAlias) 1626 return Result; 1627 } 1628 1629 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1630 AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI); 1631 if (Result != AliasResult::MayAlias) 1632 return Result; 1633 } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { 1634 AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI); 1635 if (Result != AliasResult::MayAlias) 1636 return Result; 1637 } 1638 1639 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1640 AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI); 1641 if (Result != AliasResult::MayAlias) 1642 return Result; 1643 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { 1644 AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI); 1645 if (Result != AliasResult::MayAlias) 1646 return Result; 1647 } 1648 1649 // If both pointers are pointing into the same object and one of them 1650 // accesses the entire object, then the accesses must overlap in some way. 1651 if (O1 == O2) { 1652 bool NullIsValidLocation = NullPointerIsDefined(&F); 1653 if (V1Size.isPrecise() && V2Size.isPrecise() && 1654 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1655 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) 1656 return AliasResult::PartialAlias; 1657 } 1658 1659 return AliasResult::MayAlias; 1660 } 1661 1662 /// Check whether two Values can be considered equivalent. 1663 /// 1664 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1665 /// they can not be part of a cycle in the value graph by looking at all 1666 /// visited phi nodes an making sure that the phis cannot reach the value. We 1667 /// have to do this because we are looking through phi nodes (That is we say 1668 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1669 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1670 const Value *V2) { 1671 if (V != V2) 1672 return false; 1673 1674 const Instruction *Inst = dyn_cast<Instruction>(V); 1675 if (!Inst) 1676 return true; 1677 1678 if (VisitedPhiBBs.empty()) 1679 return true; 1680 1681 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1682 return false; 1683 1684 // Make sure that the visited phis cannot reach the Value. This ensures that 1685 // the Values cannot come from different iterations of a potential cycle the 1686 // phi nodes could be involved in. 1687 for (auto *P : VisitedPhiBBs) 1688 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT)) 1689 return false; 1690 1691 return true; 1692 } 1693 1694 /// Computes the symbolic difference between two de-composed GEPs. 1695 /// 1696 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1697 /// instructions GEP1 and GEP2 which have common base pointers. 1698 void BasicAAResult::GetIndexDifference( 1699 SmallVectorImpl<VariableGEPIndex> &Dest, 1700 const SmallVectorImpl<VariableGEPIndex> &Src) { 1701 if (Src.empty()) 1702 return; 1703 1704 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1705 const Value *V = Src[i].V; 1706 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1707 APInt Scale = Src[i].Scale; 1708 1709 // Find V in Dest. This is N^2, but pointer indices almost never have more 1710 // than a few variable indexes. 1711 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1712 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1713 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1714 continue; 1715 1716 // If we found it, subtract off Scale V's from the entry in Dest. If it 1717 // goes to zero, remove the entry. 1718 if (Dest[j].Scale != Scale) { 1719 Dest[j].Scale -= Scale; 1720 Dest[j].IsNSW = false; 1721 } else 1722 Dest.erase(Dest.begin() + j); 1723 Scale = 0; 1724 break; 1725 } 1726 1727 // If we didn't consume this entry, add it to the end of the Dest list. 1728 if (!!Scale) { 1729 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, 1730 -Scale, Src[i].CxtI, Src[i].IsNSW}; 1731 Dest.push_back(Entry); 1732 } 1733 } 1734 } 1735 1736 bool BasicAAResult::constantOffsetHeuristic( 1737 const SmallVectorImpl<VariableGEPIndex> &VarIndices, 1738 LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset, 1739 AssumptionCache *AC, DominatorTree *DT) { 1740 if (VarIndices.size() != 2 || !MaybeV1Size.hasValue() || 1741 !MaybeV2Size.hasValue()) 1742 return false; 1743 1744 const uint64_t V1Size = MaybeV1Size.getValue(); 1745 const uint64_t V2Size = MaybeV2Size.getValue(); 1746 1747 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1748 1749 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1750 Var0.Scale != -Var1.Scale || Var0.V->getType() != Var1.V->getType()) 1751 return false; 1752 1753 // We'll strip off the Extensions of Var0 and Var1 and do another round 1754 // of GetLinearExpression decomposition. In the example above, if Var0 1755 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1756 1757 LinearExpression E0 = 1758 GetLinearExpression(ExtendedValue(Var0.V), DL, 0, AC, DT); 1759 LinearExpression E1 = 1760 GetLinearExpression(ExtendedValue(Var1.V), DL, 0, AC, DT); 1761 if (E0.Scale != E1.Scale || E0.Val.ZExtBits != E1.Val.ZExtBits || 1762 E0.Val.SExtBits != E1.Val.SExtBits || 1763 !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V)) 1764 return false; 1765 1766 // We have a hit - Var0 and Var1 only differ by a constant offset! 1767 1768 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1769 // Var1 is possible to calculate, but we're just interested in the absolute 1770 // minimum difference between the two. The minimum distance may occur due to 1771 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1772 // the minimum distance between %i and %i + 5 is 3. 1773 APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff; 1774 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1775 APInt MinDiffBytes = 1776 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1777 1778 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1779 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1780 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1781 // V2Size can fit in the MinDiffBytes gap. 1782 return MinDiffBytes.uge(V1Size + BaseOffset.abs()) && 1783 MinDiffBytes.uge(V2Size + BaseOffset.abs()); 1784 } 1785 1786 //===----------------------------------------------------------------------===// 1787 // BasicAliasAnalysis Pass 1788 //===----------------------------------------------------------------------===// 1789 1790 AnalysisKey BasicAA::Key; 1791 1792 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1793 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1794 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1795 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1796 auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F); 1797 return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV); 1798 } 1799 1800 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1801 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1802 } 1803 1804 char BasicAAWrapperPass::ID = 0; 1805 1806 void BasicAAWrapperPass::anchor() {} 1807 1808 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 1809 "Basic Alias Analysis (stateless AA impl)", true, true) 1810 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1811 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1812 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1813 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1814 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 1815 "Basic Alias Analysis (stateless AA impl)", true, true) 1816 1817 FunctionPass *llvm::createBasicAAWrapperPass() { 1818 return new BasicAAWrapperPass(); 1819 } 1820 1821 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1822 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1823 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1824 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1825 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 1826 1827 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 1828 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 1829 &DTWP.getDomTree(), 1830 PVWP ? &PVWP->getResult() : nullptr)); 1831 1832 return false; 1833 } 1834 1835 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1836 AU.setPreservesAll(); 1837 AU.addRequiredTransitive<AssumptionCacheTracker>(); 1838 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1839 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1840 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 1841 } 1842 1843 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1844 return BasicAAResult( 1845 F.getParent()->getDataLayout(), F, 1846 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 1847 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1848 } 1849