xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/AliasAnalysis.cpp (revision f126d349810fdb512c0b01e101342d430b947488)
1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic AliasAnalysis interface which is used as the
10 // common interface used by all clients and implementations of alias analysis.
11 //
12 // This file also implements the default version of the AliasAnalysis interface
13 // that is to be used when no other implementation is specified.  This does some
14 // simple tests that detect obvious cases: two different global pointers cannot
15 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
16 // etc.
17 //
18 // This alias analysis implementation really isn't very good for anything, but
19 // it is very fast, and makes a nice clean default implementation.  Because it
20 // handles lots of little corner cases, other, more complex, alias analysis
21 // implementations may choose to rely on this pass to resolve these simple and
22 // easy cases.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
30 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
31 #include "llvm/Analysis/CaptureTracking.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/ScopedNoAliasAA.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
39 #include "llvm/Analysis/ValueTracking.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/AtomicOrdering.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <functional>
56 #include <iterator>
57 
58 #define DEBUG_TYPE "aa"
59 
60 using namespace llvm;
61 
62 STATISTIC(NumNoAlias,   "Number of NoAlias results");
63 STATISTIC(NumMayAlias,  "Number of MayAlias results");
64 STATISTIC(NumMustAlias, "Number of MustAlias results");
65 
66 namespace llvm {
67 /// Allow disabling BasicAA from the AA results. This is particularly useful
68 /// when testing to isolate a single AA implementation.
69 cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden, cl::init(false));
70 } // namespace llvm
71 
72 #ifndef NDEBUG
73 /// Print a trace of alias analysis queries and their results.
74 static cl::opt<bool> EnableAATrace("aa-trace", cl::Hidden, cl::init(false));
75 #else
76 static const bool EnableAATrace = false;
77 #endif
78 
79 AAResults::AAResults(AAResults &&Arg)
80     : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
81   for (auto &AA : AAs)
82     AA->setAAResults(this);
83 }
84 
85 AAResults::~AAResults() {
86 // FIXME; It would be nice to at least clear out the pointers back to this
87 // aggregation here, but we end up with non-nesting lifetimes in the legacy
88 // pass manager that prevent this from working. In the legacy pass manager
89 // we'll end up with dangling references here in some cases.
90 #if 0
91   for (auto &AA : AAs)
92     AA->setAAResults(nullptr);
93 #endif
94 }
95 
96 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
97                            FunctionAnalysisManager::Invalidator &Inv) {
98   // AAResults preserves the AAManager by default, due to the stateless nature
99   // of AliasAnalysis. There is no need to check whether it has been preserved
100   // explicitly. Check if any module dependency was invalidated and caused the
101   // AAManager to be invalidated. Invalidate ourselves in that case.
102   auto PAC = PA.getChecker<AAManager>();
103   if (!PAC.preservedWhenStateless())
104     return true;
105 
106   // Check if any of the function dependencies were invalidated, and invalidate
107   // ourselves in that case.
108   for (AnalysisKey *ID : AADeps)
109     if (Inv.invalidate(ID, F, PA))
110       return true;
111 
112   // Everything we depend on is still fine, so are we. Nothing to invalidate.
113   return false;
114 }
115 
116 //===----------------------------------------------------------------------===//
117 // Default chaining methods
118 //===----------------------------------------------------------------------===//
119 
120 AliasResult AAResults::alias(const MemoryLocation &LocA,
121                              const MemoryLocation &LocB) {
122   SimpleAAQueryInfo AAQIP;
123   return alias(LocA, LocB, AAQIP);
124 }
125 
126 AliasResult AAResults::alias(const MemoryLocation &LocA,
127                              const MemoryLocation &LocB, AAQueryInfo &AAQI) {
128   AliasResult Result = AliasResult::MayAlias;
129 
130   if (EnableAATrace) {
131     for (unsigned I = 0; I < AAQI.Depth; ++I)
132       dbgs() << "  ";
133     dbgs() << "Start " << *LocA.Ptr << " @ " << LocA.Size << ", "
134            << *LocB.Ptr << " @ " << LocB.Size << "\n";
135   }
136 
137   AAQI.Depth++;
138   for (const auto &AA : AAs) {
139     Result = AA->alias(LocA, LocB, AAQI);
140     if (Result != AliasResult::MayAlias)
141       break;
142   }
143   AAQI.Depth--;
144 
145   if (EnableAATrace) {
146     for (unsigned I = 0; I < AAQI.Depth; ++I)
147       dbgs() << "  ";
148     dbgs() << "End " << *LocA.Ptr << " @ " << LocA.Size << ", "
149            << *LocB.Ptr << " @ " << LocB.Size << " = " << Result << "\n";
150   }
151 
152   if (AAQI.Depth == 0) {
153     if (Result == AliasResult::NoAlias)
154       ++NumNoAlias;
155     else if (Result == AliasResult::MustAlias)
156       ++NumMustAlias;
157     else
158       ++NumMayAlias;
159   }
160   return Result;
161 }
162 
163 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
164                                        bool OrLocal) {
165   SimpleAAQueryInfo AAQIP;
166   return pointsToConstantMemory(Loc, AAQIP, OrLocal);
167 }
168 
169 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
170                                        AAQueryInfo &AAQI, bool OrLocal) {
171   for (const auto &AA : AAs)
172     if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal))
173       return true;
174 
175   return false;
176 }
177 
178 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
179   ModRefInfo Result = ModRefInfo::ModRef;
180 
181   for (const auto &AA : AAs) {
182     Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));
183 
184     // Early-exit the moment we reach the bottom of the lattice.
185     if (isNoModRef(Result))
186       return ModRefInfo::NoModRef;
187   }
188 
189   return Result;
190 }
191 
192 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
193   SimpleAAQueryInfo AAQIP;
194   return getModRefInfo(I, Call2, AAQIP);
195 }
196 
197 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2,
198                                     AAQueryInfo &AAQI) {
199   // We may have two calls.
200   if (const auto *Call1 = dyn_cast<CallBase>(I)) {
201     // Check if the two calls modify the same memory.
202     return getModRefInfo(Call1, Call2, AAQI);
203   }
204   // If this is a fence, just return ModRef.
205   if (I->isFenceLike())
206     return ModRefInfo::ModRef;
207   // Otherwise, check if the call modifies or references the
208   // location this memory access defines.  The best we can say
209   // is that if the call references what this instruction
210   // defines, it must be clobbered by this location.
211   const MemoryLocation DefLoc = MemoryLocation::get(I);
212   ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
213   if (isModOrRefSet(MR))
214     return setModAndRef(MR);
215   return ModRefInfo::NoModRef;
216 }
217 
218 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
219                                     const MemoryLocation &Loc) {
220   SimpleAAQueryInfo AAQIP;
221   return getModRefInfo(Call, Loc, AAQIP);
222 }
223 
224 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
225                                     const MemoryLocation &Loc,
226                                     AAQueryInfo &AAQI) {
227   ModRefInfo Result = ModRefInfo::ModRef;
228 
229   for (const auto &AA : AAs) {
230     Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI));
231 
232     // Early-exit the moment we reach the bottom of the lattice.
233     if (isNoModRef(Result))
234       return ModRefInfo::NoModRef;
235   }
236 
237   // Try to refine the mod-ref info further using other API entry points to the
238   // aggregate set of AA results.
239   auto MRB = getModRefBehavior(Call);
240   if (onlyAccessesInaccessibleMem(MRB))
241     return ModRefInfo::NoModRef;
242 
243   if (onlyReadsMemory(MRB))
244     Result = clearMod(Result);
245   else if (onlyWritesMemory(MRB))
246     Result = clearRef(Result);
247 
248   if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
249     bool IsMustAlias = true;
250     ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
251     if (doesAccessArgPointees(MRB)) {
252       for (const auto &I : llvm::enumerate(Call->args())) {
253         const Value *Arg = I.value();
254         if (!Arg->getType()->isPointerTy())
255           continue;
256         unsigned ArgIdx = I.index();
257         MemoryLocation ArgLoc =
258             MemoryLocation::getForArgument(Call, ArgIdx, TLI);
259         AliasResult ArgAlias = alias(ArgLoc, Loc, AAQI);
260         if (ArgAlias != AliasResult::NoAlias) {
261           ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
262           AllArgsMask = unionModRef(AllArgsMask, ArgMask);
263         }
264         // Conservatively clear IsMustAlias unless only MustAlias is found.
265         IsMustAlias &= (ArgAlias == AliasResult::MustAlias);
266       }
267     }
268     // Return NoModRef if no alias found with any argument.
269     if (isNoModRef(AllArgsMask))
270       return ModRefInfo::NoModRef;
271     // Logical & between other AA analyses and argument analysis.
272     Result = intersectModRef(Result, AllArgsMask);
273     // If only MustAlias found above, set Must bit.
274     Result = IsMustAlias ? setMust(Result) : clearMust(Result);
275   }
276 
277   // If Loc is a constant memory location, the call definitely could not
278   // modify the memory location.
279   if (isModSet(Result) && pointsToConstantMemory(Loc, AAQI, /*OrLocal*/ false))
280     Result = clearMod(Result);
281 
282   return Result;
283 }
284 
285 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
286                                     const CallBase *Call2) {
287   SimpleAAQueryInfo AAQIP;
288   return getModRefInfo(Call1, Call2, AAQIP);
289 }
290 
291 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
292                                     const CallBase *Call2, AAQueryInfo &AAQI) {
293   ModRefInfo Result = ModRefInfo::ModRef;
294 
295   for (const auto &AA : AAs) {
296     Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI));
297 
298     // Early-exit the moment we reach the bottom of the lattice.
299     if (isNoModRef(Result))
300       return ModRefInfo::NoModRef;
301   }
302 
303   // Try to refine the mod-ref info further using other API entry points to the
304   // aggregate set of AA results.
305 
306   // If Call1 or Call2 are readnone, they don't interact.
307   auto Call1B = getModRefBehavior(Call1);
308   if (Call1B == FMRB_DoesNotAccessMemory)
309     return ModRefInfo::NoModRef;
310 
311   auto Call2B = getModRefBehavior(Call2);
312   if (Call2B == FMRB_DoesNotAccessMemory)
313     return ModRefInfo::NoModRef;
314 
315   // If they both only read from memory, there is no dependence.
316   if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
317     return ModRefInfo::NoModRef;
318 
319   // If Call1 only reads memory, the only dependence on Call2 can be
320   // from Call1 reading memory written by Call2.
321   if (onlyReadsMemory(Call1B))
322     Result = clearMod(Result);
323   else if (onlyWritesMemory(Call1B))
324     Result = clearRef(Result);
325 
326   // If Call2 only access memory through arguments, accumulate the mod/ref
327   // information from Call1's references to the memory referenced by
328   // Call2's arguments.
329   if (onlyAccessesArgPointees(Call2B)) {
330     if (!doesAccessArgPointees(Call2B))
331       return ModRefInfo::NoModRef;
332     ModRefInfo R = ModRefInfo::NoModRef;
333     bool IsMustAlias = true;
334     for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
335       const Value *Arg = *I;
336       if (!Arg->getType()->isPointerTy())
337         continue;
338       unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
339       auto Call2ArgLoc =
340           MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
341 
342       // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
343       // dependence of Call1 on that location is the inverse:
344       // - If Call2 modifies location, dependence exists if Call1 reads or
345       //   writes.
346       // - If Call2 only reads location, dependence exists if Call1 writes.
347       ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
348       ModRefInfo ArgMask = ModRefInfo::NoModRef;
349       if (isModSet(ArgModRefC2))
350         ArgMask = ModRefInfo::ModRef;
351       else if (isRefSet(ArgModRefC2))
352         ArgMask = ModRefInfo::Mod;
353 
354       // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
355       // above ArgMask to update dependence info.
356       ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc, AAQI);
357       ArgMask = intersectModRef(ArgMask, ModRefC1);
358 
359       // Conservatively clear IsMustAlias unless only MustAlias is found.
360       IsMustAlias &= isMustSet(ModRefC1);
361 
362       R = intersectModRef(unionModRef(R, ArgMask), Result);
363       if (R == Result) {
364         // On early exit, not all args were checked, cannot set Must.
365         if (I + 1 != E)
366           IsMustAlias = false;
367         break;
368       }
369     }
370 
371     if (isNoModRef(R))
372       return ModRefInfo::NoModRef;
373 
374     // If MustAlias found above, set Must bit.
375     return IsMustAlias ? setMust(R) : clearMust(R);
376   }
377 
378   // If Call1 only accesses memory through arguments, check if Call2 references
379   // any of the memory referenced by Call1's arguments. If not, return NoModRef.
380   if (onlyAccessesArgPointees(Call1B)) {
381     if (!doesAccessArgPointees(Call1B))
382       return ModRefInfo::NoModRef;
383     ModRefInfo R = ModRefInfo::NoModRef;
384     bool IsMustAlias = true;
385     for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
386       const Value *Arg = *I;
387       if (!Arg->getType()->isPointerTy())
388         continue;
389       unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
390       auto Call1ArgLoc =
391           MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
392 
393       // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
394       // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
395       // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
396       ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
397       ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc, AAQI);
398       if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
399           (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
400         R = intersectModRef(unionModRef(R, ArgModRefC1), Result);
401 
402       // Conservatively clear IsMustAlias unless only MustAlias is found.
403       IsMustAlias &= isMustSet(ModRefC2);
404 
405       if (R == Result) {
406         // On early exit, not all args were checked, cannot set Must.
407         if (I + 1 != E)
408           IsMustAlias = false;
409         break;
410       }
411     }
412 
413     if (isNoModRef(R))
414       return ModRefInfo::NoModRef;
415 
416     // If MustAlias found above, set Must bit.
417     return IsMustAlias ? setMust(R) : clearMust(R);
418   }
419 
420   return Result;
421 }
422 
423 FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
424   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
425 
426   for (const auto &AA : AAs) {
427     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));
428 
429     // Early-exit the moment we reach the bottom of the lattice.
430     if (Result == FMRB_DoesNotAccessMemory)
431       return Result;
432   }
433 
434   return Result;
435 }
436 
437 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
438   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
439 
440   for (const auto &AA : AAs) {
441     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
442 
443     // Early-exit the moment we reach the bottom of the lattice.
444     if (Result == FMRB_DoesNotAccessMemory)
445       return Result;
446   }
447 
448   return Result;
449 }
450 
451 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
452   switch (AR) {
453   case AliasResult::NoAlias:
454     OS << "NoAlias";
455     break;
456   case AliasResult::MustAlias:
457     OS << "MustAlias";
458     break;
459   case AliasResult::MayAlias:
460     OS << "MayAlias";
461     break;
462   case AliasResult::PartialAlias:
463     OS << "PartialAlias";
464     if (AR.hasOffset())
465       OS << " (off " << AR.getOffset() << ")";
466     break;
467   }
468   return OS;
469 }
470 
471 //===----------------------------------------------------------------------===//
472 // Helper method implementation
473 //===----------------------------------------------------------------------===//
474 
475 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
476                                     const MemoryLocation &Loc) {
477   SimpleAAQueryInfo AAQIP;
478   return getModRefInfo(L, Loc, AAQIP);
479 }
480 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
481                                     const MemoryLocation &Loc,
482                                     AAQueryInfo &AAQI) {
483   // Be conservative in the face of atomic.
484   if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
485     return ModRefInfo::ModRef;
486 
487   // If the load address doesn't alias the given address, it doesn't read
488   // or write the specified memory.
489   if (Loc.Ptr) {
490     AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI);
491     if (AR == AliasResult::NoAlias)
492       return ModRefInfo::NoModRef;
493     if (AR == AliasResult::MustAlias)
494       return ModRefInfo::MustRef;
495   }
496   // Otherwise, a load just reads.
497   return ModRefInfo::Ref;
498 }
499 
500 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
501                                     const MemoryLocation &Loc) {
502   SimpleAAQueryInfo AAQIP;
503   return getModRefInfo(S, Loc, AAQIP);
504 }
505 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
506                                     const MemoryLocation &Loc,
507                                     AAQueryInfo &AAQI) {
508   // Be conservative in the face of atomic.
509   if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
510     return ModRefInfo::ModRef;
511 
512   if (Loc.Ptr) {
513     AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI);
514     // If the store address cannot alias the pointer in question, then the
515     // specified memory cannot be modified by the store.
516     if (AR == AliasResult::NoAlias)
517       return ModRefInfo::NoModRef;
518 
519     // If the pointer is a pointer to constant memory, then it could not have
520     // been modified by this store.
521     if (pointsToConstantMemory(Loc, AAQI))
522       return ModRefInfo::NoModRef;
523 
524     // If the store address aliases the pointer as must alias, set Must.
525     if (AR == AliasResult::MustAlias)
526       return ModRefInfo::MustMod;
527   }
528 
529   // Otherwise, a store just writes.
530   return ModRefInfo::Mod;
531 }
532 
533 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
534   SimpleAAQueryInfo AAQIP;
535   return getModRefInfo(S, Loc, AAQIP);
536 }
537 
538 ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
539                                     const MemoryLocation &Loc,
540                                     AAQueryInfo &AAQI) {
541   // If we know that the location is a constant memory location, the fence
542   // cannot modify this location.
543   if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI))
544     return ModRefInfo::Ref;
545   return ModRefInfo::ModRef;
546 }
547 
548 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
549                                     const MemoryLocation &Loc) {
550   SimpleAAQueryInfo AAQIP;
551   return getModRefInfo(V, Loc, AAQIP);
552 }
553 
554 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
555                                     const MemoryLocation &Loc,
556                                     AAQueryInfo &AAQI) {
557   if (Loc.Ptr) {
558     AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI);
559     // If the va_arg address cannot alias the pointer in question, then the
560     // specified memory cannot be accessed by the va_arg.
561     if (AR == AliasResult::NoAlias)
562       return ModRefInfo::NoModRef;
563 
564     // If the pointer is a pointer to constant memory, then it could not have
565     // been modified by this va_arg.
566     if (pointsToConstantMemory(Loc, AAQI))
567       return ModRefInfo::NoModRef;
568 
569     // If the va_arg aliases the pointer as must alias, set Must.
570     if (AR == AliasResult::MustAlias)
571       return ModRefInfo::MustModRef;
572   }
573 
574   // Otherwise, a va_arg reads and writes.
575   return ModRefInfo::ModRef;
576 }
577 
578 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
579                                     const MemoryLocation &Loc) {
580   SimpleAAQueryInfo AAQIP;
581   return getModRefInfo(CatchPad, Loc, AAQIP);
582 }
583 
584 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
585                                     const MemoryLocation &Loc,
586                                     AAQueryInfo &AAQI) {
587   if (Loc.Ptr) {
588     // If the pointer is a pointer to constant memory,
589     // then it could not have been modified by this catchpad.
590     if (pointsToConstantMemory(Loc, AAQI))
591       return ModRefInfo::NoModRef;
592   }
593 
594   // Otherwise, a catchpad reads and writes.
595   return ModRefInfo::ModRef;
596 }
597 
598 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
599                                     const MemoryLocation &Loc) {
600   SimpleAAQueryInfo AAQIP;
601   return getModRefInfo(CatchRet, Loc, AAQIP);
602 }
603 
604 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
605                                     const MemoryLocation &Loc,
606                                     AAQueryInfo &AAQI) {
607   if (Loc.Ptr) {
608     // If the pointer is a pointer to constant memory,
609     // then it could not have been modified by this catchpad.
610     if (pointsToConstantMemory(Loc, AAQI))
611       return ModRefInfo::NoModRef;
612   }
613 
614   // Otherwise, a catchret reads and writes.
615   return ModRefInfo::ModRef;
616 }
617 
618 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
619                                     const MemoryLocation &Loc) {
620   SimpleAAQueryInfo AAQIP;
621   return getModRefInfo(CX, Loc, AAQIP);
622 }
623 
624 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
625                                     const MemoryLocation &Loc,
626                                     AAQueryInfo &AAQI) {
627   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
628   if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
629     return ModRefInfo::ModRef;
630 
631   if (Loc.Ptr) {
632     AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI);
633     // If the cmpxchg address does not alias the location, it does not access
634     // it.
635     if (AR == AliasResult::NoAlias)
636       return ModRefInfo::NoModRef;
637 
638     // If the cmpxchg address aliases the pointer as must alias, set Must.
639     if (AR == AliasResult::MustAlias)
640       return ModRefInfo::MustModRef;
641   }
642 
643   return ModRefInfo::ModRef;
644 }
645 
646 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
647                                     const MemoryLocation &Loc) {
648   SimpleAAQueryInfo AAQIP;
649   return getModRefInfo(RMW, Loc, AAQIP);
650 }
651 
652 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
653                                     const MemoryLocation &Loc,
654                                     AAQueryInfo &AAQI) {
655   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
656   if (isStrongerThanMonotonic(RMW->getOrdering()))
657     return ModRefInfo::ModRef;
658 
659   if (Loc.Ptr) {
660     AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI);
661     // If the atomicrmw address does not alias the location, it does not access
662     // it.
663     if (AR == AliasResult::NoAlias)
664       return ModRefInfo::NoModRef;
665 
666     // If the atomicrmw address aliases the pointer as must alias, set Must.
667     if (AR == AliasResult::MustAlias)
668       return ModRefInfo::MustModRef;
669   }
670 
671   return ModRefInfo::ModRef;
672 }
673 
674 ModRefInfo AAResults::getModRefInfo(const Instruction *I,
675                                     const Optional<MemoryLocation> &OptLoc,
676                                     AAQueryInfo &AAQIP) {
677   if (OptLoc == None) {
678     if (const auto *Call = dyn_cast<CallBase>(I)) {
679       return createModRefInfo(getModRefBehavior(Call));
680     }
681   }
682 
683   const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation());
684 
685   switch (I->getOpcode()) {
686   case Instruction::VAArg:
687     return getModRefInfo((const VAArgInst *)I, Loc, AAQIP);
688   case Instruction::Load:
689     return getModRefInfo((const LoadInst *)I, Loc, AAQIP);
690   case Instruction::Store:
691     return getModRefInfo((const StoreInst *)I, Loc, AAQIP);
692   case Instruction::Fence:
693     return getModRefInfo((const FenceInst *)I, Loc, AAQIP);
694   case Instruction::AtomicCmpXchg:
695     return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP);
696   case Instruction::AtomicRMW:
697     return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP);
698   case Instruction::Call:
699   case Instruction::CallBr:
700   case Instruction::Invoke:
701     return getModRefInfo((const CallBase *)I, Loc, AAQIP);
702   case Instruction::CatchPad:
703     return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP);
704   case Instruction::CatchRet:
705     return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP);
706   default:
707     assert(!I->mayReadOrWriteMemory() &&
708            "Unhandled memory access instruction!");
709     return ModRefInfo::NoModRef;
710   }
711 }
712 
713 /// Return information about whether a particular call site modifies
714 /// or reads the specified memory location \p MemLoc before instruction \p I
715 /// in a BasicBlock.
716 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
717 /// BasicAA isn't willing to spend linear time determining whether an alloca
718 /// was captured before or after this particular call, while we are. However,
719 /// with a smarter AA in place, this test is just wasting compile time.
720 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
721                                          const MemoryLocation &MemLoc,
722                                          DominatorTree *DT,
723                                          AAQueryInfo &AAQI) {
724   if (!DT)
725     return ModRefInfo::ModRef;
726 
727   const Value *Object = getUnderlyingObject(MemLoc.Ptr);
728   if (!isIdentifiedFunctionLocal(Object))
729     return ModRefInfo::ModRef;
730 
731   const auto *Call = dyn_cast<CallBase>(I);
732   if (!Call || Call == Object)
733     return ModRefInfo::ModRef;
734 
735   if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
736                                  /* StoreCaptures */ true, I, DT,
737                                  /* include Object */ true))
738     return ModRefInfo::ModRef;
739 
740   unsigned ArgNo = 0;
741   ModRefInfo R = ModRefInfo::NoModRef;
742   bool IsMustAlias = true;
743   // Set flag only if no May found and all operands processed.
744   for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
745        CI != CE; ++CI, ++ArgNo) {
746     // Only look at the no-capture or byval pointer arguments.  If this
747     // pointer were passed to arguments that were neither of these, then it
748     // couldn't be no-capture.
749     if (!(*CI)->getType()->isPointerTy() ||
750         (!Call->doesNotCapture(ArgNo) && ArgNo < Call->arg_size() &&
751          !Call->isByValArgument(ArgNo)))
752       continue;
753 
754     AliasResult AR = alias(
755         MemoryLocation::getBeforeOrAfter(*CI),
756         MemoryLocation::getBeforeOrAfter(Object), AAQI);
757     // If this is a no-capture pointer argument, see if we can tell that it
758     // is impossible to alias the pointer we're checking.  If not, we have to
759     // assume that the call could touch the pointer, even though it doesn't
760     // escape.
761     if (AR != AliasResult::MustAlias)
762       IsMustAlias = false;
763     if (AR == AliasResult::NoAlias)
764       continue;
765     if (Call->doesNotAccessMemory(ArgNo))
766       continue;
767     if (Call->onlyReadsMemory(ArgNo)) {
768       R = ModRefInfo::Ref;
769       continue;
770     }
771     // Not returning MustModRef since we have not seen all the arguments.
772     return ModRefInfo::ModRef;
773   }
774   return IsMustAlias ? setMust(R) : clearMust(R);
775 }
776 
777 /// canBasicBlockModify - Return true if it is possible for execution of the
778 /// specified basic block to modify the location Loc.
779 ///
780 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
781                                     const MemoryLocation &Loc) {
782   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
783 }
784 
785 /// canInstructionRangeModRef - Return true if it is possible for the
786 /// execution of the specified instructions to mod\ref (according to the
787 /// mode) the location Loc. The instructions to consider are all
788 /// of the instructions in the range of [I1,I2] INCLUSIVE.
789 /// I1 and I2 must be in the same basic block.
790 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
791                                           const Instruction &I2,
792                                           const MemoryLocation &Loc,
793                                           const ModRefInfo Mode) {
794   assert(I1.getParent() == I2.getParent() &&
795          "Instructions not in same basic block!");
796   BasicBlock::const_iterator I = I1.getIterator();
797   BasicBlock::const_iterator E = I2.getIterator();
798   ++E;  // Convert from inclusive to exclusive range.
799 
800   for (; I != E; ++I) // Check every instruction in range
801     if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
802       return true;
803   return false;
804 }
805 
806 // Provide a definition for the root virtual destructor.
807 AAResults::Concept::~Concept() = default;
808 
809 // Provide a definition for the static object used to identify passes.
810 AnalysisKey AAManager::Key;
811 
812 ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) {
813   initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
814 }
815 
816 ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB)
817     : ImmutablePass(ID), CB(std::move(CB)) {
818   initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
819 }
820 
821 char ExternalAAWrapperPass::ID = 0;
822 
823 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
824                 false, true)
825 
826 ImmutablePass *
827 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
828   return new ExternalAAWrapperPass(std::move(Callback));
829 }
830 
831 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
832   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
833 }
834 
835 char AAResultsWrapperPass::ID = 0;
836 
837 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
838                       "Function Alias Analysis Results", false, true)
839 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
840 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
841 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
842 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
843 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
844 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
845 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
846 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
847 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
848 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
849                     "Function Alias Analysis Results", false, true)
850 
851 FunctionPass *llvm::createAAResultsWrapperPass() {
852   return new AAResultsWrapperPass();
853 }
854 
855 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
856 ///
857 /// This is the legacy pass manager's interface to the new-style AA results
858 /// aggregation object. Because this is somewhat shoe-horned into the legacy
859 /// pass manager, we hard code all the specific alias analyses available into
860 /// it. While the particular set enabled is configured via commandline flags,
861 /// adding a new alias analysis to LLVM will require adding support for it to
862 /// this list.
863 bool AAResultsWrapperPass::runOnFunction(Function &F) {
864   // NB! This *must* be reset before adding new AA results to the new
865   // AAResults object because in the legacy pass manager, each instance
866   // of these will refer to the *same* immutable analyses, registering and
867   // unregistering themselves with them. We need to carefully tear down the
868   // previous object first, in this case replacing it with an empty one, before
869   // registering new results.
870   AAR.reset(
871       new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)));
872 
873   // BasicAA is always available for function analyses. Also, we add it first
874   // so that it can trump TBAA results when it proves MustAlias.
875   // FIXME: TBAA should have an explicit mode to support this and then we
876   // should reconsider the ordering here.
877   if (!DisableBasicAA)
878     AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
879 
880   // Populate the results with the currently available AAs.
881   if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
882     AAR->addAAResult(WrapperPass->getResult());
883   if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
884     AAR->addAAResult(WrapperPass->getResult());
885   if (auto *WrapperPass =
886           getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
887     AAR->addAAResult(WrapperPass->getResult());
888   if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
889     AAR->addAAResult(WrapperPass->getResult());
890   if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
891     AAR->addAAResult(WrapperPass->getResult());
892   if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
893     AAR->addAAResult(WrapperPass->getResult());
894   if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
895     AAR->addAAResult(WrapperPass->getResult());
896 
897   // If available, run an external AA providing callback over the results as
898   // well.
899   if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
900     if (WrapperPass->CB)
901       WrapperPass->CB(*this, F, *AAR);
902 
903   // Analyses don't mutate the IR, so return false.
904   return false;
905 }
906 
907 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
908   AU.setPreservesAll();
909   AU.addRequiredTransitive<BasicAAWrapperPass>();
910   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
911 
912   // We also need to mark all the alias analysis passes we will potentially
913   // probe in runOnFunction as used here to ensure the legacy pass manager
914   // preserves them. This hard coding of lists of alias analyses is specific to
915   // the legacy pass manager.
916   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
917   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
918   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
919   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
920   AU.addUsedIfAvailable<SCEVAAWrapperPass>();
921   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
922   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
923   AU.addUsedIfAvailable<ExternalAAWrapperPass>();
924 }
925 
926 AAManager::Result AAManager::run(Function &F, FunctionAnalysisManager &AM) {
927   Result R(AM.getResult<TargetLibraryAnalysis>(F));
928   for (auto &Getter : ResultGetters)
929     (*Getter)(F, AM, R);
930   return R;
931 }
932 
933 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
934                                         BasicAAResult &BAR) {
935   AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
936 
937   // Add in our explicitly constructed BasicAA results.
938   if (!DisableBasicAA)
939     AAR.addAAResult(BAR);
940 
941   // Populate the results with the other currently available AAs.
942   if (auto *WrapperPass =
943           P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
944     AAR.addAAResult(WrapperPass->getResult());
945   if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
946     AAR.addAAResult(WrapperPass->getResult());
947   if (auto *WrapperPass =
948           P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
949     AAR.addAAResult(WrapperPass->getResult());
950   if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
951     AAR.addAAResult(WrapperPass->getResult());
952   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
953     AAR.addAAResult(WrapperPass->getResult());
954   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
955     AAR.addAAResult(WrapperPass->getResult());
956   if (auto *WrapperPass = P.getAnalysisIfAvailable<ExternalAAWrapperPass>())
957     if (WrapperPass->CB)
958       WrapperPass->CB(P, F, AAR);
959 
960   return AAR;
961 }
962 
963 bool llvm::isNoAliasCall(const Value *V) {
964   if (const auto *Call = dyn_cast<CallBase>(V))
965     return Call->hasRetAttr(Attribute::NoAlias);
966   return false;
967 }
968 
969 static bool isNoAliasOrByValArgument(const Value *V) {
970   if (const Argument *A = dyn_cast<Argument>(V))
971     return A->hasNoAliasAttr() || A->hasByValAttr();
972   return false;
973 }
974 
975 bool llvm::isIdentifiedObject(const Value *V) {
976   if (isa<AllocaInst>(V))
977     return true;
978   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
979     return true;
980   if (isNoAliasCall(V))
981     return true;
982   if (isNoAliasOrByValArgument(V))
983     return true;
984   return false;
985 }
986 
987 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
988   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasOrByValArgument(V);
989 }
990 
991 bool llvm::isNotVisibleOnUnwind(const Value *Object,
992                                 bool &RequiresNoCaptureBeforeUnwind) {
993   RequiresNoCaptureBeforeUnwind = false;
994 
995   // Alloca goes out of scope on unwind.
996   if (isa<AllocaInst>(Object))
997     return true;
998 
999   // Byval goes out of scope on unwind.
1000   if (auto *A = dyn_cast<Argument>(Object))
1001     return A->hasByValAttr();
1002 
1003   // A noalias return is not accessible from any other code. If the pointer
1004   // does not escape prior to the unwind, then the caller cannot access the
1005   // memory either.
1006   if (isNoAliasCall(Object)) {
1007     RequiresNoCaptureBeforeUnwind = true;
1008     return true;
1009   }
1010 
1011   return false;
1012 }
1013 
1014 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
1015   // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
1016   // more alias analyses are added to llvm::createLegacyPMAAResults, they need
1017   // to be added here also.
1018   AU.addRequired<TargetLibraryInfoWrapperPass>();
1019   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
1020   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
1021   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
1022   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
1023   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
1024   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
1025   AU.addUsedIfAvailable<ExternalAAWrapperPass>();
1026 }
1027