1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/PhiValues.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/KnownBits.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <cstdlib> 61 #include <utility> 62 63 #define DEBUG_TYPE "basicaa" 64 65 using namespace llvm; 66 67 /// Enable analysis of recursive PHI nodes. 68 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 69 cl::init(false)); 70 71 /// By default, even on 32-bit architectures we use 64-bit integers for 72 /// calculations. This will allow us to more-aggressively decompose indexing 73 /// expressions calculated using i64 values (e.g., long long in C) which is 74 /// common enough to worry about. 75 static cl::opt<bool> ForceAtLeast64Bits("basicaa-force-at-least-64b", 76 cl::Hidden, cl::init(true)); 77 static cl::opt<bool> DoubleCalcBits("basicaa-double-calc-bits", 78 cl::Hidden, cl::init(false)); 79 80 /// SearchLimitReached / SearchTimes shows how often the limit of 81 /// to decompose GEPs is reached. It will affect the precision 82 /// of basic alias analysis. 83 STATISTIC(SearchLimitReached, "Number of times the limit to " 84 "decompose GEPs is reached"); 85 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 86 87 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 88 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 89 /// careful with value equivalence. We use reachability to make sure a value 90 /// cannot be involved in a cycle. 91 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 92 93 // The max limit of the search depth in DecomposeGEPExpression() and 94 // GetUnderlyingObject(), both functions need to use the same search 95 // depth otherwise the algorithm in aliasGEP will assert. 96 static const unsigned MaxLookupSearchDepth = 6; 97 98 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 99 FunctionAnalysisManager::Invalidator &Inv) { 100 // We don't care if this analysis itself is preserved, it has no state. But 101 // we need to check that the analyses it depends on have been. Note that we 102 // may be created without handles to some analyses and in that case don't 103 // depend on them. 104 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 105 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 106 (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) || 107 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 108 return true; 109 110 // Otherwise this analysis result remains valid. 111 return false; 112 } 113 114 //===----------------------------------------------------------------------===// 115 // Useful predicates 116 //===----------------------------------------------------------------------===// 117 118 /// Returns true if the pointer is to a function-local object that never 119 /// escapes from the function. 120 static bool isNonEscapingLocalObject( 121 const Value *V, 122 SmallDenseMap<const Value *, bool, 8> *IsCapturedCache = nullptr) { 123 SmallDenseMap<const Value *, bool, 8>::iterator CacheIt; 124 if (IsCapturedCache) { 125 bool Inserted; 126 std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false}); 127 if (!Inserted) 128 // Found cached result, return it! 129 return CacheIt->second; 130 } 131 132 // If this is a local allocation, check to see if it escapes. 133 if (isa<AllocaInst>(V) || isNoAliasCall(V)) { 134 // Set StoreCaptures to True so that we can assume in our callers that the 135 // pointer is not the result of a load instruction. Currently 136 // PointerMayBeCaptured doesn't have any special analysis for the 137 // StoreCaptures=false case; if it did, our callers could be refined to be 138 // more precise. 139 auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 140 if (IsCapturedCache) 141 CacheIt->second = Ret; 142 return Ret; 143 } 144 145 // If this is an argument that corresponds to a byval or noalias argument, 146 // then it has not escaped before entering the function. Check if it escapes 147 // inside the function. 148 if (const Argument *A = dyn_cast<Argument>(V)) 149 if (A->hasByValAttr() || A->hasNoAliasAttr()) { 150 // Note even if the argument is marked nocapture, we still need to check 151 // for copies made inside the function. The nocapture attribute only 152 // specifies that there are no copies made that outlive the function. 153 auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 154 if (IsCapturedCache) 155 CacheIt->second = Ret; 156 return Ret; 157 } 158 159 return false; 160 } 161 162 /// Returns true if the pointer is one which would have been considered an 163 /// escape by isNonEscapingLocalObject. 164 static bool isEscapeSource(const Value *V) { 165 if (isa<CallBase>(V)) 166 return true; 167 168 if (isa<Argument>(V)) 169 return true; 170 171 // The load case works because isNonEscapingLocalObject considers all 172 // stores to be escapes (it passes true for the StoreCaptures argument 173 // to PointerMayBeCaptured). 174 if (isa<LoadInst>(V)) 175 return true; 176 177 return false; 178 } 179 180 /// Returns the size of the object specified by V or UnknownSize if unknown. 181 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 182 const TargetLibraryInfo &TLI, 183 bool NullIsValidLoc, 184 bool RoundToAlign = false) { 185 uint64_t Size; 186 ObjectSizeOpts Opts; 187 Opts.RoundToAlign = RoundToAlign; 188 Opts.NullIsUnknownSize = NullIsValidLoc; 189 if (getObjectSize(V, Size, DL, &TLI, Opts)) 190 return Size; 191 return MemoryLocation::UnknownSize; 192 } 193 194 /// Returns true if we can prove that the object specified by V is smaller than 195 /// Size. 196 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 197 const DataLayout &DL, 198 const TargetLibraryInfo &TLI, 199 bool NullIsValidLoc) { 200 // Note that the meanings of the "object" are slightly different in the 201 // following contexts: 202 // c1: llvm::getObjectSize() 203 // c2: llvm.objectsize() intrinsic 204 // c3: isObjectSmallerThan() 205 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 206 // refers to the "entire object". 207 // 208 // Consider this example: 209 // char *p = (char*)malloc(100) 210 // char *q = p+80; 211 // 212 // In the context of c1 and c2, the "object" pointed by q refers to the 213 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 214 // 215 // However, in the context of c3, the "object" refers to the chunk of memory 216 // being allocated. So, the "object" has 100 bytes, and q points to the middle 217 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 218 // parameter, before the llvm::getObjectSize() is called to get the size of 219 // entire object, we should: 220 // - either rewind the pointer q to the base-address of the object in 221 // question (in this case rewind to p), or 222 // - just give up. It is up to caller to make sure the pointer is pointing 223 // to the base address the object. 224 // 225 // We go for 2nd option for simplicity. 226 if (!isIdentifiedObject(V)) 227 return false; 228 229 // This function needs to use the aligned object size because we allow 230 // reads a bit past the end given sufficient alignment. 231 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 232 /*RoundToAlign*/ true); 233 234 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 235 } 236 237 /// Return the minimal extent from \p V to the end of the underlying object, 238 /// assuming the result is used in an aliasing query. E.g., we do use the query 239 /// location size and the fact that null pointers cannot alias here. 240 static uint64_t getMinimalExtentFrom(const Value &V, 241 const LocationSize &LocSize, 242 const DataLayout &DL, 243 bool NullIsValidLoc) { 244 // If we have dereferenceability information we know a lower bound for the 245 // extent as accesses for a lower offset would be valid. We need to exclude 246 // the "or null" part if null is a valid pointer. 247 bool CanBeNull; 248 uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull); 249 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 250 // If queried with a precise location size, we assume that location size to be 251 // accessed, thus valid. 252 if (LocSize.isPrecise()) 253 DerefBytes = std::max(DerefBytes, LocSize.getValue()); 254 return DerefBytes; 255 } 256 257 /// Returns true if we can prove that the object specified by V has size Size. 258 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 259 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 260 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 261 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 262 } 263 264 //===----------------------------------------------------------------------===// 265 // GetElementPtr Instruction Decomposition and Analysis 266 //===----------------------------------------------------------------------===// 267 268 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 269 /// B are constant integers. 270 /// 271 /// Returns the scale and offset values as APInts and return V as a Value*, and 272 /// return whether we looked through any sign or zero extends. The incoming 273 /// Value is known to have IntegerType, and it may already be sign or zero 274 /// extended. 275 /// 276 /// Note that this looks through extends, so the high bits may not be 277 /// represented in the result. 278 /*static*/ const Value *BasicAAResult::GetLinearExpression( 279 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 280 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 281 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 282 assert(V->getType()->isIntegerTy() && "Not an integer value"); 283 284 // Limit our recursion depth. 285 if (Depth == 6) { 286 Scale = 1; 287 Offset = 0; 288 return V; 289 } 290 291 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 292 // If it's a constant, just convert it to an offset and remove the variable. 293 // If we've been called recursively, the Offset bit width will be greater 294 // than the constant's (the Offset's always as wide as the outermost call), 295 // so we'll zext here and process any extension in the isa<SExtInst> & 296 // isa<ZExtInst> cases below. 297 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 298 assert(Scale == 0 && "Constant values don't have a scale"); 299 return V; 300 } 301 302 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 303 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 304 // If we've been called recursively, then Offset and Scale will be wider 305 // than the BOp operands. We'll always zext it here as we'll process sign 306 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 307 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 308 309 switch (BOp->getOpcode()) { 310 default: 311 // We don't understand this instruction, so we can't decompose it any 312 // further. 313 Scale = 1; 314 Offset = 0; 315 return V; 316 case Instruction::Or: 317 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 318 // analyze it. 319 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 320 BOp, DT)) { 321 Scale = 1; 322 Offset = 0; 323 return V; 324 } 325 LLVM_FALLTHROUGH; 326 case Instruction::Add: 327 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 328 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 329 Offset += RHS; 330 break; 331 case Instruction::Sub: 332 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 333 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 334 Offset -= RHS; 335 break; 336 case Instruction::Mul: 337 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 338 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 339 Offset *= RHS; 340 Scale *= RHS; 341 break; 342 case Instruction::Shl: 343 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 344 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 345 346 // We're trying to linearize an expression of the kind: 347 // shl i8 -128, 36 348 // where the shift count exceeds the bitwidth of the type. 349 // We can't decompose this further (the expression would return 350 // a poison value). 351 if (Offset.getBitWidth() < RHS.getLimitedValue() || 352 Scale.getBitWidth() < RHS.getLimitedValue()) { 353 Scale = 1; 354 Offset = 0; 355 return V; 356 } 357 358 Offset <<= RHS.getLimitedValue(); 359 Scale <<= RHS.getLimitedValue(); 360 // the semantics of nsw and nuw for left shifts don't match those of 361 // multiplications, so we won't propagate them. 362 NSW = NUW = false; 363 return V; 364 } 365 366 if (isa<OverflowingBinaryOperator>(BOp)) { 367 NUW &= BOp->hasNoUnsignedWrap(); 368 NSW &= BOp->hasNoSignedWrap(); 369 } 370 return V; 371 } 372 } 373 374 // Since GEP indices are sign extended anyway, we don't care about the high 375 // bits of a sign or zero extended value - just scales and offsets. The 376 // extensions have to be consistent though. 377 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 378 Value *CastOp = cast<CastInst>(V)->getOperand(0); 379 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 380 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 381 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 382 const Value *Result = 383 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 384 Depth + 1, AC, DT, NSW, NUW); 385 386 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 387 // by just incrementing the number of bits we've extended by. 388 unsigned ExtendedBy = NewWidth - SmallWidth; 389 390 if (isa<SExtInst>(V) && ZExtBits == 0) { 391 // sext(sext(%x, a), b) == sext(%x, a + b) 392 393 if (NSW) { 394 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 395 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 396 unsigned OldWidth = Offset.getBitWidth(); 397 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 398 } else { 399 // We may have signed-wrapped, so don't decompose sext(%x + c) into 400 // sext(%x) + sext(c) 401 Scale = 1; 402 Offset = 0; 403 Result = CastOp; 404 ZExtBits = OldZExtBits; 405 SExtBits = OldSExtBits; 406 } 407 SExtBits += ExtendedBy; 408 } else { 409 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 410 411 if (!NUW) { 412 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 413 // zext(%x) + zext(c) 414 Scale = 1; 415 Offset = 0; 416 Result = CastOp; 417 ZExtBits = OldZExtBits; 418 SExtBits = OldSExtBits; 419 } 420 ZExtBits += ExtendedBy; 421 } 422 423 return Result; 424 } 425 426 Scale = 1; 427 Offset = 0; 428 return V; 429 } 430 431 /// To ensure a pointer offset fits in an integer of size PointerSize 432 /// (in bits) when that size is smaller than the maximum pointer size. This is 433 /// an issue, for example, in particular for 32b pointers with negative indices 434 /// that rely on two's complement wrap-arounds for precise alias information 435 /// where the maximum pointer size is 64b. 436 static APInt adjustToPointerSize(APInt Offset, unsigned PointerSize) { 437 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!"); 438 unsigned ShiftBits = Offset.getBitWidth() - PointerSize; 439 return (Offset << ShiftBits).ashr(ShiftBits); 440 } 441 442 static unsigned getMaxPointerSize(const DataLayout &DL) { 443 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits(); 444 if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64; 445 if (DoubleCalcBits) MaxPointerSize *= 2; 446 447 return MaxPointerSize; 448 } 449 450 /// If V is a symbolic pointer expression, decompose it into a base pointer 451 /// with a constant offset and a number of scaled symbolic offsets. 452 /// 453 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 454 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 455 /// specified amount, but which may have other unrepresented high bits. As 456 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 457 /// 458 /// When DataLayout is around, this function is capable of analyzing everything 459 /// that GetUnderlyingObject can look through. To be able to do that 460 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 461 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 462 /// through pointer casts. 463 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 464 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 465 DominatorTree *DT) { 466 // Limit recursion depth to limit compile time in crazy cases. 467 unsigned MaxLookup = MaxLookupSearchDepth; 468 SearchTimes++; 469 470 unsigned MaxPointerSize = getMaxPointerSize(DL); 471 Decomposed.VarIndices.clear(); 472 do { 473 // See if this is a bitcast or GEP. 474 const Operator *Op = dyn_cast<Operator>(V); 475 if (!Op) { 476 // The only non-operator case we can handle are GlobalAliases. 477 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 478 if (!GA->isInterposable()) { 479 V = GA->getAliasee(); 480 continue; 481 } 482 } 483 Decomposed.Base = V; 484 return false; 485 } 486 487 if (Op->getOpcode() == Instruction::BitCast || 488 Op->getOpcode() == Instruction::AddrSpaceCast) { 489 V = Op->getOperand(0); 490 continue; 491 } 492 493 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 494 if (!GEPOp) { 495 if (const auto *Call = dyn_cast<CallBase>(V)) { 496 // CaptureTracking can know about special capturing properties of some 497 // intrinsics like launder.invariant.group, that can't be expressed with 498 // the attributes, but have properties like returning aliasing pointer. 499 // Because some analysis may assume that nocaptured pointer is not 500 // returned from some special intrinsic (because function would have to 501 // be marked with returns attribute), it is crucial to use this function 502 // because it should be in sync with CaptureTracking. Not using it may 503 // cause weird miscompilations where 2 aliasing pointers are assumed to 504 // noalias. 505 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 506 V = RP; 507 continue; 508 } 509 } 510 511 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 512 // can come up with something. This matches what GetUnderlyingObject does. 513 if (const Instruction *I = dyn_cast<Instruction>(V)) 514 // TODO: Get a DominatorTree and AssumptionCache and use them here 515 // (these are both now available in this function, but this should be 516 // updated when GetUnderlyingObject is updated). TLI should be 517 // provided also. 518 if (const Value *Simplified = 519 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 520 V = Simplified; 521 continue; 522 } 523 524 Decomposed.Base = V; 525 return false; 526 } 527 528 // Don't attempt to analyze GEPs over unsized objects. 529 if (!GEPOp->getSourceElementType()->isSized()) { 530 Decomposed.Base = V; 531 return false; 532 } 533 534 unsigned AS = GEPOp->getPointerAddressSpace(); 535 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 536 gep_type_iterator GTI = gep_type_begin(GEPOp); 537 unsigned PointerSize = DL.getPointerSizeInBits(AS); 538 // Assume all GEP operands are constants until proven otherwise. 539 bool GepHasConstantOffset = true; 540 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 541 I != E; ++I, ++GTI) { 542 const Value *Index = *I; 543 // Compute the (potentially symbolic) offset in bytes for this index. 544 if (StructType *STy = GTI.getStructTypeOrNull()) { 545 // For a struct, add the member offset. 546 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 547 if (FieldNo == 0) 548 continue; 549 550 Decomposed.StructOffset += 551 DL.getStructLayout(STy)->getElementOffset(FieldNo); 552 continue; 553 } 554 555 // For an array/pointer, add the element offset, explicitly scaled. 556 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 557 if (CIdx->isZero()) 558 continue; 559 Decomposed.OtherOffset += 560 (DL.getTypeAllocSize(GTI.getIndexedType()) * 561 CIdx->getValue().sextOrSelf(MaxPointerSize)) 562 .sextOrTrunc(MaxPointerSize); 563 continue; 564 } 565 566 GepHasConstantOffset = false; 567 568 APInt Scale(MaxPointerSize, DL.getTypeAllocSize(GTI.getIndexedType())); 569 unsigned ZExtBits = 0, SExtBits = 0; 570 571 // If the integer type is smaller than the pointer size, it is implicitly 572 // sign extended to pointer size. 573 unsigned Width = Index->getType()->getIntegerBitWidth(); 574 if (PointerSize > Width) 575 SExtBits += PointerSize - Width; 576 577 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 578 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 579 bool NSW = true, NUW = true; 580 const Value *OrigIndex = Index; 581 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 582 SExtBits, DL, 0, AC, DT, NSW, NUW); 583 584 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 585 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 586 587 // It can be the case that, even through C1*V+C2 does not overflow for 588 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot 589 // decompose the expression in this way. 590 // 591 // FIXME: C1*Scale and the other operations in the decomposed 592 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this 593 // possibility. 594 APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) * 595 Scale.sext(MaxPointerSize*2); 596 if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) { 597 Index = OrigIndex; 598 IndexScale = 1; 599 IndexOffset = 0; 600 601 ZExtBits = SExtBits = 0; 602 if (PointerSize > Width) 603 SExtBits += PointerSize - Width; 604 } else { 605 Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale; 606 Scale *= IndexScale.sextOrTrunc(MaxPointerSize); 607 } 608 609 // If we already had an occurrence of this index variable, merge this 610 // scale into it. For example, we want to handle: 611 // A[x][x] -> x*16 + x*4 -> x*20 612 // This also ensures that 'x' only appears in the index list once. 613 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 614 if (Decomposed.VarIndices[i].V == Index && 615 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 616 Decomposed.VarIndices[i].SExtBits == SExtBits) { 617 Scale += Decomposed.VarIndices[i].Scale; 618 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 619 break; 620 } 621 } 622 623 // Make sure that we have a scale that makes sense for this target's 624 // pointer size. 625 Scale = adjustToPointerSize(Scale, PointerSize); 626 627 if (!!Scale) { 628 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale}; 629 Decomposed.VarIndices.push_back(Entry); 630 } 631 } 632 633 // Take care of wrap-arounds 634 if (GepHasConstantOffset) { 635 Decomposed.StructOffset = 636 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 637 Decomposed.OtherOffset = 638 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 639 } 640 641 // Analyze the base pointer next. 642 V = GEPOp->getOperand(0); 643 } while (--MaxLookup); 644 645 // If the chain of expressions is too deep, just return early. 646 Decomposed.Base = V; 647 SearchLimitReached++; 648 return true; 649 } 650 651 /// Returns whether the given pointer value points to memory that is local to 652 /// the function, with global constants being considered local to all 653 /// functions. 654 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 655 AAQueryInfo &AAQI, bool OrLocal) { 656 assert(Visited.empty() && "Visited must be cleared after use!"); 657 658 unsigned MaxLookup = 8; 659 SmallVector<const Value *, 16> Worklist; 660 Worklist.push_back(Loc.Ptr); 661 do { 662 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 663 if (!Visited.insert(V).second) { 664 Visited.clear(); 665 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 666 } 667 668 // An alloca instruction defines local memory. 669 if (OrLocal && isa<AllocaInst>(V)) 670 continue; 671 672 // A global constant counts as local memory for our purposes. 673 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 674 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 675 // global to be marked constant in some modules and non-constant in 676 // others. GV may even be a declaration, not a definition. 677 if (!GV->isConstant()) { 678 Visited.clear(); 679 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 680 } 681 continue; 682 } 683 684 // If both select values point to local memory, then so does the select. 685 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 686 Worklist.push_back(SI->getTrueValue()); 687 Worklist.push_back(SI->getFalseValue()); 688 continue; 689 } 690 691 // If all values incoming to a phi node point to local memory, then so does 692 // the phi. 693 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 694 // Don't bother inspecting phi nodes with many operands. 695 if (PN->getNumIncomingValues() > MaxLookup) { 696 Visited.clear(); 697 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 698 } 699 for (Value *IncValue : PN->incoming_values()) 700 Worklist.push_back(IncValue); 701 continue; 702 } 703 704 // Otherwise be conservative. 705 Visited.clear(); 706 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 707 } while (!Worklist.empty() && --MaxLookup); 708 709 Visited.clear(); 710 return Worklist.empty(); 711 } 712 713 /// Returns the behavior when calling the given call site. 714 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 715 if (Call->doesNotAccessMemory()) 716 // Can't do better than this. 717 return FMRB_DoesNotAccessMemory; 718 719 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 720 721 // If the callsite knows it only reads memory, don't return worse 722 // than that. 723 if (Call->onlyReadsMemory()) 724 Min = FMRB_OnlyReadsMemory; 725 else if (Call->doesNotReadMemory()) 726 Min = FMRB_DoesNotReadMemory; 727 728 if (Call->onlyAccessesArgMemory()) 729 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 730 else if (Call->onlyAccessesInaccessibleMemory()) 731 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 732 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 733 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 734 735 // If the call has operand bundles then aliasing attributes from the function 736 // it calls do not directly apply to the call. This can be made more precise 737 // in the future. 738 if (!Call->hasOperandBundles()) 739 if (const Function *F = Call->getCalledFunction()) 740 Min = 741 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 742 743 return Min; 744 } 745 746 /// Returns the behavior when calling the given function. For use when the call 747 /// site is not known. 748 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 749 // If the function declares it doesn't access memory, we can't do better. 750 if (F->doesNotAccessMemory()) 751 return FMRB_DoesNotAccessMemory; 752 753 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 754 755 // If the function declares it only reads memory, go with that. 756 if (F->onlyReadsMemory()) 757 Min = FMRB_OnlyReadsMemory; 758 else if (F->doesNotReadMemory()) 759 Min = FMRB_DoesNotReadMemory; 760 761 if (F->onlyAccessesArgMemory()) 762 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 763 else if (F->onlyAccessesInaccessibleMemory()) 764 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 765 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 766 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 767 768 return Min; 769 } 770 771 /// Returns true if this is a writeonly (i.e Mod only) parameter. 772 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 773 const TargetLibraryInfo &TLI) { 774 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 775 return true; 776 777 // We can bound the aliasing properties of memset_pattern16 just as we can 778 // for memcpy/memset. This is particularly important because the 779 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 780 // whenever possible. 781 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 782 // attributes. 783 LibFunc F; 784 if (Call->getCalledFunction() && 785 TLI.getLibFunc(*Call->getCalledFunction(), F) && 786 F == LibFunc_memset_pattern16 && TLI.has(F)) 787 if (ArgIdx == 0) 788 return true; 789 790 // TODO: memset_pattern4, memset_pattern8 791 // TODO: _chk variants 792 // TODO: strcmp, strcpy 793 794 return false; 795 } 796 797 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 798 unsigned ArgIdx) { 799 // Checking for known builtin intrinsics and target library functions. 800 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 801 return ModRefInfo::Mod; 802 803 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 804 return ModRefInfo::Ref; 805 806 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 807 return ModRefInfo::NoModRef; 808 809 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 810 } 811 812 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 813 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 814 return II && II->getIntrinsicID() == IID; 815 } 816 817 #ifndef NDEBUG 818 static const Function *getParent(const Value *V) { 819 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 820 if (!inst->getParent()) 821 return nullptr; 822 return inst->getParent()->getParent(); 823 } 824 825 if (const Argument *arg = dyn_cast<Argument>(V)) 826 return arg->getParent(); 827 828 return nullptr; 829 } 830 831 static bool notDifferentParent(const Value *O1, const Value *O2) { 832 833 const Function *F1 = getParent(O1); 834 const Function *F2 = getParent(O2); 835 836 return !F1 || !F2 || F1 == F2; 837 } 838 #endif 839 840 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 841 const MemoryLocation &LocB, 842 AAQueryInfo &AAQI) { 843 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 844 "BasicAliasAnalysis doesn't support interprocedural queries."); 845 846 // If we have a directly cached entry for these locations, we have recursed 847 // through this once, so just return the cached results. Notably, when this 848 // happens, we don't clear the cache. 849 auto CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocA, LocB)); 850 if (CacheIt != AAQI.AliasCache.end()) 851 return CacheIt->second; 852 853 CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocB, LocA)); 854 if (CacheIt != AAQI.AliasCache.end()) 855 return CacheIt->second; 856 857 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 858 LocB.Size, LocB.AATags, AAQI); 859 860 VisitedPhiBBs.clear(); 861 return Alias; 862 } 863 864 /// Checks to see if the specified callsite can clobber the specified memory 865 /// object. 866 /// 867 /// Since we only look at local properties of this function, we really can't 868 /// say much about this query. We do, however, use simple "address taken" 869 /// analysis on local objects. 870 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 871 const MemoryLocation &Loc, 872 AAQueryInfo &AAQI) { 873 assert(notDifferentParent(Call, Loc.Ptr) && 874 "AliasAnalysis query involving multiple functions!"); 875 876 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 877 878 // Calls marked 'tail' cannot read or write allocas from the current frame 879 // because the current frame might be destroyed by the time they run. However, 880 // a tail call may use an alloca with byval. Calling with byval copies the 881 // contents of the alloca into argument registers or stack slots, so there is 882 // no lifetime issue. 883 if (isa<AllocaInst>(Object)) 884 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 885 if (CI->isTailCall() && 886 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 887 return ModRefInfo::NoModRef; 888 889 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 890 // modify them even though the alloca is not escaped. 891 if (auto *AI = dyn_cast<AllocaInst>(Object)) 892 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 893 return ModRefInfo::Mod; 894 895 // If the pointer is to a locally allocated object that does not escape, 896 // then the call can not mod/ref the pointer unless the call takes the pointer 897 // as an argument, and itself doesn't capture it. 898 if (!isa<Constant>(Object) && Call != Object && 899 isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) { 900 901 // Optimistically assume that call doesn't touch Object and check this 902 // assumption in the following loop. 903 ModRefInfo Result = ModRefInfo::NoModRef; 904 bool IsMustAlias = true; 905 906 unsigned OperandNo = 0; 907 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 908 CI != CE; ++CI, ++OperandNo) { 909 // Only look at the no-capture or byval pointer arguments. If this 910 // pointer were passed to arguments that were neither of these, then it 911 // couldn't be no-capture. 912 if (!(*CI)->getType()->isPointerTy() || 913 (!Call->doesNotCapture(OperandNo) && 914 OperandNo < Call->getNumArgOperands() && 915 !Call->isByValArgument(OperandNo))) 916 continue; 917 918 // Call doesn't access memory through this operand, so we don't care 919 // if it aliases with Object. 920 if (Call->doesNotAccessMemory(OperandNo)) 921 continue; 922 923 // If this is a no-capture pointer argument, see if we can tell that it 924 // is impossible to alias the pointer we're checking. 925 AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI), 926 MemoryLocation(Object), AAQI); 927 if (AR != MustAlias) 928 IsMustAlias = false; 929 // Operand doesn't alias 'Object', continue looking for other aliases 930 if (AR == NoAlias) 931 continue; 932 // Operand aliases 'Object', but call doesn't modify it. Strengthen 933 // initial assumption and keep looking in case if there are more aliases. 934 if (Call->onlyReadsMemory(OperandNo)) { 935 Result = setRef(Result); 936 continue; 937 } 938 // Operand aliases 'Object' but call only writes into it. 939 if (Call->doesNotReadMemory(OperandNo)) { 940 Result = setMod(Result); 941 continue; 942 } 943 // This operand aliases 'Object' and call reads and writes into it. 944 // Setting ModRef will not yield an early return below, MustAlias is not 945 // used further. 946 Result = ModRefInfo::ModRef; 947 break; 948 } 949 950 // No operand aliases, reset Must bit. Add below if at least one aliases 951 // and all aliases found are MustAlias. 952 if (isNoModRef(Result)) 953 IsMustAlias = false; 954 955 // Early return if we improved mod ref information 956 if (!isModAndRefSet(Result)) { 957 if (isNoModRef(Result)) 958 return ModRefInfo::NoModRef; 959 return IsMustAlias ? setMust(Result) : clearMust(Result); 960 } 961 } 962 963 // If the call is to malloc or calloc, we can assume that it doesn't 964 // modify any IR visible value. This is only valid because we assume these 965 // routines do not read values visible in the IR. TODO: Consider special 966 // casing realloc and strdup routines which access only their arguments as 967 // well. Or alternatively, replace all of this with inaccessiblememonly once 968 // that's implemented fully. 969 if (isMallocOrCallocLikeFn(Call, &TLI)) { 970 // Be conservative if the accessed pointer may alias the allocation - 971 // fallback to the generic handling below. 972 if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias) 973 return ModRefInfo::NoModRef; 974 } 975 976 // The semantics of memcpy intrinsics forbid overlap between their respective 977 // operands, i.e., source and destination of any given memcpy must no-alias. 978 // If Loc must-aliases either one of these two locations, then it necessarily 979 // no-aliases the other. 980 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) { 981 AliasResult SrcAA, DestAA; 982 983 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst), 984 Loc, AAQI)) == MustAlias) 985 // Loc is exactly the memcpy source thus disjoint from memcpy dest. 986 return ModRefInfo::Ref; 987 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst), 988 Loc, AAQI)) == MustAlias) 989 // The converse case. 990 return ModRefInfo::Mod; 991 992 // It's also possible for Loc to alias both src and dest, or neither. 993 ModRefInfo rv = ModRefInfo::NoModRef; 994 if (SrcAA != NoAlias) 995 rv = setRef(rv); 996 if (DestAA != NoAlias) 997 rv = setMod(rv); 998 return rv; 999 } 1000 1001 // While the assume intrinsic is marked as arbitrarily writing so that 1002 // proper control dependencies will be maintained, it never aliases any 1003 // particular memory location. 1004 if (isIntrinsicCall(Call, Intrinsic::assume)) 1005 return ModRefInfo::NoModRef; 1006 1007 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 1008 // that proper control dependencies are maintained but they never mods any 1009 // particular memory location. 1010 // 1011 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1012 // heap state at the point the guard is issued needs to be consistent in case 1013 // the guard invokes the "deopt" continuation. 1014 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 1015 return ModRefInfo::Ref; 1016 1017 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 1018 // writing so that proper control dependencies are maintained but they never 1019 // mod any particular memory location visible to the IR. 1020 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 1021 // intrinsic is now modeled as reading memory. This prevents hoisting the 1022 // invariant.start intrinsic over stores. Consider: 1023 // *ptr = 40; 1024 // *ptr = 50; 1025 // invariant_start(ptr) 1026 // int val = *ptr; 1027 // print(val); 1028 // 1029 // This cannot be transformed to: 1030 // 1031 // *ptr = 40; 1032 // invariant_start(ptr) 1033 // *ptr = 50; 1034 // int val = *ptr; 1035 // print(val); 1036 // 1037 // The transformation will cause the second store to be ignored (based on 1038 // rules of invariant.start) and print 40, while the first program always 1039 // prints 50. 1040 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 1041 return ModRefInfo::Ref; 1042 1043 // The AAResultBase base class has some smarts, lets use them. 1044 return AAResultBase::getModRefInfo(Call, Loc, AAQI); 1045 } 1046 1047 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 1048 const CallBase *Call2, 1049 AAQueryInfo &AAQI) { 1050 // While the assume intrinsic is marked as arbitrarily writing so that 1051 // proper control dependencies will be maintained, it never aliases any 1052 // particular memory location. 1053 if (isIntrinsicCall(Call1, Intrinsic::assume) || 1054 isIntrinsicCall(Call2, Intrinsic::assume)) 1055 return ModRefInfo::NoModRef; 1056 1057 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 1058 // that proper control dependencies are maintained but they never mod any 1059 // particular memory location. 1060 // 1061 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1062 // heap state at the point the guard is issued needs to be consistent in case 1063 // the guard invokes the "deopt" continuation. 1064 1065 // NB! This function is *not* commutative, so we special case two 1066 // possibilities for guard intrinsics. 1067 1068 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1069 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 1070 ? ModRefInfo::Ref 1071 : ModRefInfo::NoModRef; 1072 1073 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1074 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 1075 ? ModRefInfo::Mod 1076 : ModRefInfo::NoModRef; 1077 1078 // The AAResultBase base class has some smarts, lets use them. 1079 return AAResultBase::getModRefInfo(Call1, Call2, AAQI); 1080 } 1081 1082 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 1083 /// both having the exact same pointer operand. 1084 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 1085 LocationSize MaybeV1Size, 1086 const GEPOperator *GEP2, 1087 LocationSize MaybeV2Size, 1088 const DataLayout &DL) { 1089 assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1090 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1091 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() && 1092 "Expected GEPs with the same pointer operand"); 1093 1094 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 1095 // such that the struct field accesses provably cannot alias. 1096 // We also need at least two indices (the pointer, and the struct field). 1097 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 1098 GEP1->getNumIndices() < 2) 1099 return MayAlias; 1100 1101 // If we don't know the size of the accesses through both GEPs, we can't 1102 // determine whether the struct fields accessed can't alias. 1103 if (MaybeV1Size == LocationSize::unknown() || 1104 MaybeV2Size == LocationSize::unknown()) 1105 return MayAlias; 1106 1107 const uint64_t V1Size = MaybeV1Size.getValue(); 1108 const uint64_t V2Size = MaybeV2Size.getValue(); 1109 1110 ConstantInt *C1 = 1111 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 1112 ConstantInt *C2 = 1113 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 1114 1115 // If the last (struct) indices are constants and are equal, the other indices 1116 // might be also be dynamically equal, so the GEPs can alias. 1117 if (C1 && C2) { 1118 unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth()); 1119 if (C1->getValue().sextOrSelf(BitWidth) == 1120 C2->getValue().sextOrSelf(BitWidth)) 1121 return MayAlias; 1122 } 1123 1124 // Find the last-indexed type of the GEP, i.e., the type you'd get if 1125 // you stripped the last index. 1126 // On the way, look at each indexed type. If there's something other 1127 // than an array, different indices can lead to different final types. 1128 SmallVector<Value *, 8> IntermediateIndices; 1129 1130 // Insert the first index; we don't need to check the type indexed 1131 // through it as it only drops the pointer indirection. 1132 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 1133 IntermediateIndices.push_back(GEP1->getOperand(1)); 1134 1135 // Insert all the remaining indices but the last one. 1136 // Also, check that they all index through arrays. 1137 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 1138 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 1139 GEP1->getSourceElementType(), IntermediateIndices))) 1140 return MayAlias; 1141 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 1142 } 1143 1144 auto *Ty = GetElementPtrInst::getIndexedType( 1145 GEP1->getSourceElementType(), IntermediateIndices); 1146 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 1147 1148 if (isa<SequentialType>(Ty)) { 1149 // We know that: 1150 // - both GEPs begin indexing from the exact same pointer; 1151 // - the last indices in both GEPs are constants, indexing into a sequential 1152 // type (array or pointer); 1153 // - both GEPs only index through arrays prior to that. 1154 // 1155 // Because array indices greater than the number of elements are valid in 1156 // GEPs, unless we know the intermediate indices are identical between 1157 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 1158 // partially overlap. We also need to check that the loaded size matches 1159 // the element size, otherwise we could still have overlap. 1160 const uint64_t ElementSize = 1161 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 1162 if (V1Size != ElementSize || V2Size != ElementSize) 1163 return MayAlias; 1164 1165 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 1166 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 1167 return MayAlias; 1168 1169 // Now we know that the array/pointer that GEP1 indexes into and that 1170 // that GEP2 indexes into must either precisely overlap or be disjoint. 1171 // Because they cannot partially overlap and because fields in an array 1172 // cannot overlap, if we can prove the final indices are different between 1173 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1174 1175 // If the last indices are constants, we've already checked they don't 1176 // equal each other so we can exit early. 1177 if (C1 && C2) 1178 return NoAlias; 1179 { 1180 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1); 1181 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1); 1182 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) { 1183 // If one of the indices is a PHI node, be safe and only use 1184 // computeKnownBits so we don't make any assumptions about the 1185 // relationships between the two indices. This is important if we're 1186 // asking about values from different loop iterations. See PR32314. 1187 // TODO: We may be able to change the check so we only do this when 1188 // we definitely looked through a PHINode. 1189 if (GEP1LastIdx != GEP2LastIdx && 1190 GEP1LastIdx->getType() == GEP2LastIdx->getType()) { 1191 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL); 1192 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL); 1193 if (Known1.Zero.intersects(Known2.One) || 1194 Known1.One.intersects(Known2.Zero)) 1195 return NoAlias; 1196 } 1197 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL)) 1198 return NoAlias; 1199 } 1200 return MayAlias; 1201 } else if (!LastIndexedStruct || !C1 || !C2) { 1202 return MayAlias; 1203 } 1204 1205 if (C1->getValue().getActiveBits() > 64 || 1206 C2->getValue().getActiveBits() > 64) 1207 return MayAlias; 1208 1209 // We know that: 1210 // - both GEPs begin indexing from the exact same pointer; 1211 // - the last indices in both GEPs are constants, indexing into a struct; 1212 // - said indices are different, hence, the pointed-to fields are different; 1213 // - both GEPs only index through arrays prior to that. 1214 // 1215 // This lets us determine that the struct that GEP1 indexes into and the 1216 // struct that GEP2 indexes into must either precisely overlap or be 1217 // completely disjoint. Because they cannot partially overlap, indexing into 1218 // different non-overlapping fields of the struct will never alias. 1219 1220 // Therefore, the only remaining thing needed to show that both GEPs can't 1221 // alias is that the fields are not overlapping. 1222 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1223 const uint64_t StructSize = SL->getSizeInBytes(); 1224 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1225 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1226 1227 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1228 uint64_t V2Off, uint64_t V2Size) { 1229 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1230 ((V2Off + V2Size <= StructSize) || 1231 (V2Off + V2Size - StructSize <= V1Off)); 1232 }; 1233 1234 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1235 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1236 return NoAlias; 1237 1238 return MayAlias; 1239 } 1240 1241 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1242 // beginning of the object the GEP points would have a negative offset with 1243 // repsect to the alloca, that means the GEP can not alias pointer (b). 1244 // Note that the pointer based on the alloca may not be a GEP. For 1245 // example, it may be the alloca itself. 1246 // The same applies if (b) is based on a GlobalVariable. Note that just being 1247 // based on isIdentifiedObject() is not enough - we need an identified object 1248 // that does not permit access to negative offsets. For example, a negative 1249 // offset from a noalias argument or call can be inbounds w.r.t the actual 1250 // underlying object. 1251 // 1252 // For example, consider: 1253 // 1254 // struct { int f0, int f1, ...} foo; 1255 // foo alloca; 1256 // foo* random = bar(alloca); 1257 // int *f0 = &alloca.f0 1258 // int *f1 = &random->f1; 1259 // 1260 // Which is lowered, approximately, to: 1261 // 1262 // %alloca = alloca %struct.foo 1263 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1264 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1265 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1266 // 1267 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1268 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1269 // point into the same object. But since %f0 points to the beginning of %alloca, 1270 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1271 // than (%alloca - 1), and so is not inbounds, a contradiction. 1272 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1273 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1274 LocationSize MaybeObjectAccessSize) { 1275 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1276 if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds()) 1277 return false; 1278 1279 const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue(); 1280 1281 // We need the object to be an alloca or a globalvariable, and want to know 1282 // the offset of the pointer from the object precisely, so no variable 1283 // indices are allowed. 1284 if (!(isa<AllocaInst>(DecompObject.Base) || 1285 isa<GlobalVariable>(DecompObject.Base)) || 1286 !DecompObject.VarIndices.empty()) 1287 return false; 1288 1289 APInt ObjectBaseOffset = DecompObject.StructOffset + 1290 DecompObject.OtherOffset; 1291 1292 // If the GEP has no variable indices, we know the precise offset 1293 // from the base, then use it. If the GEP has variable indices, 1294 // we can't get exact GEP offset to identify pointer alias. So return 1295 // false in that case. 1296 if (!DecompGEP.VarIndices.empty()) 1297 return false; 1298 1299 APInt GEPBaseOffset = DecompGEP.StructOffset; 1300 GEPBaseOffset += DecompGEP.OtherOffset; 1301 1302 return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize); 1303 } 1304 1305 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1306 /// another pointer. 1307 /// 1308 /// We know that V1 is a GEP, but we don't know anything about V2. 1309 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1310 /// V2. 1311 AliasResult BasicAAResult::aliasGEP( 1312 const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo, 1313 const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo, 1314 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1315 DecomposedGEP DecompGEP1, DecompGEP2; 1316 unsigned MaxPointerSize = getMaxPointerSize(DL); 1317 DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0); 1318 DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0); 1319 1320 bool GEP1MaxLookupReached = 1321 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1322 bool GEP2MaxLookupReached = 1323 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1324 1325 APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1326 APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1327 1328 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1329 "DecomposeGEPExpression returned a result different from " 1330 "GetUnderlyingObject"); 1331 1332 // If the GEP's offset relative to its base is such that the base would 1333 // fall below the start of the object underlying V2, then the GEP and V2 1334 // cannot alias. 1335 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1336 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1337 return NoAlias; 1338 // If we have two gep instructions with must-alias or not-alias'ing base 1339 // pointers, figure out if the indexes to the GEP tell us anything about the 1340 // derived pointer. 1341 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1342 // Check for the GEP base being at a negative offset, this time in the other 1343 // direction. 1344 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1345 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1346 return NoAlias; 1347 // Do the base pointers alias? 1348 AliasResult BaseAlias = 1349 aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(), 1350 UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI); 1351 1352 // Check for geps of non-aliasing underlying pointers where the offsets are 1353 // identical. 1354 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1355 // Do the base pointers alias assuming type and size. 1356 AliasResult PreciseBaseAlias = aliasCheck( 1357 UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI); 1358 if (PreciseBaseAlias == NoAlias) { 1359 // See if the computed offset from the common pointer tells us about the 1360 // relation of the resulting pointer. 1361 // If the max search depth is reached the result is undefined 1362 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1363 return MayAlias; 1364 1365 // Same offsets. 1366 if (GEP1BaseOffset == GEP2BaseOffset && 1367 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1368 return NoAlias; 1369 } 1370 } 1371 1372 // If we get a No or May, then return it immediately, no amount of analysis 1373 // will improve this situation. 1374 if (BaseAlias != MustAlias) { 1375 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1376 return BaseAlias; 1377 } 1378 1379 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1380 // exactly, see if the computed offset from the common pointer tells us 1381 // about the relation of the resulting pointer. 1382 // If we know the two GEPs are based off of the exact same pointer (and not 1383 // just the same underlying object), see if that tells us anything about 1384 // the resulting pointers. 1385 if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1386 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1387 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) { 1388 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1389 // If we couldn't find anything interesting, don't abandon just yet. 1390 if (R != MayAlias) 1391 return R; 1392 } 1393 1394 // If the max search depth is reached, the result is undefined 1395 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1396 return MayAlias; 1397 1398 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1399 // symbolic difference. 1400 GEP1BaseOffset -= GEP2BaseOffset; 1401 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1402 1403 } else { 1404 // Check to see if these two pointers are related by the getelementptr 1405 // instruction. If one pointer is a GEP with a non-zero index of the other 1406 // pointer, we know they cannot alias. 1407 1408 // If both accesses are unknown size, we can't do anything useful here. 1409 if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown()) 1410 return MayAlias; 1411 1412 AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(), 1413 AAMDNodes(), V2, LocationSize::unknown(), 1414 V2AAInfo, AAQI, nullptr, UnderlyingV2); 1415 if (R != MustAlias) { 1416 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1417 // If V2 is known not to alias GEP base pointer, then the two values 1418 // cannot alias per GEP semantics: "Any memory access must be done through 1419 // a pointer value associated with an address range of the memory access, 1420 // otherwise the behavior is undefined.". 1421 assert(R == NoAlias || R == MayAlias); 1422 return R; 1423 } 1424 1425 // If the max search depth is reached the result is undefined 1426 if (GEP1MaxLookupReached) 1427 return MayAlias; 1428 } 1429 1430 // In the two GEP Case, if there is no difference in the offsets of the 1431 // computed pointers, the resultant pointers are a must alias. This 1432 // happens when we have two lexically identical GEP's (for example). 1433 // 1434 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1435 // must aliases the GEP, the end result is a must alias also. 1436 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1437 return MustAlias; 1438 1439 // If there is a constant difference between the pointers, but the difference 1440 // is less than the size of the associated memory object, then we know 1441 // that the objects are partially overlapping. If the difference is 1442 // greater, we know they do not overlap. 1443 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1444 if (GEP1BaseOffset.sge(0)) { 1445 if (V2Size != LocationSize::unknown()) { 1446 if (GEP1BaseOffset.ult(V2Size.getValue())) 1447 return PartialAlias; 1448 return NoAlias; 1449 } 1450 } else { 1451 // We have the situation where: 1452 // + + 1453 // | BaseOffset | 1454 // ---------------->| 1455 // |-->V1Size |-------> V2Size 1456 // GEP1 V2 1457 // We need to know that V2Size is not unknown, otherwise we might have 1458 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1459 if (V1Size != LocationSize::unknown() && 1460 V2Size != LocationSize::unknown()) { 1461 if ((-GEP1BaseOffset).ult(V1Size.getValue())) 1462 return PartialAlias; 1463 return NoAlias; 1464 } 1465 } 1466 } 1467 1468 if (!DecompGEP1.VarIndices.empty()) { 1469 APInt Modulo(MaxPointerSize, 0); 1470 bool AllPositive = true; 1471 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1472 1473 // Try to distinguish something like &A[i][1] against &A[42][0]. 1474 // Grab the least significant bit set in any of the scales. We 1475 // don't need std::abs here (even if the scale's negative) as we'll 1476 // be ^'ing Modulo with itself later. 1477 Modulo |= DecompGEP1.VarIndices[i].Scale; 1478 1479 if (AllPositive) { 1480 // If the Value could change between cycles, then any reasoning about 1481 // the Value this cycle may not hold in the next cycle. We'll just 1482 // give up if we can't determine conditions that hold for every cycle: 1483 const Value *V = DecompGEP1.VarIndices[i].V; 1484 1485 KnownBits Known = 1486 computeKnownBits(V, DL, 0, &AC, dyn_cast<Instruction>(GEP1), DT); 1487 bool SignKnownZero = Known.isNonNegative(); 1488 bool SignKnownOne = Known.isNegative(); 1489 1490 // Zero-extension widens the variable, and so forces the sign 1491 // bit to zero. 1492 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1493 SignKnownZero |= IsZExt; 1494 SignKnownOne &= !IsZExt; 1495 1496 // If the variable begins with a zero then we know it's 1497 // positive, regardless of whether the value is signed or 1498 // unsigned. 1499 APInt Scale = DecompGEP1.VarIndices[i].Scale; 1500 AllPositive = 1501 (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0)); 1502 } 1503 } 1504 1505 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1506 1507 // We can compute the difference between the two addresses 1508 // mod Modulo. Check whether that difference guarantees that the 1509 // two locations do not alias. 1510 APInt ModOffset = GEP1BaseOffset & (Modulo - 1); 1511 if (V1Size != LocationSize::unknown() && 1512 V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) && 1513 (Modulo - ModOffset).uge(V1Size.getValue())) 1514 return NoAlias; 1515 1516 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1517 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1518 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1519 if (AllPositive && GEP1BaseOffset.sgt(0) && 1520 V2Size != LocationSize::unknown() && 1521 GEP1BaseOffset.uge(V2Size.getValue())) 1522 return NoAlias; 1523 1524 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1525 GEP1BaseOffset, &AC, DT)) 1526 return NoAlias; 1527 } 1528 1529 // Statically, we can see that the base objects are the same, but the 1530 // pointers have dynamic offsets which we can't resolve. And none of our 1531 // little tricks above worked. 1532 return MayAlias; 1533 } 1534 1535 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1536 // If the results agree, take it. 1537 if (A == B) 1538 return A; 1539 // A mix of PartialAlias and MustAlias is PartialAlias. 1540 if ((A == PartialAlias && B == MustAlias) || 1541 (B == PartialAlias && A == MustAlias)) 1542 return PartialAlias; 1543 // Otherwise, we don't know anything. 1544 return MayAlias; 1545 } 1546 1547 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1548 /// against another. 1549 AliasResult 1550 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1551 const AAMDNodes &SIAAInfo, const Value *V2, 1552 LocationSize V2Size, const AAMDNodes &V2AAInfo, 1553 const Value *UnderV2, AAQueryInfo &AAQI) { 1554 // If the values are Selects with the same condition, we can do a more precise 1555 // check: just check for aliases between the values on corresponding arms. 1556 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1557 if (SI->getCondition() == SI2->getCondition()) { 1558 AliasResult Alias = 1559 aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(), 1560 V2Size, V2AAInfo, AAQI); 1561 if (Alias == MayAlias) 1562 return MayAlias; 1563 AliasResult ThisAlias = 1564 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1565 SI2->getFalseValue(), V2Size, V2AAInfo, AAQI); 1566 return MergeAliasResults(ThisAlias, Alias); 1567 } 1568 1569 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1570 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1571 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1572 SISize, SIAAInfo, AAQI, UnderV2); 1573 if (Alias == MayAlias) 1574 return MayAlias; 1575 1576 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), 1577 SISize, SIAAInfo, AAQI, UnderV2); 1578 return MergeAliasResults(ThisAlias, Alias); 1579 } 1580 1581 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1582 /// another. 1583 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1584 const AAMDNodes &PNAAInfo, const Value *V2, 1585 LocationSize V2Size, 1586 const AAMDNodes &V2AAInfo, 1587 const Value *UnderV2, AAQueryInfo &AAQI) { 1588 // Track phi nodes we have visited. We use this information when we determine 1589 // value equivalence. 1590 VisitedPhiBBs.insert(PN->getParent()); 1591 1592 // If the values are PHIs in the same block, we can do a more precise 1593 // as well as efficient check: just check for aliases between the values 1594 // on corresponding edges. 1595 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1596 if (PN2->getParent() == PN->getParent()) { 1597 AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1598 MemoryLocation(V2, V2Size, V2AAInfo)); 1599 if (PN > V2) 1600 std::swap(Locs.first, Locs.second); 1601 // Analyse the PHIs' inputs under the assumption that the PHIs are 1602 // NoAlias. 1603 // If the PHIs are May/MustAlias there must be (recursively) an input 1604 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1605 // there must be an operation on the PHIs within the PHIs' value cycle 1606 // that causes a MayAlias. 1607 // Pretend the phis do not alias. 1608 AliasResult Alias = NoAlias; 1609 AliasResult OrigAliasResult; 1610 { 1611 // Limited lifetime iterator invalidated by the aliasCheck call below. 1612 auto CacheIt = AAQI.AliasCache.find(Locs); 1613 assert((CacheIt != AAQI.AliasCache.end()) && 1614 "There must exist an entry for the phi node"); 1615 OrigAliasResult = CacheIt->second; 1616 CacheIt->second = NoAlias; 1617 } 1618 1619 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1620 AliasResult ThisAlias = 1621 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1622 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1623 V2Size, V2AAInfo, AAQI); 1624 Alias = MergeAliasResults(ThisAlias, Alias); 1625 if (Alias == MayAlias) 1626 break; 1627 } 1628 1629 // Reset if speculation failed. 1630 if (Alias != NoAlias) { 1631 auto Pair = 1632 AAQI.AliasCache.insert(std::make_pair(Locs, OrigAliasResult)); 1633 assert(!Pair.second && "Entry must have existed"); 1634 Pair.first->second = OrigAliasResult; 1635 } 1636 return Alias; 1637 } 1638 1639 SmallVector<Value *, 4> V1Srcs; 1640 bool isRecursive = false; 1641 if (PV) { 1642 // If we have PhiValues then use it to get the underlying phi values. 1643 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1644 // If we have more phi values than the search depth then return MayAlias 1645 // conservatively to avoid compile time explosion. The worst possible case 1646 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1647 // where 'm' and 'n' are the number of PHI sources. 1648 if (PhiValueSet.size() > MaxLookupSearchDepth) 1649 return MayAlias; 1650 // Add the values to V1Srcs 1651 for (Value *PV1 : PhiValueSet) { 1652 if (EnableRecPhiAnalysis) { 1653 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1654 // Check whether the incoming value is a GEP that advances the pointer 1655 // result of this PHI node (e.g. in a loop). If this is the case, we 1656 // would recurse and always get a MayAlias. Handle this case specially 1657 // below. 1658 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1659 isa<ConstantInt>(PV1GEP->idx_begin())) { 1660 isRecursive = true; 1661 continue; 1662 } 1663 } 1664 } 1665 V1Srcs.push_back(PV1); 1666 } 1667 } else { 1668 // If we don't have PhiInfo then just look at the operands of the phi itself 1669 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1670 SmallPtrSet<Value *, 4> UniqueSrc; 1671 for (Value *PV1 : PN->incoming_values()) { 1672 if (isa<PHINode>(PV1)) 1673 // If any of the source itself is a PHI, return MayAlias conservatively 1674 // to avoid compile time explosion. The worst possible case is if both 1675 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1676 // and 'n' are the number of PHI sources. 1677 return MayAlias; 1678 1679 if (EnableRecPhiAnalysis) 1680 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1681 // Check whether the incoming value is a GEP that advances the pointer 1682 // result of this PHI node (e.g. in a loop). If this is the case, we 1683 // would recurse and always get a MayAlias. Handle this case specially 1684 // below. 1685 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1686 isa<ConstantInt>(PV1GEP->idx_begin())) { 1687 isRecursive = true; 1688 continue; 1689 } 1690 } 1691 1692 if (UniqueSrc.insert(PV1).second) 1693 V1Srcs.push_back(PV1); 1694 } 1695 } 1696 1697 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1698 // value. This should only be possible in blocks unreachable from the entry 1699 // block, but return MayAlias just in case. 1700 if (V1Srcs.empty()) 1701 return MayAlias; 1702 1703 // If this PHI node is recursive, set the size of the accessed memory to 1704 // unknown to represent all the possible values the GEP could advance the 1705 // pointer to. 1706 if (isRecursive) 1707 PNSize = LocationSize::unknown(); 1708 1709 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, 1710 PNAAInfo, AAQI, UnderV2); 1711 1712 // Early exit if the check of the first PHI source against V2 is MayAlias. 1713 // Other results are not possible. 1714 if (Alias == MayAlias) 1715 return MayAlias; 1716 1717 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1718 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1719 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1720 Value *V = V1Srcs[i]; 1721 1722 AliasResult ThisAlias = 1723 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, AAQI, UnderV2); 1724 Alias = MergeAliasResults(ThisAlias, Alias); 1725 if (Alias == MayAlias) 1726 break; 1727 } 1728 1729 return Alias; 1730 } 1731 1732 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1733 /// array references. 1734 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1735 AAMDNodes V1AAInfo, const Value *V2, 1736 LocationSize V2Size, AAMDNodes V2AAInfo, 1737 AAQueryInfo &AAQI, const Value *O1, 1738 const Value *O2) { 1739 // If either of the memory references is empty, it doesn't matter what the 1740 // pointer values are. 1741 if (V1Size.isZero() || V2Size.isZero()) 1742 return NoAlias; 1743 1744 // Strip off any casts if they exist. 1745 V1 = V1->stripPointerCastsAndInvariantGroups(); 1746 V2 = V2->stripPointerCastsAndInvariantGroups(); 1747 1748 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1749 // value for undef that aliases nothing in the program. 1750 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1751 return NoAlias; 1752 1753 // Are we checking for alias of the same value? 1754 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1755 // different iterations. We must therefore make sure that this is not the 1756 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1757 // happen by looking at the visited phi nodes and making sure they cannot 1758 // reach the value. 1759 if (isValueEqualInPotentialCycles(V1, V2)) 1760 return MustAlias; 1761 1762 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1763 return NoAlias; // Scalars cannot alias each other 1764 1765 // Figure out what objects these things are pointing to if we can. 1766 if (O1 == nullptr) 1767 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1768 1769 if (O2 == nullptr) 1770 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1771 1772 // Null values in the default address space don't point to any object, so they 1773 // don't alias any other pointer. 1774 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1775 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1776 return NoAlias; 1777 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1778 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1779 return NoAlias; 1780 1781 if (O1 != O2) { 1782 // If V1/V2 point to two different objects, we know that we have no alias. 1783 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1784 return NoAlias; 1785 1786 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1787 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1788 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1789 return NoAlias; 1790 1791 // Function arguments can't alias with things that are known to be 1792 // unambigously identified at the function level. 1793 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1794 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1795 return NoAlias; 1796 1797 // If one pointer is the result of a call/invoke or load and the other is a 1798 // non-escaping local object within the same function, then we know the 1799 // object couldn't escape to a point where the call could return it. 1800 // 1801 // Note that if the pointers are in different functions, there are a 1802 // variety of complications. A call with a nocapture argument may still 1803 // temporary store the nocapture argument's value in a temporary memory 1804 // location if that memory location doesn't escape. Or it may pass a 1805 // nocapture value to other functions as long as they don't capture it. 1806 if (isEscapeSource(O1) && 1807 isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache)) 1808 return NoAlias; 1809 if (isEscapeSource(O2) && 1810 isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache)) 1811 return NoAlias; 1812 } 1813 1814 // If the size of one access is larger than the entire object on the other 1815 // side, then we know such behavior is undefined and can assume no alias. 1816 bool NullIsValidLocation = NullPointerIsDefined(&F); 1817 if ((isObjectSmallerThan( 1818 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1819 TLI, NullIsValidLocation)) || 1820 (isObjectSmallerThan( 1821 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1822 TLI, NullIsValidLocation))) 1823 return NoAlias; 1824 1825 // Check the cache before climbing up use-def chains. This also terminates 1826 // otherwise infinitely recursive queries. 1827 AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1828 MemoryLocation(V2, V2Size, V2AAInfo)); 1829 if (V1 > V2) 1830 std::swap(Locs.first, Locs.second); 1831 std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair = 1832 AAQI.AliasCache.try_emplace(Locs, MayAlias); 1833 if (!Pair.second) 1834 return Pair.first->second; 1835 1836 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1837 // GEP can't simplify, we don't even look at the PHI cases. 1838 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1839 std::swap(V1, V2); 1840 std::swap(V1Size, V2Size); 1841 std::swap(O1, O2); 1842 std::swap(V1AAInfo, V2AAInfo); 1843 } 1844 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1845 AliasResult Result = 1846 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI); 1847 if (Result != MayAlias) { 1848 auto ItInsPair = AAQI.AliasCache.insert(std::make_pair(Locs, Result)); 1849 assert(!ItInsPair.second && "Entry must have existed"); 1850 ItInsPair.first->second = Result; 1851 return Result; 1852 } 1853 } 1854 1855 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1856 std::swap(V1, V2); 1857 std::swap(O1, O2); 1858 std::swap(V1Size, V2Size); 1859 std::swap(V1AAInfo, V2AAInfo); 1860 } 1861 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1862 AliasResult Result = 1863 aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI); 1864 if (Result != MayAlias) { 1865 Pair = AAQI.AliasCache.try_emplace(Locs, Result); 1866 assert(!Pair.second && "Entry must have existed"); 1867 return Pair.first->second = Result; 1868 } 1869 } 1870 1871 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1872 std::swap(V1, V2); 1873 std::swap(O1, O2); 1874 std::swap(V1Size, V2Size); 1875 std::swap(V1AAInfo, V2AAInfo); 1876 } 1877 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1878 AliasResult Result = 1879 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI); 1880 if (Result != MayAlias) { 1881 Pair = AAQI.AliasCache.try_emplace(Locs, Result); 1882 assert(!Pair.second && "Entry must have existed"); 1883 return Pair.first->second = Result; 1884 } 1885 } 1886 1887 // If both pointers are pointing into the same object and one of them 1888 // accesses the entire object, then the accesses must overlap in some way. 1889 if (O1 == O2) 1890 if (V1Size.isPrecise() && V2Size.isPrecise() && 1891 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1892 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) { 1893 Pair = AAQI.AliasCache.try_emplace(Locs, PartialAlias); 1894 assert(!Pair.second && "Entry must have existed"); 1895 return Pair.first->second = PartialAlias; 1896 } 1897 1898 // Recurse back into the best AA results we have, potentially with refined 1899 // memory locations. We have already ensured that BasicAA has a MayAlias 1900 // cache result for these, so any recursion back into BasicAA won't loop. 1901 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI); 1902 Pair = AAQI.AliasCache.try_emplace(Locs, Result); 1903 assert(!Pair.second && "Entry must have existed"); 1904 return Pair.first->second = Result; 1905 } 1906 1907 /// Check whether two Values can be considered equivalent. 1908 /// 1909 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1910 /// they can not be part of a cycle in the value graph by looking at all 1911 /// visited phi nodes an making sure that the phis cannot reach the value. We 1912 /// have to do this because we are looking through phi nodes (That is we say 1913 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1914 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1915 const Value *V2) { 1916 if (V != V2) 1917 return false; 1918 1919 const Instruction *Inst = dyn_cast<Instruction>(V); 1920 if (!Inst) 1921 return true; 1922 1923 if (VisitedPhiBBs.empty()) 1924 return true; 1925 1926 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1927 return false; 1928 1929 // Make sure that the visited phis cannot reach the Value. This ensures that 1930 // the Values cannot come from different iterations of a potential cycle the 1931 // phi nodes could be involved in. 1932 for (auto *P : VisitedPhiBBs) 1933 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI)) 1934 return false; 1935 1936 return true; 1937 } 1938 1939 /// Computes the symbolic difference between two de-composed GEPs. 1940 /// 1941 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1942 /// instructions GEP1 and GEP2 which have common base pointers. 1943 void BasicAAResult::GetIndexDifference( 1944 SmallVectorImpl<VariableGEPIndex> &Dest, 1945 const SmallVectorImpl<VariableGEPIndex> &Src) { 1946 if (Src.empty()) 1947 return; 1948 1949 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1950 const Value *V = Src[i].V; 1951 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1952 APInt Scale = Src[i].Scale; 1953 1954 // Find V in Dest. This is N^2, but pointer indices almost never have more 1955 // than a few variable indexes. 1956 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1957 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1958 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1959 continue; 1960 1961 // If we found it, subtract off Scale V's from the entry in Dest. If it 1962 // goes to zero, remove the entry. 1963 if (Dest[j].Scale != Scale) 1964 Dest[j].Scale -= Scale; 1965 else 1966 Dest.erase(Dest.begin() + j); 1967 Scale = 0; 1968 break; 1969 } 1970 1971 // If we didn't consume this entry, add it to the end of the Dest list. 1972 if (!!Scale) { 1973 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1974 Dest.push_back(Entry); 1975 } 1976 } 1977 } 1978 1979 bool BasicAAResult::constantOffsetHeuristic( 1980 const SmallVectorImpl<VariableGEPIndex> &VarIndices, 1981 LocationSize MaybeV1Size, LocationSize MaybeV2Size, APInt BaseOffset, 1982 AssumptionCache *AC, DominatorTree *DT) { 1983 if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() || 1984 MaybeV2Size == LocationSize::unknown()) 1985 return false; 1986 1987 const uint64_t V1Size = MaybeV1Size.getValue(); 1988 const uint64_t V2Size = MaybeV2Size.getValue(); 1989 1990 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1991 1992 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1993 Var0.Scale != -Var1.Scale) 1994 return false; 1995 1996 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1997 1998 // We'll strip off the Extensions of Var0 and Var1 and do another round 1999 // of GetLinearExpression decomposition. In the example above, if Var0 2000 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 2001 2002 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 2003 V1Offset(Width, 0); 2004 bool NSW = true, NUW = true; 2005 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 2006 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 2007 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 2008 NSW = true; 2009 NUW = true; 2010 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 2011 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 2012 2013 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 2014 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 2015 return false; 2016 2017 // We have a hit - Var0 and Var1 only differ by a constant offset! 2018 2019 // If we've been sext'ed then zext'd the maximum difference between Var0 and 2020 // Var1 is possible to calculate, but we're just interested in the absolute 2021 // minimum difference between the two. The minimum distance may occur due to 2022 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 2023 // the minimum distance between %i and %i + 5 is 3. 2024 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 2025 MinDiff = APIntOps::umin(MinDiff, Wrapped); 2026 APInt MinDiffBytes = 2027 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 2028 2029 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 2030 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 2031 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 2032 // V2Size can fit in the MinDiffBytes gap. 2033 return MinDiffBytes.uge(V1Size + BaseOffset.abs()) && 2034 MinDiffBytes.uge(V2Size + BaseOffset.abs()); 2035 } 2036 2037 //===----------------------------------------------------------------------===// 2038 // BasicAliasAnalysis Pass 2039 //===----------------------------------------------------------------------===// 2040 2041 AnalysisKey BasicAA::Key; 2042 2043 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 2044 return BasicAAResult(F.getParent()->getDataLayout(), 2045 F, 2046 AM.getResult<TargetLibraryAnalysis>(F), 2047 AM.getResult<AssumptionAnalysis>(F), 2048 &AM.getResult<DominatorTreeAnalysis>(F), 2049 AM.getCachedResult<LoopAnalysis>(F), 2050 AM.getCachedResult<PhiValuesAnalysis>(F)); 2051 } 2052 2053 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 2054 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 2055 } 2056 2057 char BasicAAWrapperPass::ID = 0; 2058 2059 void BasicAAWrapperPass::anchor() {} 2060 2061 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 2062 "Basic Alias Analysis (stateless AA impl)", false, true) 2063 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2064 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2065 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2066 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 2067 "Basic Alias Analysis (stateless AA impl)", false, true) 2068 2069 FunctionPass *llvm::createBasicAAWrapperPass() { 2070 return new BasicAAWrapperPass(); 2071 } 2072 2073 bool BasicAAWrapperPass::runOnFunction(Function &F) { 2074 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 2075 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 2076 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 2077 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 2078 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 2079 2080 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 2081 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 2082 &DTWP.getDomTree(), 2083 LIWP ? &LIWP->getLoopInfo() : nullptr, 2084 PVWP ? &PVWP->getResult() : nullptr)); 2085 2086 return false; 2087 } 2088 2089 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2090 AU.setPreservesAll(); 2091 AU.addRequired<AssumptionCacheTracker>(); 2092 AU.addRequired<DominatorTreeWrapperPass>(); 2093 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2094 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 2095 } 2096 2097 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 2098 return BasicAAResult( 2099 F.getParent()->getDataLayout(), F, 2100 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 2101 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 2102 } 2103