xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/BasicAliasAnalysis.cpp (revision 069ac18495ad8fde2748bc94b0f80a50250bb01d)
1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Argument.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/ConstantRange.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalAlias.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/InitializePasses.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/KnownBits.h"
56 #include "llvm/Support/SaveAndRestore.h"
57 #include <cassert>
58 #include <cstdint>
59 #include <cstdlib>
60 #include <optional>
61 #include <utility>
62 
63 #define DEBUG_TYPE "basicaa"
64 
65 using namespace llvm;
66 
67 /// Enable analysis of recursive PHI nodes.
68 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
69                                           cl::init(true));
70 
71 static cl::opt<bool> EnableSeparateStorageAnalysis("basic-aa-separate-storage",
72                                                    cl::Hidden, cl::init(false));
73 
74 /// SearchLimitReached / SearchTimes shows how often the limit of
75 /// to decompose GEPs is reached. It will affect the precision
76 /// of basic alias analysis.
77 STATISTIC(SearchLimitReached, "Number of times the limit to "
78                               "decompose GEPs is reached");
79 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
80 
81 // The max limit of the search depth in DecomposeGEPExpression() and
82 // getUnderlyingObject().
83 static const unsigned MaxLookupSearchDepth = 6;
84 
85 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
86                                FunctionAnalysisManager::Invalidator &Inv) {
87   // We don't care if this analysis itself is preserved, it has no state. But
88   // we need to check that the analyses it depends on have been. Note that we
89   // may be created without handles to some analyses and in that case don't
90   // depend on them.
91   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
92       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)))
93     return true;
94 
95   // Otherwise this analysis result remains valid.
96   return false;
97 }
98 
99 //===----------------------------------------------------------------------===//
100 // Useful predicates
101 //===----------------------------------------------------------------------===//
102 
103 /// Returns the size of the object specified by V or UnknownSize if unknown.
104 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
105                               const TargetLibraryInfo &TLI,
106                               bool NullIsValidLoc,
107                               bool RoundToAlign = false) {
108   uint64_t Size;
109   ObjectSizeOpts Opts;
110   Opts.RoundToAlign = RoundToAlign;
111   Opts.NullIsUnknownSize = NullIsValidLoc;
112   if (getObjectSize(V, Size, DL, &TLI, Opts))
113     return Size;
114   return MemoryLocation::UnknownSize;
115 }
116 
117 /// Returns true if we can prove that the object specified by V is smaller than
118 /// Size.
119 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
120                                 const DataLayout &DL,
121                                 const TargetLibraryInfo &TLI,
122                                 bool NullIsValidLoc) {
123   // Note that the meanings of the "object" are slightly different in the
124   // following contexts:
125   //    c1: llvm::getObjectSize()
126   //    c2: llvm.objectsize() intrinsic
127   //    c3: isObjectSmallerThan()
128   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
129   // refers to the "entire object".
130   //
131   //  Consider this example:
132   //     char *p = (char*)malloc(100)
133   //     char *q = p+80;
134   //
135   //  In the context of c1 and c2, the "object" pointed by q refers to the
136   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
137   //
138   //  However, in the context of c3, the "object" refers to the chunk of memory
139   // being allocated. So, the "object" has 100 bytes, and q points to the middle
140   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
141   // parameter, before the llvm::getObjectSize() is called to get the size of
142   // entire object, we should:
143   //    - either rewind the pointer q to the base-address of the object in
144   //      question (in this case rewind to p), or
145   //    - just give up. It is up to caller to make sure the pointer is pointing
146   //      to the base address the object.
147   //
148   // We go for 2nd option for simplicity.
149   if (!isIdentifiedObject(V))
150     return false;
151 
152   // This function needs to use the aligned object size because we allow
153   // reads a bit past the end given sufficient alignment.
154   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
155                                       /*RoundToAlign*/ true);
156 
157   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
158 }
159 
160 /// Return the minimal extent from \p V to the end of the underlying object,
161 /// assuming the result is used in an aliasing query. E.g., we do use the query
162 /// location size and the fact that null pointers cannot alias here.
163 static uint64_t getMinimalExtentFrom(const Value &V,
164                                      const LocationSize &LocSize,
165                                      const DataLayout &DL,
166                                      bool NullIsValidLoc) {
167   // If we have dereferenceability information we know a lower bound for the
168   // extent as accesses for a lower offset would be valid. We need to exclude
169   // the "or null" part if null is a valid pointer. We can ignore frees, as an
170   // access after free would be undefined behavior.
171   bool CanBeNull, CanBeFreed;
172   uint64_t DerefBytes =
173     V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
174   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
175   // If queried with a precise location size, we assume that location size to be
176   // accessed, thus valid.
177   if (LocSize.isPrecise())
178     DerefBytes = std::max(DerefBytes, LocSize.getValue());
179   return DerefBytes;
180 }
181 
182 /// Returns true if we can prove that the object specified by V has size Size.
183 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
184                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
185   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
186   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
187 }
188 
189 //===----------------------------------------------------------------------===//
190 // CaptureInfo implementations
191 //===----------------------------------------------------------------------===//
192 
193 CaptureInfo::~CaptureInfo() = default;
194 
195 bool SimpleCaptureInfo::isNotCapturedBeforeOrAt(const Value *Object,
196                                                 const Instruction *I) {
197   return isNonEscapingLocalObject(Object, &IsCapturedCache);
198 }
199 
200 bool EarliestEscapeInfo::isNotCapturedBeforeOrAt(const Value *Object,
201                                                  const Instruction *I) {
202   if (!isIdentifiedFunctionLocal(Object))
203     return false;
204 
205   auto Iter = EarliestEscapes.insert({Object, nullptr});
206   if (Iter.second) {
207     Instruction *EarliestCapture = FindEarliestCapture(
208         Object, *const_cast<Function *>(I->getFunction()),
209         /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT, EphValues);
210     if (EarliestCapture) {
211       auto Ins = Inst2Obj.insert({EarliestCapture, {}});
212       Ins.first->second.push_back(Object);
213     }
214     Iter.first->second = EarliestCapture;
215   }
216 
217   // No capturing instruction.
218   if (!Iter.first->second)
219     return true;
220 
221   return I != Iter.first->second &&
222          !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, &LI);
223 }
224 
225 void EarliestEscapeInfo::removeInstruction(Instruction *I) {
226   auto Iter = Inst2Obj.find(I);
227   if (Iter != Inst2Obj.end()) {
228     for (const Value *Obj : Iter->second)
229       EarliestEscapes.erase(Obj);
230     Inst2Obj.erase(I);
231   }
232 }
233 
234 //===----------------------------------------------------------------------===//
235 // GetElementPtr Instruction Decomposition and Analysis
236 //===----------------------------------------------------------------------===//
237 
238 namespace {
239 /// Represents zext(sext(trunc(V))).
240 struct CastedValue {
241   const Value *V;
242   unsigned ZExtBits = 0;
243   unsigned SExtBits = 0;
244   unsigned TruncBits = 0;
245 
246   explicit CastedValue(const Value *V) : V(V) {}
247   explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits,
248                        unsigned TruncBits)
249       : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits) {}
250 
251   unsigned getBitWidth() const {
252     return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits +
253            SExtBits;
254   }
255 
256   CastedValue withValue(const Value *NewV) const {
257     return CastedValue(NewV, ZExtBits, SExtBits, TruncBits);
258   }
259 
260   /// Replace V with zext(NewV)
261   CastedValue withZExtOfValue(const Value *NewV) const {
262     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
263                         NewV->getType()->getPrimitiveSizeInBits();
264     if (ExtendBy <= TruncBits)
265       return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy);
266 
267     // zext(sext(zext(NewV))) == zext(zext(zext(NewV)))
268     ExtendBy -= TruncBits;
269     return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0);
270   }
271 
272   /// Replace V with sext(NewV)
273   CastedValue withSExtOfValue(const Value *NewV) const {
274     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
275                         NewV->getType()->getPrimitiveSizeInBits();
276     if (ExtendBy <= TruncBits)
277       return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy);
278 
279     // zext(sext(sext(NewV)))
280     ExtendBy -= TruncBits;
281     return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0);
282   }
283 
284   APInt evaluateWith(APInt N) const {
285     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
286            "Incompatible bit width");
287     if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits);
288     if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
289     if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
290     return N;
291   }
292 
293   ConstantRange evaluateWith(ConstantRange N) const {
294     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
295            "Incompatible bit width");
296     if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits);
297     if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits);
298     if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits);
299     return N;
300   }
301 
302   bool canDistributeOver(bool NUW, bool NSW) const {
303     // zext(x op<nuw> y) == zext(x) op<nuw> zext(y)
304     // sext(x op<nsw> y) == sext(x) op<nsw> sext(y)
305     // trunc(x op y) == trunc(x) op trunc(y)
306     return (!ZExtBits || NUW) && (!SExtBits || NSW);
307   }
308 
309   bool hasSameCastsAs(const CastedValue &Other) const {
310     return ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits &&
311            TruncBits == Other.TruncBits;
312   }
313 };
314 
315 /// Represents zext(sext(trunc(V))) * Scale + Offset.
316 struct LinearExpression {
317   CastedValue Val;
318   APInt Scale;
319   APInt Offset;
320 
321   /// True if all operations in this expression are NSW.
322   bool IsNSW;
323 
324   LinearExpression(const CastedValue &Val, const APInt &Scale,
325                    const APInt &Offset, bool IsNSW)
326       : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {}
327 
328   LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) {
329     unsigned BitWidth = Val.getBitWidth();
330     Scale = APInt(BitWidth, 1);
331     Offset = APInt(BitWidth, 0);
332   }
333 
334   LinearExpression mul(const APInt &Other, bool MulIsNSW) const {
335     // The check for zero offset is necessary, because generally
336     // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z).
337     bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero()));
338     return LinearExpression(Val, Scale * Other, Offset * Other, NSW);
339   }
340 };
341 }
342 
343 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
344 /// B are constant integers.
345 static LinearExpression GetLinearExpression(
346     const CastedValue &Val,  const DataLayout &DL, unsigned Depth,
347     AssumptionCache *AC, DominatorTree *DT) {
348   // Limit our recursion depth.
349   if (Depth == 6)
350     return Val;
351 
352   if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V))
353     return LinearExpression(Val, APInt(Val.getBitWidth(), 0),
354                             Val.evaluateWith(Const->getValue()), true);
355 
356   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) {
357     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
358       APInt RHS = Val.evaluateWith(RHSC->getValue());
359       // The only non-OBO case we deal with is or, and only limited to the
360       // case where it is both nuw and nsw.
361       bool NUW = true, NSW = true;
362       if (isa<OverflowingBinaryOperator>(BOp)) {
363         NUW &= BOp->hasNoUnsignedWrap();
364         NSW &= BOp->hasNoSignedWrap();
365       }
366       if (!Val.canDistributeOver(NUW, NSW))
367         return Val;
368 
369       // While we can distribute over trunc, we cannot preserve nowrap flags
370       // in that case.
371       if (Val.TruncBits)
372         NUW = NSW = false;
373 
374       LinearExpression E(Val);
375       switch (BOp->getOpcode()) {
376       default:
377         // We don't understand this instruction, so we can't decompose it any
378         // further.
379         return Val;
380       case Instruction::Or:
381         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
382         // analyze it.
383         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
384                                BOp, DT))
385           return Val;
386 
387         [[fallthrough]];
388       case Instruction::Add: {
389         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
390                                 Depth + 1, AC, DT);
391         E.Offset += RHS;
392         E.IsNSW &= NSW;
393         break;
394       }
395       case Instruction::Sub: {
396         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
397                                 Depth + 1, AC, DT);
398         E.Offset -= RHS;
399         E.IsNSW &= NSW;
400         break;
401       }
402       case Instruction::Mul:
403         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
404                                 Depth + 1, AC, DT)
405                 .mul(RHS, NSW);
406         break;
407       case Instruction::Shl:
408         // We're trying to linearize an expression of the kind:
409         //   shl i8 -128, 36
410         // where the shift count exceeds the bitwidth of the type.
411         // We can't decompose this further (the expression would return
412         // a poison value).
413         if (RHS.getLimitedValue() > Val.getBitWidth())
414           return Val;
415 
416         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
417                                 Depth + 1, AC, DT);
418         E.Offset <<= RHS.getLimitedValue();
419         E.Scale <<= RHS.getLimitedValue();
420         E.IsNSW &= NSW;
421         break;
422       }
423       return E;
424     }
425   }
426 
427   if (isa<ZExtInst>(Val.V))
428     return GetLinearExpression(
429         Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
430         DL, Depth + 1, AC, DT);
431 
432   if (isa<SExtInst>(Val.V))
433     return GetLinearExpression(
434         Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
435         DL, Depth + 1, AC, DT);
436 
437   return Val;
438 }
439 
440 /// To ensure a pointer offset fits in an integer of size IndexSize
441 /// (in bits) when that size is smaller than the maximum index size. This is
442 /// an issue, for example, in particular for 32b pointers with negative indices
443 /// that rely on two's complement wrap-arounds for precise alias information
444 /// where the maximum index size is 64b.
445 static APInt adjustToIndexSize(const APInt &Offset, unsigned IndexSize) {
446   assert(IndexSize <= Offset.getBitWidth() && "Invalid IndexSize!");
447   unsigned ShiftBits = Offset.getBitWidth() - IndexSize;
448   return (Offset << ShiftBits).ashr(ShiftBits);
449 }
450 
451 namespace {
452 // A linear transformation of a Value; this class represents
453 // ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale.
454 struct VariableGEPIndex {
455   CastedValue Val;
456   APInt Scale;
457 
458   // Context instruction to use when querying information about this index.
459   const Instruction *CxtI;
460 
461   /// True if all operations in this expression are NSW.
462   bool IsNSW;
463 
464   /// True if the index should be subtracted rather than added. We don't simply
465   /// negate the Scale, to avoid losing the NSW flag: X - INT_MIN*1 may be
466   /// non-wrapping, while X + INT_MIN*(-1) wraps.
467   bool IsNegated;
468 
469   bool hasNegatedScaleOf(const VariableGEPIndex &Other) const {
470     if (IsNegated == Other.IsNegated)
471       return Scale == -Other.Scale;
472     return Scale == Other.Scale;
473   }
474 
475   void dump() const {
476     print(dbgs());
477     dbgs() << "\n";
478   }
479   void print(raw_ostream &OS) const {
480     OS << "(V=" << Val.V->getName()
481        << ", zextbits=" << Val.ZExtBits
482        << ", sextbits=" << Val.SExtBits
483        << ", truncbits=" << Val.TruncBits
484        << ", scale=" << Scale
485        << ", nsw=" << IsNSW
486        << ", negated=" << IsNegated << ")";
487   }
488 };
489 }
490 
491 // Represents the internal structure of a GEP, decomposed into a base pointer,
492 // constant offsets, and variable scaled indices.
493 struct BasicAAResult::DecomposedGEP {
494   // Base pointer of the GEP
495   const Value *Base;
496   // Total constant offset from base.
497   APInt Offset;
498   // Scaled variable (non-constant) indices.
499   SmallVector<VariableGEPIndex, 4> VarIndices;
500   // Are all operations inbounds GEPs or non-indexing operations?
501   // (std::nullopt iff expression doesn't involve any geps)
502   std::optional<bool> InBounds;
503 
504   void dump() const {
505     print(dbgs());
506     dbgs() << "\n";
507   }
508   void print(raw_ostream &OS) const {
509     OS << "(DecomposedGEP Base=" << Base->getName()
510        << ", Offset=" << Offset
511        << ", VarIndices=[";
512     for (size_t i = 0; i < VarIndices.size(); i++) {
513       if (i != 0)
514         OS << ", ";
515       VarIndices[i].print(OS);
516     }
517     OS << "])";
518   }
519 };
520 
521 
522 /// If V is a symbolic pointer expression, decompose it into a base pointer
523 /// with a constant offset and a number of scaled symbolic offsets.
524 ///
525 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
526 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
527 /// specified amount, but which may have other unrepresented high bits. As
528 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
529 BasicAAResult::DecomposedGEP
530 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
531                                       AssumptionCache *AC, DominatorTree *DT) {
532   // Limit recursion depth to limit compile time in crazy cases.
533   unsigned MaxLookup = MaxLookupSearchDepth;
534   SearchTimes++;
535   const Instruction *CxtI = dyn_cast<Instruction>(V);
536 
537   unsigned MaxIndexSize = DL.getMaxIndexSizeInBits();
538   DecomposedGEP Decomposed;
539   Decomposed.Offset = APInt(MaxIndexSize, 0);
540   do {
541     // See if this is a bitcast or GEP.
542     const Operator *Op = dyn_cast<Operator>(V);
543     if (!Op) {
544       // The only non-operator case we can handle are GlobalAliases.
545       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
546         if (!GA->isInterposable()) {
547           V = GA->getAliasee();
548           continue;
549         }
550       }
551       Decomposed.Base = V;
552       return Decomposed;
553     }
554 
555     if (Op->getOpcode() == Instruction::BitCast ||
556         Op->getOpcode() == Instruction::AddrSpaceCast) {
557       V = Op->getOperand(0);
558       continue;
559     }
560 
561     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
562     if (!GEPOp) {
563       if (const auto *PHI = dyn_cast<PHINode>(V)) {
564         // Look through single-arg phi nodes created by LCSSA.
565         if (PHI->getNumIncomingValues() == 1) {
566           V = PHI->getIncomingValue(0);
567           continue;
568         }
569       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
570         // CaptureTracking can know about special capturing properties of some
571         // intrinsics like launder.invariant.group, that can't be expressed with
572         // the attributes, but have properties like returning aliasing pointer.
573         // Because some analysis may assume that nocaptured pointer is not
574         // returned from some special intrinsic (because function would have to
575         // be marked with returns attribute), it is crucial to use this function
576         // because it should be in sync with CaptureTracking. Not using it may
577         // cause weird miscompilations where 2 aliasing pointers are assumed to
578         // noalias.
579         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
580           V = RP;
581           continue;
582         }
583       }
584 
585       Decomposed.Base = V;
586       return Decomposed;
587     }
588 
589     // Track whether we've seen at least one in bounds gep, and if so, whether
590     // all geps parsed were in bounds.
591     if (Decomposed.InBounds == std::nullopt)
592       Decomposed.InBounds = GEPOp->isInBounds();
593     else if (!GEPOp->isInBounds())
594       Decomposed.InBounds = false;
595 
596     assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized");
597 
598     unsigned AS = GEPOp->getPointerAddressSpace();
599     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
600     gep_type_iterator GTI = gep_type_begin(GEPOp);
601     unsigned IndexSize = DL.getIndexSizeInBits(AS);
602     // Assume all GEP operands are constants until proven otherwise.
603     bool GepHasConstantOffset = true;
604     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
605          I != E; ++I, ++GTI) {
606       const Value *Index = *I;
607       // Compute the (potentially symbolic) offset in bytes for this index.
608       if (StructType *STy = GTI.getStructTypeOrNull()) {
609         // For a struct, add the member offset.
610         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
611         if (FieldNo == 0)
612           continue;
613 
614         Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
615         continue;
616       }
617 
618       // For an array/pointer, add the element offset, explicitly scaled.
619       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
620         if (CIdx->isZero())
621           continue;
622 
623         // Don't attempt to analyze GEPs if the scalable index is not zero.
624         TypeSize AllocTypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
625         if (AllocTypeSize.isScalable()) {
626           Decomposed.Base = V;
627           return Decomposed;
628         }
629 
630         Decomposed.Offset += AllocTypeSize.getFixedValue() *
631                              CIdx->getValue().sextOrTrunc(MaxIndexSize);
632         continue;
633       }
634 
635       TypeSize AllocTypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
636       if (AllocTypeSize.isScalable()) {
637         Decomposed.Base = V;
638         return Decomposed;
639       }
640 
641       GepHasConstantOffset = false;
642 
643       // If the integer type is smaller than the index size, it is implicitly
644       // sign extended or truncated to index size.
645       unsigned Width = Index->getType()->getIntegerBitWidth();
646       unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0;
647       unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0;
648       LinearExpression LE = GetLinearExpression(
649           CastedValue(Index, 0, SExtBits, TruncBits), DL, 0, AC, DT);
650 
651       // Scale by the type size.
652       unsigned TypeSize = AllocTypeSize.getFixedValue();
653       LE = LE.mul(APInt(IndexSize, TypeSize), GEPOp->isInBounds());
654       Decomposed.Offset += LE.Offset.sext(MaxIndexSize);
655       APInt Scale = LE.Scale.sext(MaxIndexSize);
656 
657       // If we already had an occurrence of this index variable, merge this
658       // scale into it.  For example, we want to handle:
659       //   A[x][x] -> x*16 + x*4 -> x*20
660       // This also ensures that 'x' only appears in the index list once.
661       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
662         if (Decomposed.VarIndices[i].Val.V == LE.Val.V &&
663             Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) {
664           Scale += Decomposed.VarIndices[i].Scale;
665           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
666           break;
667         }
668       }
669 
670       // Make sure that we have a scale that makes sense for this target's
671       // index size.
672       Scale = adjustToIndexSize(Scale, IndexSize);
673 
674       if (!!Scale) {
675         VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW,
676                                   /* IsNegated */ false};
677         Decomposed.VarIndices.push_back(Entry);
678       }
679     }
680 
681     // Take care of wrap-arounds
682     if (GepHasConstantOffset)
683       Decomposed.Offset = adjustToIndexSize(Decomposed.Offset, IndexSize);
684 
685     // Analyze the base pointer next.
686     V = GEPOp->getOperand(0);
687   } while (--MaxLookup);
688 
689   // If the chain of expressions is too deep, just return early.
690   Decomposed.Base = V;
691   SearchLimitReached++;
692   return Decomposed;
693 }
694 
695 ModRefInfo BasicAAResult::getModRefInfoMask(const MemoryLocation &Loc,
696                                             AAQueryInfo &AAQI,
697                                             bool IgnoreLocals) {
698   assert(Visited.empty() && "Visited must be cleared after use!");
699   auto _ = make_scope_exit([&] { Visited.clear(); });
700 
701   unsigned MaxLookup = 8;
702   SmallVector<const Value *, 16> Worklist;
703   Worklist.push_back(Loc.Ptr);
704   ModRefInfo Result = ModRefInfo::NoModRef;
705 
706   do {
707     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
708     if (!Visited.insert(V).second)
709       continue;
710 
711     // Ignore allocas if we were instructed to do so.
712     if (IgnoreLocals && isa<AllocaInst>(V))
713       continue;
714 
715     // If the location points to memory that is known to be invariant for
716     // the life of the underlying SSA value, then we can exclude Mod from
717     // the set of valid memory effects.
718     //
719     // An argument that is marked readonly and noalias is known to be
720     // invariant while that function is executing.
721     if (const Argument *Arg = dyn_cast<Argument>(V)) {
722       if (Arg->hasNoAliasAttr() && Arg->onlyReadsMemory()) {
723         Result |= ModRefInfo::Ref;
724         continue;
725       }
726     }
727 
728     // A global constant can't be mutated.
729     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
730       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
731       // global to be marked constant in some modules and non-constant in
732       // others.  GV may even be a declaration, not a definition.
733       if (!GV->isConstant())
734         return AAResultBase::getModRefInfoMask(Loc, AAQI, IgnoreLocals);
735       continue;
736     }
737 
738     // If both select values point to local memory, then so does the select.
739     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
740       Worklist.push_back(SI->getTrueValue());
741       Worklist.push_back(SI->getFalseValue());
742       continue;
743     }
744 
745     // If all values incoming to a phi node point to local memory, then so does
746     // the phi.
747     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
748       // Don't bother inspecting phi nodes with many operands.
749       if (PN->getNumIncomingValues() > MaxLookup)
750         return AAResultBase::getModRefInfoMask(Loc, AAQI, IgnoreLocals);
751       append_range(Worklist, PN->incoming_values());
752       continue;
753     }
754 
755     // Otherwise be conservative.
756     return AAResultBase::getModRefInfoMask(Loc, AAQI, IgnoreLocals);
757   } while (!Worklist.empty() && --MaxLookup);
758 
759   // If we hit the maximum number of instructions to examine, be conservative.
760   if (!Worklist.empty())
761     return AAResultBase::getModRefInfoMask(Loc, AAQI, IgnoreLocals);
762 
763   return Result;
764 }
765 
766 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
767   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
768   return II && II->getIntrinsicID() == IID;
769 }
770 
771 /// Returns the behavior when calling the given call site.
772 MemoryEffects BasicAAResult::getMemoryEffects(const CallBase *Call,
773                                               AAQueryInfo &AAQI) {
774   MemoryEffects Min = Call->getAttributes().getMemoryEffects();
775 
776   if (const Function *F = dyn_cast<Function>(Call->getCalledOperand())) {
777     MemoryEffects FuncME = AAQI.AAR.getMemoryEffects(F);
778     // Operand bundles on the call may also read or write memory, in addition
779     // to the behavior of the called function.
780     if (Call->hasReadingOperandBundles())
781       FuncME |= MemoryEffects::readOnly();
782     if (Call->hasClobberingOperandBundles())
783       FuncME |= MemoryEffects::writeOnly();
784     Min &= FuncME;
785   }
786 
787   return Min;
788 }
789 
790 /// Returns the behavior when calling the given function. For use when the call
791 /// site is not known.
792 MemoryEffects BasicAAResult::getMemoryEffects(const Function *F) {
793   switch (F->getIntrinsicID()) {
794   case Intrinsic::experimental_guard:
795   case Intrinsic::experimental_deoptimize:
796     // These intrinsics can read arbitrary memory, and additionally modref
797     // inaccessible memory to model control dependence.
798     return MemoryEffects::readOnly() |
799            MemoryEffects::inaccessibleMemOnly(ModRefInfo::ModRef);
800   }
801 
802   return F->getMemoryEffects();
803 }
804 
805 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
806                                            unsigned ArgIdx) {
807   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
808     return ModRefInfo::Mod;
809 
810   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
811     return ModRefInfo::Ref;
812 
813   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
814     return ModRefInfo::NoModRef;
815 
816   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
817 }
818 
819 #ifndef NDEBUG
820 static const Function *getParent(const Value *V) {
821   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
822     if (!inst->getParent())
823       return nullptr;
824     return inst->getParent()->getParent();
825   }
826 
827   if (const Argument *arg = dyn_cast<Argument>(V))
828     return arg->getParent();
829 
830   return nullptr;
831 }
832 
833 static bool notDifferentParent(const Value *O1, const Value *O2) {
834 
835   const Function *F1 = getParent(O1);
836   const Function *F2 = getParent(O2);
837 
838   return !F1 || !F2 || F1 == F2;
839 }
840 #endif
841 
842 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
843                                  const MemoryLocation &LocB, AAQueryInfo &AAQI,
844                                  const Instruction *CtxI) {
845   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
846          "BasicAliasAnalysis doesn't support interprocedural queries.");
847   return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI, CtxI);
848 }
849 
850 /// Checks to see if the specified callsite can clobber the specified memory
851 /// object.
852 ///
853 /// Since we only look at local properties of this function, we really can't
854 /// say much about this query.  We do, however, use simple "address taken"
855 /// analysis on local objects.
856 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
857                                         const MemoryLocation &Loc,
858                                         AAQueryInfo &AAQI) {
859   assert(notDifferentParent(Call, Loc.Ptr) &&
860          "AliasAnalysis query involving multiple functions!");
861 
862   const Value *Object = getUnderlyingObject(Loc.Ptr);
863 
864   // Calls marked 'tail' cannot read or write allocas from the current frame
865   // because the current frame might be destroyed by the time they run. However,
866   // a tail call may use an alloca with byval. Calling with byval copies the
867   // contents of the alloca into argument registers or stack slots, so there is
868   // no lifetime issue.
869   if (isa<AllocaInst>(Object))
870     if (const CallInst *CI = dyn_cast<CallInst>(Call))
871       if (CI->isTailCall() &&
872           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
873         return ModRefInfo::NoModRef;
874 
875   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
876   // modify them even though the alloca is not escaped.
877   if (auto *AI = dyn_cast<AllocaInst>(Object))
878     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
879       return ModRefInfo::Mod;
880 
881   // A call can access a locally allocated object either because it is passed as
882   // an argument to the call, or because it has escaped prior to the call.
883   //
884   // Make sure the object has not escaped here, and then check that none of the
885   // call arguments alias the object below.
886   if (!isa<Constant>(Object) && Call != Object &&
887       AAQI.CI->isNotCapturedBeforeOrAt(Object, Call)) {
888 
889     // Optimistically assume that call doesn't touch Object and check this
890     // assumption in the following loop.
891     ModRefInfo Result = ModRefInfo::NoModRef;
892 
893     unsigned OperandNo = 0;
894     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
895          CI != CE; ++CI, ++OperandNo) {
896       if (!(*CI)->getType()->isPointerTy())
897         continue;
898 
899       // Call doesn't access memory through this operand, so we don't care
900       // if it aliases with Object.
901       if (Call->doesNotAccessMemory(OperandNo))
902         continue;
903 
904       // If this is a no-capture pointer argument, see if we can tell that it
905       // is impossible to alias the pointer we're checking.
906       AliasResult AR =
907           AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(*CI),
908                          MemoryLocation::getBeforeOrAfter(Object), AAQI);
909       // Operand doesn't alias 'Object', continue looking for other aliases
910       if (AR == AliasResult::NoAlias)
911         continue;
912       // Operand aliases 'Object', but call doesn't modify it. Strengthen
913       // initial assumption and keep looking in case if there are more aliases.
914       if (Call->onlyReadsMemory(OperandNo)) {
915         Result |= ModRefInfo::Ref;
916         continue;
917       }
918       // Operand aliases 'Object' but call only writes into it.
919       if (Call->onlyWritesMemory(OperandNo)) {
920         Result |= ModRefInfo::Mod;
921         continue;
922       }
923       // This operand aliases 'Object' and call reads and writes into it.
924       // Setting ModRef will not yield an early return below, MustAlias is not
925       // used further.
926       Result = ModRefInfo::ModRef;
927       break;
928     }
929 
930     // Early return if we improved mod ref information
931     if (!isModAndRefSet(Result))
932       return Result;
933   }
934 
935   // If the call is malloc/calloc like, we can assume that it doesn't
936   // modify any IR visible value.  This is only valid because we assume these
937   // routines do not read values visible in the IR.  TODO: Consider special
938   // casing realloc and strdup routines which access only their arguments as
939   // well.  Or alternatively, replace all of this with inaccessiblememonly once
940   // that's implemented fully.
941   if (isMallocOrCallocLikeFn(Call, &TLI)) {
942     // Be conservative if the accessed pointer may alias the allocation -
943     // fallback to the generic handling below.
944     if (AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(Call), Loc, AAQI) ==
945         AliasResult::NoAlias)
946       return ModRefInfo::NoModRef;
947   }
948 
949   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
950   // writing so that proper control dependencies are maintained but they never
951   // mod any particular memory location visible to the IR.
952   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
953   // intrinsic is now modeled as reading memory. This prevents hoisting the
954   // invariant.start intrinsic over stores. Consider:
955   // *ptr = 40;
956   // *ptr = 50;
957   // invariant_start(ptr)
958   // int val = *ptr;
959   // print(val);
960   //
961   // This cannot be transformed to:
962   //
963   // *ptr = 40;
964   // invariant_start(ptr)
965   // *ptr = 50;
966   // int val = *ptr;
967   // print(val);
968   //
969   // The transformation will cause the second store to be ignored (based on
970   // rules of invariant.start)  and print 40, while the first program always
971   // prints 50.
972   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
973     return ModRefInfo::Ref;
974 
975   // The AAResultBase base class has some smarts, lets use them.
976   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
977 }
978 
979 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
980                                         const CallBase *Call2,
981                                         AAQueryInfo &AAQI) {
982   // Guard intrinsics are marked as arbitrarily writing so that proper control
983   // dependencies are maintained but they never mods any particular memory
984   // location.
985   //
986   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
987   // heap state at the point the guard is issued needs to be consistent in case
988   // the guard invokes the "deopt" continuation.
989 
990   // NB! This function is *not* commutative, so we special case two
991   // possibilities for guard intrinsics.
992 
993   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
994     return isModSet(getMemoryEffects(Call2, AAQI).getModRef())
995                ? ModRefInfo::Ref
996                : ModRefInfo::NoModRef;
997 
998   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
999     return isModSet(getMemoryEffects(Call1, AAQI).getModRef())
1000                ? ModRefInfo::Mod
1001                : ModRefInfo::NoModRef;
1002 
1003   // The AAResultBase base class has some smarts, lets use them.
1004   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1005 }
1006 
1007 /// Return true if we know V to the base address of the corresponding memory
1008 /// object.  This implies that any address less than V must be out of bounds
1009 /// for the underlying object.  Note that just being isIdentifiedObject() is
1010 /// not enough - For example, a negative offset from a noalias argument or call
1011 /// can be inbounds w.r.t the actual underlying object.
1012 static bool isBaseOfObject(const Value *V) {
1013   // TODO: We can handle other cases here
1014   // 1) For GC languages, arguments to functions are often required to be
1015   //    base pointers.
1016   // 2) Result of allocation routines are often base pointers.  Leverage TLI.
1017   return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
1018 }
1019 
1020 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1021 /// another pointer.
1022 ///
1023 /// We know that V1 is a GEP, but we don't know anything about V2.
1024 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1025 /// V2.
1026 AliasResult BasicAAResult::aliasGEP(
1027     const GEPOperator *GEP1, LocationSize V1Size,
1028     const Value *V2, LocationSize V2Size,
1029     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1030   if (!V1Size.hasValue() && !V2Size.hasValue()) {
1031     // TODO: This limitation exists for compile-time reasons. Relax it if we
1032     // can avoid exponential pathological cases.
1033     if (!isa<GEPOperator>(V2))
1034       return AliasResult::MayAlias;
1035 
1036     // If both accesses have unknown size, we can only check whether the base
1037     // objects don't alias.
1038     AliasResult BaseAlias =
1039         AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1040                        MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
1041     return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias
1042                                              : AliasResult::MayAlias;
1043   }
1044 
1045   DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1046   DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1047 
1048   // Bail if we were not able to decompose anything.
1049   if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2)
1050     return AliasResult::MayAlias;
1051 
1052   // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1053   // symbolic difference.
1054   subtractDecomposedGEPs(DecompGEP1, DecompGEP2, AAQI);
1055 
1056   // If an inbounds GEP would have to start from an out of bounds address
1057   // for the two to alias, then we can assume noalias.
1058   if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
1059       V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) &&
1060       isBaseOfObject(DecompGEP2.Base))
1061     return AliasResult::NoAlias;
1062 
1063   if (isa<GEPOperator>(V2)) {
1064     // Symmetric case to above.
1065     if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
1066         V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) &&
1067         isBaseOfObject(DecompGEP1.Base))
1068       return AliasResult::NoAlias;
1069   }
1070 
1071   // For GEPs with identical offsets, we can preserve the size and AAInfo
1072   // when performing the alias check on the underlying objects.
1073   if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1074     return AAQI.AAR.alias(MemoryLocation(DecompGEP1.Base, V1Size),
1075                           MemoryLocation(DecompGEP2.Base, V2Size), AAQI);
1076 
1077   // Do the base pointers alias?
1078   AliasResult BaseAlias =
1079       AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(DecompGEP1.Base),
1080                      MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI);
1081 
1082   // If we get a No or May, then return it immediately, no amount of analysis
1083   // will improve this situation.
1084   if (BaseAlias != AliasResult::MustAlias) {
1085     assert(BaseAlias == AliasResult::NoAlias ||
1086            BaseAlias == AliasResult::MayAlias);
1087     return BaseAlias;
1088   }
1089 
1090   // If there is a constant difference between the pointers, but the difference
1091   // is less than the size of the associated memory object, then we know
1092   // that the objects are partially overlapping.  If the difference is
1093   // greater, we know they do not overlap.
1094   if (DecompGEP1.VarIndices.empty()) {
1095     APInt &Off = DecompGEP1.Offset;
1096 
1097     // Initialize for Off >= 0 (V2 <= GEP1) case.
1098     const Value *LeftPtr = V2;
1099     const Value *RightPtr = GEP1;
1100     LocationSize VLeftSize = V2Size;
1101     LocationSize VRightSize = V1Size;
1102     const bool Swapped = Off.isNegative();
1103 
1104     if (Swapped) {
1105       // Swap if we have the situation where:
1106       // +                +
1107       // | BaseOffset     |
1108       // ---------------->|
1109       // |-->V1Size       |-------> V2Size
1110       // GEP1             V2
1111       std::swap(LeftPtr, RightPtr);
1112       std::swap(VLeftSize, VRightSize);
1113       Off = -Off;
1114     }
1115 
1116     if (!VLeftSize.hasValue())
1117       return AliasResult::MayAlias;
1118 
1119     const uint64_t LSize = VLeftSize.getValue();
1120     if (Off.ult(LSize)) {
1121       // Conservatively drop processing if a phi was visited and/or offset is
1122       // too big.
1123       AliasResult AR = AliasResult::PartialAlias;
1124       if (VRightSize.hasValue() && Off.ule(INT32_MAX) &&
1125           (Off + VRightSize.getValue()).ule(LSize)) {
1126         // Memory referenced by right pointer is nested. Save the offset in
1127         // cache. Note that originally offset estimated as GEP1-V2, but
1128         // AliasResult contains the shift that represents GEP1+Offset=V2.
1129         AR.setOffset(-Off.getSExtValue());
1130         AR.swap(Swapped);
1131       }
1132       return AR;
1133     }
1134     return AliasResult::NoAlias;
1135   }
1136 
1137   // We need to know both acess sizes for all the following heuristics.
1138   if (!V1Size.hasValue() || !V2Size.hasValue())
1139     return AliasResult::MayAlias;
1140 
1141   APInt GCD;
1142   ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset);
1143   for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1144     const VariableGEPIndex &Index = DecompGEP1.VarIndices[i];
1145     const APInt &Scale = Index.Scale;
1146     APInt ScaleForGCD = Scale;
1147     if (!Index.IsNSW)
1148       ScaleForGCD =
1149           APInt::getOneBitSet(Scale.getBitWidth(), Scale.countr_zero());
1150 
1151     if (i == 0)
1152       GCD = ScaleForGCD.abs();
1153     else
1154       GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs());
1155 
1156     ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false,
1157                                             true, &AC, Index.CxtI);
1158     KnownBits Known =
1159         computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT);
1160     CR = CR.intersectWith(
1161         ConstantRange::fromKnownBits(Known, /* Signed */ true),
1162         ConstantRange::Signed);
1163     CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth());
1164 
1165     assert(OffsetRange.getBitWidth() == Scale.getBitWidth() &&
1166            "Bit widths are normalized to MaxIndexSize");
1167     if (Index.IsNSW)
1168       CR = CR.smul_sat(ConstantRange(Scale));
1169     else
1170       CR = CR.smul_fast(ConstantRange(Scale));
1171 
1172     if (Index.IsNegated)
1173       OffsetRange = OffsetRange.sub(CR);
1174     else
1175       OffsetRange = OffsetRange.add(CR);
1176   }
1177 
1178   // We now have accesses at two offsets from the same base:
1179   //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
1180   //  2. 0 with size V2Size
1181   // Using arithmetic modulo GCD, the accesses are at
1182   // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1183   // into the range [V2Size..GCD), then we know they cannot overlap.
1184   APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1185   if (ModOffset.isNegative())
1186     ModOffset += GCD; // We want mod, not rem.
1187   if (ModOffset.uge(V2Size.getValue()) &&
1188       (GCD - ModOffset).uge(V1Size.getValue()))
1189     return AliasResult::NoAlias;
1190 
1191   // Compute ranges of potentially accessed bytes for both accesses. If the
1192   // interseciton is empty, there can be no overlap.
1193   unsigned BW = OffsetRange.getBitWidth();
1194   ConstantRange Range1 = OffsetRange.add(
1195       ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue())));
1196   ConstantRange Range2 =
1197       ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue()));
1198   if (Range1.intersectWith(Range2).isEmptySet())
1199     return AliasResult::NoAlias;
1200 
1201   // Try to determine the range of values for VarIndex such that
1202   // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex.
1203   std::optional<APInt> MinAbsVarIndex;
1204   if (DecompGEP1.VarIndices.size() == 1) {
1205     // VarIndex = Scale*V.
1206     const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1207     if (Var.Val.TruncBits == 0 &&
1208         isKnownNonZero(Var.Val.V, DL, 0, &AC, Var.CxtI, DT)) {
1209       // If V != 0, then abs(VarIndex) > 0.
1210       MinAbsVarIndex = APInt(Var.Scale.getBitWidth(), 1);
1211 
1212       // Check if abs(V*Scale) >= abs(Scale) holds in the presence of
1213       // potentially wrapping math.
1214       auto MultiplyByScaleNoWrap = [](const VariableGEPIndex &Var) {
1215         if (Var.IsNSW)
1216           return true;
1217 
1218         int ValOrigBW = Var.Val.V->getType()->getPrimitiveSizeInBits();
1219         // If Scale is small enough so that abs(V*Scale) >= abs(Scale) holds.
1220         // The max value of abs(V) is 2^ValOrigBW - 1. Multiplying with a
1221         // constant smaller than 2^(bitwidth(Val) - ValOrigBW) won't wrap.
1222         int MaxScaleValueBW = Var.Val.getBitWidth() - ValOrigBW;
1223         if (MaxScaleValueBW <= 0)
1224           return false;
1225         return Var.Scale.ule(
1226             APInt::getMaxValue(MaxScaleValueBW).zext(Var.Scale.getBitWidth()));
1227       };
1228       // Refine MinAbsVarIndex, if abs(Scale*V) >= abs(Scale) holds in the
1229       // presence of potentially wrapping math.
1230       if (MultiplyByScaleNoWrap(Var)) {
1231         // If V != 0 then abs(VarIndex) >= abs(Scale).
1232         MinAbsVarIndex = Var.Scale.abs();
1233       }
1234     }
1235   } else if (DecompGEP1.VarIndices.size() == 2) {
1236     // VarIndex = Scale*V0 + (-Scale)*V1.
1237     // If V0 != V1 then abs(VarIndex) >= abs(Scale).
1238     // Check that MayBeCrossIteration is false, to avoid reasoning about
1239     // inequality of values across loop iterations.
1240     const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1241     const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1242     if (Var0.hasNegatedScaleOf(Var1) && Var0.Val.TruncBits == 0 &&
1243         Var0.Val.hasSameCastsAs(Var1.Val) && !AAQI.MayBeCrossIteration &&
1244         isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr,
1245                         DT))
1246       MinAbsVarIndex = Var0.Scale.abs();
1247   }
1248 
1249   if (MinAbsVarIndex) {
1250     // The constant offset will have added at least +/-MinAbsVarIndex to it.
1251     APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1252     APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1253     // We know that Offset <= OffsetLo || Offset >= OffsetHi
1254     if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
1255         OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
1256       return AliasResult::NoAlias;
1257   }
1258 
1259   if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT, AAQI))
1260     return AliasResult::NoAlias;
1261 
1262   // Statically, we can see that the base objects are the same, but the
1263   // pointers have dynamic offsets which we can't resolve. And none of our
1264   // little tricks above worked.
1265   return AliasResult::MayAlias;
1266 }
1267 
1268 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1269   // If the results agree, take it.
1270   if (A == B)
1271     return A;
1272   // A mix of PartialAlias and MustAlias is PartialAlias.
1273   if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) ||
1274       (B == AliasResult::PartialAlias && A == AliasResult::MustAlias))
1275     return AliasResult::PartialAlias;
1276   // Otherwise, we don't know anything.
1277   return AliasResult::MayAlias;
1278 }
1279 
1280 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1281 /// against another.
1282 AliasResult
1283 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1284                            const Value *V2, LocationSize V2Size,
1285                            AAQueryInfo &AAQI) {
1286   // If the values are Selects with the same condition, we can do a more precise
1287   // check: just check for aliases between the values on corresponding arms.
1288   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1289     if (isValueEqualInPotentialCycles(SI->getCondition(), SI2->getCondition(),
1290                                       AAQI)) {
1291       AliasResult Alias =
1292           AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize),
1293                          MemoryLocation(SI2->getTrueValue(), V2Size), AAQI);
1294       if (Alias == AliasResult::MayAlias)
1295         return AliasResult::MayAlias;
1296       AliasResult ThisAlias =
1297           AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize),
1298                          MemoryLocation(SI2->getFalseValue(), V2Size), AAQI);
1299       return MergeAliasResults(ThisAlias, Alias);
1300     }
1301 
1302   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1303   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1304   AliasResult Alias = AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize),
1305                                      MemoryLocation(V2, V2Size), AAQI);
1306   if (Alias == AliasResult::MayAlias)
1307     return AliasResult::MayAlias;
1308 
1309   AliasResult ThisAlias =
1310       AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize),
1311                      MemoryLocation(V2, V2Size), AAQI);
1312   return MergeAliasResults(ThisAlias, Alias);
1313 }
1314 
1315 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1316 /// another.
1317 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1318                                     const Value *V2, LocationSize V2Size,
1319                                     AAQueryInfo &AAQI) {
1320   if (!PN->getNumIncomingValues())
1321     return AliasResult::NoAlias;
1322   // If the values are PHIs in the same block, we can do a more precise
1323   // as well as efficient check: just check for aliases between the values
1324   // on corresponding edges.
1325   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1326     if (PN2->getParent() == PN->getParent()) {
1327       std::optional<AliasResult> Alias;
1328       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1329         AliasResult ThisAlias = AAQI.AAR.alias(
1330             MemoryLocation(PN->getIncomingValue(i), PNSize),
1331             MemoryLocation(
1332                 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size),
1333             AAQI);
1334         if (Alias)
1335           *Alias = MergeAliasResults(*Alias, ThisAlias);
1336         else
1337           Alias = ThisAlias;
1338         if (*Alias == AliasResult::MayAlias)
1339           break;
1340       }
1341       return *Alias;
1342     }
1343 
1344   SmallVector<Value *, 4> V1Srcs;
1345   // If a phi operand recurses back to the phi, we can still determine NoAlias
1346   // if we don't alias the underlying objects of the other phi operands, as we
1347   // know that the recursive phi needs to be based on them in some way.
1348   bool isRecursive = false;
1349   auto CheckForRecPhi = [&](Value *PV) {
1350     if (!EnableRecPhiAnalysis)
1351       return false;
1352     if (getUnderlyingObject(PV) == PN) {
1353       isRecursive = true;
1354       return true;
1355     }
1356     return false;
1357   };
1358 
1359   SmallPtrSet<Value *, 4> UniqueSrc;
1360   Value *OnePhi = nullptr;
1361   for (Value *PV1 : PN->incoming_values()) {
1362     // Skip the phi itself being the incoming value.
1363     if (PV1 == PN)
1364       continue;
1365 
1366     if (isa<PHINode>(PV1)) {
1367       if (OnePhi && OnePhi != PV1) {
1368         // To control potential compile time explosion, we choose to be
1369         // conserviate when we have more than one Phi input.  It is important
1370         // that we handle the single phi case as that lets us handle LCSSA
1371         // phi nodes and (combined with the recursive phi handling) simple
1372         // pointer induction variable patterns.
1373         return AliasResult::MayAlias;
1374       }
1375       OnePhi = PV1;
1376     }
1377 
1378     if (CheckForRecPhi(PV1))
1379       continue;
1380 
1381     if (UniqueSrc.insert(PV1).second)
1382       V1Srcs.push_back(PV1);
1383   }
1384 
1385   if (OnePhi && UniqueSrc.size() > 1)
1386     // Out of an abundance of caution, allow only the trivial lcssa and
1387     // recursive phi cases.
1388     return AliasResult::MayAlias;
1389 
1390   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1391   // value. This should only be possible in blocks unreachable from the entry
1392   // block, but return MayAlias just in case.
1393   if (V1Srcs.empty())
1394     return AliasResult::MayAlias;
1395 
1396   // If this PHI node is recursive, indicate that the pointer may be moved
1397   // across iterations. We can only prove NoAlias if different underlying
1398   // objects are involved.
1399   if (isRecursive)
1400     PNSize = LocationSize::beforeOrAfterPointer();
1401 
1402   // In the recursive alias queries below, we may compare values from two
1403   // different loop iterations.
1404   SaveAndRestore SavedMayBeCrossIteration(AAQI.MayBeCrossIteration, true);
1405 
1406   AliasResult Alias = AAQI.AAR.alias(MemoryLocation(V1Srcs[0], PNSize),
1407                                      MemoryLocation(V2, V2Size), AAQI);
1408 
1409   // Early exit if the check of the first PHI source against V2 is MayAlias.
1410   // Other results are not possible.
1411   if (Alias == AliasResult::MayAlias)
1412     return AliasResult::MayAlias;
1413   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1414   // remain valid to all elements and needs to conservatively return MayAlias.
1415   if (isRecursive && Alias != AliasResult::NoAlias)
1416     return AliasResult::MayAlias;
1417 
1418   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1419   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1420   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1421     Value *V = V1Srcs[i];
1422 
1423     AliasResult ThisAlias = AAQI.AAR.alias(
1424         MemoryLocation(V, PNSize), MemoryLocation(V2, V2Size), AAQI);
1425     Alias = MergeAliasResults(ThisAlias, Alias);
1426     if (Alias == AliasResult::MayAlias)
1427       break;
1428   }
1429 
1430   return Alias;
1431 }
1432 
1433 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1434 /// array references.
1435 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1436                                       const Value *V2, LocationSize V2Size,
1437                                       AAQueryInfo &AAQI,
1438                                       const Instruction *CtxI) {
1439   // If either of the memory references is empty, it doesn't matter what the
1440   // pointer values are.
1441   if (V1Size.isZero() || V2Size.isZero())
1442     return AliasResult::NoAlias;
1443 
1444   // Strip off any casts if they exist.
1445   V1 = V1->stripPointerCastsForAliasAnalysis();
1446   V2 = V2->stripPointerCastsForAliasAnalysis();
1447 
1448   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1449   // value for undef that aliases nothing in the program.
1450   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1451     return AliasResult::NoAlias;
1452 
1453   // Are we checking for alias of the same value?
1454   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1455   // different iterations. We must therefore make sure that this is not the
1456   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1457   // happen by looking at the visited phi nodes and making sure they cannot
1458   // reach the value.
1459   if (isValueEqualInPotentialCycles(V1, V2, AAQI))
1460     return AliasResult::MustAlias;
1461 
1462   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1463     return AliasResult::NoAlias; // Scalars cannot alias each other
1464 
1465   // Figure out what objects these things are pointing to if we can.
1466   const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1467   const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1468 
1469   // Null values in the default address space don't point to any object, so they
1470   // don't alias any other pointer.
1471   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1472     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1473       return AliasResult::NoAlias;
1474   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1475     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1476       return AliasResult::NoAlias;
1477 
1478   if (O1 != O2) {
1479     // If V1/V2 point to two different objects, we know that we have no alias.
1480     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1481       return AliasResult::NoAlias;
1482 
1483     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1484     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1485         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1486       return AliasResult::NoAlias;
1487 
1488     // Function arguments can't alias with things that are known to be
1489     // unambigously identified at the function level.
1490     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1491         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1492       return AliasResult::NoAlias;
1493 
1494     // If one pointer is the result of a call/invoke or load and the other is a
1495     // non-escaping local object within the same function, then we know the
1496     // object couldn't escape to a point where the call could return it.
1497     //
1498     // Note that if the pointers are in different functions, there are a
1499     // variety of complications. A call with a nocapture argument may still
1500     // temporary store the nocapture argument's value in a temporary memory
1501     // location if that memory location doesn't escape. Or it may pass a
1502     // nocapture value to other functions as long as they don't capture it.
1503     if (isEscapeSource(O1) &&
1504         AAQI.CI->isNotCapturedBeforeOrAt(O2, cast<Instruction>(O1)))
1505       return AliasResult::NoAlias;
1506     if (isEscapeSource(O2) &&
1507         AAQI.CI->isNotCapturedBeforeOrAt(O1, cast<Instruction>(O2)))
1508       return AliasResult::NoAlias;
1509   }
1510 
1511   // If the size of one access is larger than the entire object on the other
1512   // side, then we know such behavior is undefined and can assume no alias.
1513   bool NullIsValidLocation = NullPointerIsDefined(&F);
1514   if ((isObjectSmallerThan(
1515           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1516           TLI, NullIsValidLocation)) ||
1517       (isObjectSmallerThan(
1518           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1519           TLI, NullIsValidLocation)))
1520     return AliasResult::NoAlias;
1521 
1522   if (CtxI && EnableSeparateStorageAnalysis) {
1523     for (auto &AssumeVH : AC.assumptions()) {
1524       if (!AssumeVH)
1525         continue;
1526 
1527       AssumeInst *Assume = cast<AssumeInst>(AssumeVH);
1528 
1529       for (unsigned Idx = 0; Idx < Assume->getNumOperandBundles(); Idx++) {
1530         OperandBundleUse OBU = Assume->getOperandBundleAt(Idx);
1531         if (OBU.getTagName() == "separate_storage") {
1532           assert(OBU.Inputs.size() == 2);
1533           const Value *Hint1 = OBU.Inputs[0].get();
1534           const Value *Hint2 = OBU.Inputs[1].get();
1535           // This is often a no-op; instcombine rewrites this for us. No-op
1536           // getUnderlyingObject calls are fast, though.
1537           const Value *HintO1 = getUnderlyingObject(Hint1);
1538           const Value *HintO2 = getUnderlyingObject(Hint2);
1539 
1540           if (((O1 == HintO1 && O2 == HintO2) ||
1541                (O1 == HintO2 && O2 == HintO1)) &&
1542               isValidAssumeForContext(Assume, CtxI, DT))
1543             return AliasResult::NoAlias;
1544         }
1545       }
1546     }
1547   }
1548 
1549   // If one the accesses may be before the accessed pointer, canonicalize this
1550   // by using unknown after-pointer sizes for both accesses. This is
1551   // equivalent, because regardless of which pointer is lower, one of them
1552   // will always came after the other, as long as the underlying objects aren't
1553   // disjoint. We do this so that the rest of BasicAA does not have to deal
1554   // with accesses before the base pointer, and to improve cache utilization by
1555   // merging equivalent states.
1556   if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1557     V1Size = LocationSize::afterPointer();
1558     V2Size = LocationSize::afterPointer();
1559   }
1560 
1561   // FIXME: If this depth limit is hit, then we may cache sub-optimal results
1562   // for recursive queries. For this reason, this limit is chosen to be large
1563   // enough to be very rarely hit, while still being small enough to avoid
1564   // stack overflows.
1565   if (AAQI.Depth >= 512)
1566     return AliasResult::MayAlias;
1567 
1568   // Check the cache before climbing up use-def chains. This also terminates
1569   // otherwise infinitely recursive queries. Include MayBeCrossIteration in the
1570   // cache key, because some cases where MayBeCrossIteration==false returns
1571   // MustAlias or NoAlias may become MayAlias under MayBeCrossIteration==true.
1572   AAQueryInfo::LocPair Locs({V1, V1Size, AAQI.MayBeCrossIteration},
1573                             {V2, V2Size, AAQI.MayBeCrossIteration});
1574   const bool Swapped = V1 > V2;
1575   if (Swapped)
1576     std::swap(Locs.first, Locs.second);
1577   const auto &Pair = AAQI.AliasCache.try_emplace(
1578       Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0});
1579   if (!Pair.second) {
1580     auto &Entry = Pair.first->second;
1581     if (!Entry.isDefinitive()) {
1582       // Remember that we used an assumption.
1583       ++Entry.NumAssumptionUses;
1584       ++AAQI.NumAssumptionUses;
1585     }
1586     // Cache contains sorted {V1,V2} pairs but we should return original order.
1587     auto Result = Entry.Result;
1588     Result.swap(Swapped);
1589     return Result;
1590   }
1591 
1592   int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
1593   unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
1594   AliasResult Result =
1595       aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2);
1596 
1597   auto It = AAQI.AliasCache.find(Locs);
1598   assert(It != AAQI.AliasCache.end() && "Must be in cache");
1599   auto &Entry = It->second;
1600 
1601   // Check whether a NoAlias assumption has been used, but disproven.
1602   bool AssumptionDisproven =
1603       Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias;
1604   if (AssumptionDisproven)
1605     Result = AliasResult::MayAlias;
1606 
1607   // This is a definitive result now, when considered as a root query.
1608   AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
1609   Entry.Result = Result;
1610   // Cache contains sorted {V1,V2} pairs.
1611   Entry.Result.swap(Swapped);
1612   Entry.NumAssumptionUses = -1;
1613 
1614   // If the assumption has been disproven, remove any results that may have
1615   // been based on this assumption. Do this after the Entry updates above to
1616   // avoid iterator invalidation.
1617   if (AssumptionDisproven)
1618     while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1619       AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
1620 
1621   // The result may still be based on assumptions higher up in the chain.
1622   // Remember it, so it can be purged from the cache later.
1623   if (OrigNumAssumptionUses != AAQI.NumAssumptionUses &&
1624       Result != AliasResult::MayAlias)
1625     AAQI.AssumptionBasedResults.push_back(Locs);
1626   return Result;
1627 }
1628 
1629 AliasResult BasicAAResult::aliasCheckRecursive(
1630     const Value *V1, LocationSize V1Size,
1631     const Value *V2, LocationSize V2Size,
1632     AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1633   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1634     AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI);
1635     if (Result != AliasResult::MayAlias)
1636       return Result;
1637   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1638     AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI);
1639     Result.swap();
1640     if (Result != AliasResult::MayAlias)
1641       return Result;
1642   }
1643 
1644   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1645     AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI);
1646     if (Result != AliasResult::MayAlias)
1647       return Result;
1648   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1649     AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI);
1650     Result.swap();
1651     if (Result != AliasResult::MayAlias)
1652       return Result;
1653   }
1654 
1655   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1656     AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI);
1657     if (Result != AliasResult::MayAlias)
1658       return Result;
1659   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1660     AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI);
1661     Result.swap();
1662     if (Result != AliasResult::MayAlias)
1663       return Result;
1664   }
1665 
1666   // If both pointers are pointing into the same object and one of them
1667   // accesses the entire object, then the accesses must overlap in some way.
1668   if (O1 == O2) {
1669     bool NullIsValidLocation = NullPointerIsDefined(&F);
1670     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1671         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1672          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1673       return AliasResult::PartialAlias;
1674   }
1675 
1676   return AliasResult::MayAlias;
1677 }
1678 
1679 /// Check whether two Values can be considered equivalent.
1680 ///
1681 /// If the values may come from different cycle iterations, this will also
1682 /// check that the values are not part of cycle. We have to do this because we
1683 /// are looking through phi nodes, that is we say
1684 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1685 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1686                                                   const Value *V2,
1687                                                   const AAQueryInfo &AAQI) {
1688   if (V != V2)
1689     return false;
1690 
1691   if (!AAQI.MayBeCrossIteration)
1692     return true;
1693 
1694   // Non-instructions and instructions in the entry block cannot be part of
1695   // a loop.
1696   const Instruction *Inst = dyn_cast<Instruction>(V);
1697   if (!Inst || Inst->getParent()->isEntryBlock())
1698     return true;
1699 
1700   // Check whether the instruction is part of a cycle, by checking whether the
1701   // block can (non-trivially) reach itself.
1702   BasicBlock *BB = const_cast<BasicBlock *>(Inst->getParent());
1703   SmallVector<BasicBlock *> Succs(successors(BB));
1704   return !Succs.empty() &&
1705          !isPotentiallyReachableFromMany(Succs, BB, nullptr, DT);
1706 }
1707 
1708 /// Computes the symbolic difference between two de-composed GEPs.
1709 void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP,
1710                                            const DecomposedGEP &SrcGEP,
1711                                            const AAQueryInfo &AAQI) {
1712   DestGEP.Offset -= SrcGEP.Offset;
1713   for (const VariableGEPIndex &Src : SrcGEP.VarIndices) {
1714     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1715     // than a few variable indexes.
1716     bool Found = false;
1717     for (auto I : enumerate(DestGEP.VarIndices)) {
1718       VariableGEPIndex &Dest = I.value();
1719       if (!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V, AAQI) ||
1720           !Dest.Val.hasSameCastsAs(Src.Val))
1721         continue;
1722 
1723       // Normalize IsNegated if we're going to lose the NSW flag anyway.
1724       if (Dest.IsNegated) {
1725         Dest.Scale = -Dest.Scale;
1726         Dest.IsNegated = false;
1727         Dest.IsNSW = false;
1728       }
1729 
1730       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1731       // goes to zero, remove the entry.
1732       if (Dest.Scale != Src.Scale) {
1733         Dest.Scale -= Src.Scale;
1734         Dest.IsNSW = false;
1735       } else {
1736         DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index());
1737       }
1738       Found = true;
1739       break;
1740     }
1741 
1742     // If we didn't consume this entry, add it to the end of the Dest list.
1743     if (!Found) {
1744       VariableGEPIndex Entry = {Src.Val, Src.Scale, Src.CxtI, Src.IsNSW,
1745                                 /* IsNegated */ true};
1746       DestGEP.VarIndices.push_back(Entry);
1747     }
1748   }
1749 }
1750 
1751 bool BasicAAResult::constantOffsetHeuristic(const DecomposedGEP &GEP,
1752                                             LocationSize MaybeV1Size,
1753                                             LocationSize MaybeV2Size,
1754                                             AssumptionCache *AC,
1755                                             DominatorTree *DT,
1756                                             const AAQueryInfo &AAQI) {
1757   if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1758       !MaybeV2Size.hasValue())
1759     return false;
1760 
1761   const uint64_t V1Size = MaybeV1Size.getValue();
1762   const uint64_t V2Size = MaybeV2Size.getValue();
1763 
1764   const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1];
1765 
1766   if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) ||
1767       !Var0.hasNegatedScaleOf(Var1) ||
1768       Var0.Val.V->getType() != Var1.Val.V->getType())
1769     return false;
1770 
1771   // We'll strip off the Extensions of Var0 and Var1 and do another round
1772   // of GetLinearExpression decomposition. In the example above, if Var0
1773   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1774 
1775   LinearExpression E0 =
1776       GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT);
1777   LinearExpression E1 =
1778       GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT);
1779   if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) ||
1780       !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V, AAQI))
1781     return false;
1782 
1783   // We have a hit - Var0 and Var1 only differ by a constant offset!
1784 
1785   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1786   // Var1 is possible to calculate, but we're just interested in the absolute
1787   // minimum difference between the two. The minimum distance may occur due to
1788   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1789   // the minimum distance between %i and %i + 5 is 3.
1790   APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff;
1791   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1792   APInt MinDiffBytes =
1793     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1794 
1795   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1796   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1797   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1798   // V2Size can fit in the MinDiffBytes gap.
1799   return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) &&
1800          MinDiffBytes.uge(V2Size + GEP.Offset.abs());
1801 }
1802 
1803 //===----------------------------------------------------------------------===//
1804 // BasicAliasAnalysis Pass
1805 //===----------------------------------------------------------------------===//
1806 
1807 AnalysisKey BasicAA::Key;
1808 
1809 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1810   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1811   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1812   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1813   return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT);
1814 }
1815 
1816 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1817   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1818 }
1819 
1820 char BasicAAWrapperPass::ID = 0;
1821 
1822 void BasicAAWrapperPass::anchor() {}
1823 
1824 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1825                       "Basic Alias Analysis (stateless AA impl)", true, true)
1826 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1827 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1828 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1829 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1830                     "Basic Alias Analysis (stateless AA impl)", true, true)
1831 
1832 FunctionPass *llvm::createBasicAAWrapperPass() {
1833   return new BasicAAWrapperPass();
1834 }
1835 
1836 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1837   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1838   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1839   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1840 
1841   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
1842                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1843                                  &DTWP.getDomTree()));
1844 
1845   return false;
1846 }
1847 
1848 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1849   AU.setPreservesAll();
1850   AU.addRequiredTransitive<AssumptionCacheTracker>();
1851   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1852   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1853 }
1854