1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic AliasAnalysis interface which is used as the 10 // common interface used by all clients and implementations of alias analysis. 11 // 12 // This file also implements the default version of the AliasAnalysis interface 13 // that is to be used when no other implementation is specified. This does some 14 // simple tests that detect obvious cases: two different global pointers cannot 15 // alias, a global cannot alias a malloc, two different mallocs cannot alias, 16 // etc. 17 // 18 // This alias analysis implementation really isn't very good for anything, but 19 // it is very fast, and makes a nice clean default implementation. Because it 20 // handles lots of little corner cases, other, more complex, alias analysis 21 // implementations may choose to rely on this pass to resolve these simple and 22 // easy cases. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/Analysis/BasicAliasAnalysis.h" 29 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 30 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/Analysis/ObjCARCAliasAnalysis.h" 35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 36 #include "llvm/Analysis/ScopedNoAliasAA.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 39 #include "llvm/Analysis/ValueTracking.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/AtomicOrdering.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <functional> 56 #include <iterator> 57 58 #define DEBUG_TYPE "aa" 59 60 using namespace llvm; 61 62 STATISTIC(NumNoAlias, "Number of NoAlias results"); 63 STATISTIC(NumMayAlias, "Number of MayAlias results"); 64 STATISTIC(NumMustAlias, "Number of MustAlias results"); 65 66 namespace llvm { 67 /// Allow disabling BasicAA from the AA results. This is particularly useful 68 /// when testing to isolate a single AA implementation. 69 cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden, cl::init(false)); 70 } // namespace llvm 71 72 #ifndef NDEBUG 73 /// Print a trace of alias analysis queries and their results. 74 static cl::opt<bool> EnableAATrace("aa-trace", cl::Hidden, cl::init(false)); 75 #else 76 static const bool EnableAATrace = false; 77 #endif 78 79 AAResults::AAResults(AAResults &&Arg) 80 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) { 81 for (auto &AA : AAs) 82 AA->setAAResults(this); 83 } 84 85 AAResults::~AAResults() { 86 // FIXME; It would be nice to at least clear out the pointers back to this 87 // aggregation here, but we end up with non-nesting lifetimes in the legacy 88 // pass manager that prevent this from working. In the legacy pass manager 89 // we'll end up with dangling references here in some cases. 90 #if 0 91 for (auto &AA : AAs) 92 AA->setAAResults(nullptr); 93 #endif 94 } 95 96 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA, 97 FunctionAnalysisManager::Invalidator &Inv) { 98 // AAResults preserves the AAManager by default, due to the stateless nature 99 // of AliasAnalysis. There is no need to check whether it has been preserved 100 // explicitly. Check if any module dependency was invalidated and caused the 101 // AAManager to be invalidated. Invalidate ourselves in that case. 102 auto PAC = PA.getChecker<AAManager>(); 103 if (!PAC.preservedWhenStateless()) 104 return true; 105 106 // Check if any of the function dependencies were invalidated, and invalidate 107 // ourselves in that case. 108 for (AnalysisKey *ID : AADeps) 109 if (Inv.invalidate(ID, F, PA)) 110 return true; 111 112 // Everything we depend on is still fine, so are we. Nothing to invalidate. 113 return false; 114 } 115 116 //===----------------------------------------------------------------------===// 117 // Default chaining methods 118 //===----------------------------------------------------------------------===// 119 120 AliasResult AAResults::alias(const MemoryLocation &LocA, 121 const MemoryLocation &LocB) { 122 AAQueryInfo AAQIP; 123 return alias(LocA, LocB, AAQIP); 124 } 125 126 AliasResult AAResults::alias(const MemoryLocation &LocA, 127 const MemoryLocation &LocB, AAQueryInfo &AAQI) { 128 AliasResult Result = AliasResult::MayAlias; 129 130 if (EnableAATrace) { 131 for (unsigned I = 0; I < AAQI.Depth; ++I) 132 dbgs() << " "; 133 dbgs() << "Start " << *LocA.Ptr << " @ " << LocA.Size << ", " 134 << *LocB.Ptr << " @ " << LocB.Size << "\n"; 135 } 136 137 AAQI.Depth++; 138 for (const auto &AA : AAs) { 139 Result = AA->alias(LocA, LocB, AAQI); 140 if (Result != AliasResult::MayAlias) 141 break; 142 } 143 AAQI.Depth--; 144 145 if (EnableAATrace) { 146 for (unsigned I = 0; I < AAQI.Depth; ++I) 147 dbgs() << " "; 148 dbgs() << "End " << *LocA.Ptr << " @ " << LocA.Size << ", " 149 << *LocB.Ptr << " @ " << LocB.Size << " = " << Result << "\n"; 150 } 151 152 if (AAQI.Depth == 0) { 153 if (Result == AliasResult::NoAlias) 154 ++NumNoAlias; 155 else if (Result == AliasResult::MustAlias) 156 ++NumMustAlias; 157 else 158 ++NumMayAlias; 159 } 160 return Result; 161 } 162 163 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, 164 bool OrLocal) { 165 AAQueryInfo AAQIP; 166 return pointsToConstantMemory(Loc, AAQIP, OrLocal); 167 } 168 169 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, 170 AAQueryInfo &AAQI, bool OrLocal) { 171 for (const auto &AA : AAs) 172 if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal)) 173 return true; 174 175 return false; 176 } 177 178 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { 179 ModRefInfo Result = ModRefInfo::ModRef; 180 181 for (const auto &AA : AAs) { 182 Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx)); 183 184 // Early-exit the moment we reach the bottom of the lattice. 185 if (isNoModRef(Result)) 186 return ModRefInfo::NoModRef; 187 } 188 189 return Result; 190 } 191 192 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) { 193 AAQueryInfo AAQIP; 194 return getModRefInfo(I, Call2, AAQIP); 195 } 196 197 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2, 198 AAQueryInfo &AAQI) { 199 // We may have two calls. 200 if (const auto *Call1 = dyn_cast<CallBase>(I)) { 201 // Check if the two calls modify the same memory. 202 return getModRefInfo(Call1, Call2, AAQI); 203 } else if (I->isFenceLike()) { 204 // If this is a fence, just return ModRef. 205 return ModRefInfo::ModRef; 206 } else { 207 // Otherwise, check if the call modifies or references the 208 // location this memory access defines. The best we can say 209 // is that if the call references what this instruction 210 // defines, it must be clobbered by this location. 211 const MemoryLocation DefLoc = MemoryLocation::get(I); 212 ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI); 213 if (isModOrRefSet(MR)) 214 return setModAndRef(MR); 215 } 216 return ModRefInfo::NoModRef; 217 } 218 219 ModRefInfo AAResults::getModRefInfo(const CallBase *Call, 220 const MemoryLocation &Loc) { 221 AAQueryInfo AAQIP; 222 return getModRefInfo(Call, Loc, AAQIP); 223 } 224 225 ModRefInfo AAResults::getModRefInfo(const CallBase *Call, 226 const MemoryLocation &Loc, 227 AAQueryInfo &AAQI) { 228 ModRefInfo Result = ModRefInfo::ModRef; 229 230 for (const auto &AA : AAs) { 231 Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI)); 232 233 // Early-exit the moment we reach the bottom of the lattice. 234 if (isNoModRef(Result)) 235 return ModRefInfo::NoModRef; 236 } 237 238 // Try to refine the mod-ref info further using other API entry points to the 239 // aggregate set of AA results. 240 auto MRB = getModRefBehavior(Call); 241 if (onlyAccessesInaccessibleMem(MRB)) 242 return ModRefInfo::NoModRef; 243 244 if (onlyReadsMemory(MRB)) 245 Result = clearMod(Result); 246 else if (doesNotReadMemory(MRB)) 247 Result = clearRef(Result); 248 249 if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) { 250 bool IsMustAlias = true; 251 ModRefInfo AllArgsMask = ModRefInfo::NoModRef; 252 if (doesAccessArgPointees(MRB)) { 253 for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) { 254 const Value *Arg = *AI; 255 if (!Arg->getType()->isPointerTy()) 256 continue; 257 unsigned ArgIdx = std::distance(Call->arg_begin(), AI); 258 MemoryLocation ArgLoc = 259 MemoryLocation::getForArgument(Call, ArgIdx, TLI); 260 AliasResult ArgAlias = alias(ArgLoc, Loc, AAQI); 261 if (ArgAlias != AliasResult::NoAlias) { 262 ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx); 263 AllArgsMask = unionModRef(AllArgsMask, ArgMask); 264 } 265 // Conservatively clear IsMustAlias unless only MustAlias is found. 266 IsMustAlias &= (ArgAlias == AliasResult::MustAlias); 267 } 268 } 269 // Return NoModRef if no alias found with any argument. 270 if (isNoModRef(AllArgsMask)) 271 return ModRefInfo::NoModRef; 272 // Logical & between other AA analyses and argument analysis. 273 Result = intersectModRef(Result, AllArgsMask); 274 // If only MustAlias found above, set Must bit. 275 Result = IsMustAlias ? setMust(Result) : clearMust(Result); 276 } 277 278 // If Loc is a constant memory location, the call definitely could not 279 // modify the memory location. 280 if (isModSet(Result) && pointsToConstantMemory(Loc, AAQI, /*OrLocal*/ false)) 281 Result = clearMod(Result); 282 283 return Result; 284 } 285 286 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, 287 const CallBase *Call2) { 288 AAQueryInfo AAQIP; 289 return getModRefInfo(Call1, Call2, AAQIP); 290 } 291 292 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, 293 const CallBase *Call2, AAQueryInfo &AAQI) { 294 ModRefInfo Result = ModRefInfo::ModRef; 295 296 for (const auto &AA : AAs) { 297 Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI)); 298 299 // Early-exit the moment we reach the bottom of the lattice. 300 if (isNoModRef(Result)) 301 return ModRefInfo::NoModRef; 302 } 303 304 // Try to refine the mod-ref info further using other API entry points to the 305 // aggregate set of AA results. 306 307 // If Call1 or Call2 are readnone, they don't interact. 308 auto Call1B = getModRefBehavior(Call1); 309 if (Call1B == FMRB_DoesNotAccessMemory) 310 return ModRefInfo::NoModRef; 311 312 auto Call2B = getModRefBehavior(Call2); 313 if (Call2B == FMRB_DoesNotAccessMemory) 314 return ModRefInfo::NoModRef; 315 316 // If they both only read from memory, there is no dependence. 317 if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B)) 318 return ModRefInfo::NoModRef; 319 320 // If Call1 only reads memory, the only dependence on Call2 can be 321 // from Call1 reading memory written by Call2. 322 if (onlyReadsMemory(Call1B)) 323 Result = clearMod(Result); 324 else if (doesNotReadMemory(Call1B)) 325 Result = clearRef(Result); 326 327 // If Call2 only access memory through arguments, accumulate the mod/ref 328 // information from Call1's references to the memory referenced by 329 // Call2's arguments. 330 if (onlyAccessesArgPointees(Call2B)) { 331 if (!doesAccessArgPointees(Call2B)) 332 return ModRefInfo::NoModRef; 333 ModRefInfo R = ModRefInfo::NoModRef; 334 bool IsMustAlias = true; 335 for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) { 336 const Value *Arg = *I; 337 if (!Arg->getType()->isPointerTy()) 338 continue; 339 unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I); 340 auto Call2ArgLoc = 341 MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI); 342 343 // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the 344 // dependence of Call1 on that location is the inverse: 345 // - If Call2 modifies location, dependence exists if Call1 reads or 346 // writes. 347 // - If Call2 only reads location, dependence exists if Call1 writes. 348 ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx); 349 ModRefInfo ArgMask = ModRefInfo::NoModRef; 350 if (isModSet(ArgModRefC2)) 351 ArgMask = ModRefInfo::ModRef; 352 else if (isRefSet(ArgModRefC2)) 353 ArgMask = ModRefInfo::Mod; 354 355 // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use 356 // above ArgMask to update dependence info. 357 ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc, AAQI); 358 ArgMask = intersectModRef(ArgMask, ModRefC1); 359 360 // Conservatively clear IsMustAlias unless only MustAlias is found. 361 IsMustAlias &= isMustSet(ModRefC1); 362 363 R = intersectModRef(unionModRef(R, ArgMask), Result); 364 if (R == Result) { 365 // On early exit, not all args were checked, cannot set Must. 366 if (I + 1 != E) 367 IsMustAlias = false; 368 break; 369 } 370 } 371 372 if (isNoModRef(R)) 373 return ModRefInfo::NoModRef; 374 375 // If MustAlias found above, set Must bit. 376 return IsMustAlias ? setMust(R) : clearMust(R); 377 } 378 379 // If Call1 only accesses memory through arguments, check if Call2 references 380 // any of the memory referenced by Call1's arguments. If not, return NoModRef. 381 if (onlyAccessesArgPointees(Call1B)) { 382 if (!doesAccessArgPointees(Call1B)) 383 return ModRefInfo::NoModRef; 384 ModRefInfo R = ModRefInfo::NoModRef; 385 bool IsMustAlias = true; 386 for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) { 387 const Value *Arg = *I; 388 if (!Arg->getType()->isPointerTy()) 389 continue; 390 unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I); 391 auto Call1ArgLoc = 392 MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI); 393 394 // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1 395 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by 396 // Call2. If Call1 might Ref, then we care only about a Mod by Call2. 397 ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx); 398 ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc, AAQI); 399 if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) || 400 (isRefSet(ArgModRefC1) && isModSet(ModRefC2))) 401 R = intersectModRef(unionModRef(R, ArgModRefC1), Result); 402 403 // Conservatively clear IsMustAlias unless only MustAlias is found. 404 IsMustAlias &= isMustSet(ModRefC2); 405 406 if (R == Result) { 407 // On early exit, not all args were checked, cannot set Must. 408 if (I + 1 != E) 409 IsMustAlias = false; 410 break; 411 } 412 } 413 414 if (isNoModRef(R)) 415 return ModRefInfo::NoModRef; 416 417 // If MustAlias found above, set Must bit. 418 return IsMustAlias ? setMust(R) : clearMust(R); 419 } 420 421 return Result; 422 } 423 424 FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) { 425 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 426 427 for (const auto &AA : AAs) { 428 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call)); 429 430 // Early-exit the moment we reach the bottom of the lattice. 431 if (Result == FMRB_DoesNotAccessMemory) 432 return Result; 433 } 434 435 return Result; 436 } 437 438 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) { 439 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 440 441 for (const auto &AA : AAs) { 442 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F)); 443 444 // Early-exit the moment we reach the bottom of the lattice. 445 if (Result == FMRB_DoesNotAccessMemory) 446 return Result; 447 } 448 449 return Result; 450 } 451 452 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) { 453 switch (AR) { 454 case AliasResult::NoAlias: 455 OS << "NoAlias"; 456 break; 457 case AliasResult::MustAlias: 458 OS << "MustAlias"; 459 break; 460 case AliasResult::MayAlias: 461 OS << "MayAlias"; 462 break; 463 case AliasResult::PartialAlias: 464 OS << "PartialAlias"; 465 if (AR.hasOffset()) 466 OS << " (off " << AR.getOffset() << ")"; 467 break; 468 } 469 return OS; 470 } 471 472 //===----------------------------------------------------------------------===// 473 // Helper method implementation 474 //===----------------------------------------------------------------------===// 475 476 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 477 const MemoryLocation &Loc) { 478 AAQueryInfo AAQIP; 479 return getModRefInfo(L, Loc, AAQIP); 480 } 481 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 482 const MemoryLocation &Loc, 483 AAQueryInfo &AAQI) { 484 // Be conservative in the face of atomic. 485 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered)) 486 return ModRefInfo::ModRef; 487 488 // If the load address doesn't alias the given address, it doesn't read 489 // or write the specified memory. 490 if (Loc.Ptr) { 491 AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI); 492 if (AR == AliasResult::NoAlias) 493 return ModRefInfo::NoModRef; 494 if (AR == AliasResult::MustAlias) 495 return ModRefInfo::MustRef; 496 } 497 // Otherwise, a load just reads. 498 return ModRefInfo::Ref; 499 } 500 501 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 502 const MemoryLocation &Loc) { 503 AAQueryInfo AAQIP; 504 return getModRefInfo(S, Loc, AAQIP); 505 } 506 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 507 const MemoryLocation &Loc, 508 AAQueryInfo &AAQI) { 509 // Be conservative in the face of atomic. 510 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered)) 511 return ModRefInfo::ModRef; 512 513 if (Loc.Ptr) { 514 AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI); 515 // If the store address cannot alias the pointer in question, then the 516 // specified memory cannot be modified by the store. 517 if (AR == AliasResult::NoAlias) 518 return ModRefInfo::NoModRef; 519 520 // If the pointer is a pointer to constant memory, then it could not have 521 // been modified by this store. 522 if (pointsToConstantMemory(Loc, AAQI)) 523 return ModRefInfo::NoModRef; 524 525 // If the store address aliases the pointer as must alias, set Must. 526 if (AR == AliasResult::MustAlias) 527 return ModRefInfo::MustMod; 528 } 529 530 // Otherwise, a store just writes. 531 return ModRefInfo::Mod; 532 } 533 534 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) { 535 AAQueryInfo AAQIP; 536 return getModRefInfo(S, Loc, AAQIP); 537 } 538 539 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, 540 const MemoryLocation &Loc, 541 AAQueryInfo &AAQI) { 542 // If we know that the location is a constant memory location, the fence 543 // cannot modify this location. 544 if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI)) 545 return ModRefInfo::Ref; 546 return ModRefInfo::ModRef; 547 } 548 549 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 550 const MemoryLocation &Loc) { 551 AAQueryInfo AAQIP; 552 return getModRefInfo(V, Loc, AAQIP); 553 } 554 555 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 556 const MemoryLocation &Loc, 557 AAQueryInfo &AAQI) { 558 if (Loc.Ptr) { 559 AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI); 560 // If the va_arg address cannot alias the pointer in question, then the 561 // specified memory cannot be accessed by the va_arg. 562 if (AR == AliasResult::NoAlias) 563 return ModRefInfo::NoModRef; 564 565 // If the pointer is a pointer to constant memory, then it could not have 566 // been modified by this va_arg. 567 if (pointsToConstantMemory(Loc, AAQI)) 568 return ModRefInfo::NoModRef; 569 570 // If the va_arg aliases the pointer as must alias, set Must. 571 if (AR == AliasResult::MustAlias) 572 return ModRefInfo::MustModRef; 573 } 574 575 // Otherwise, a va_arg reads and writes. 576 return ModRefInfo::ModRef; 577 } 578 579 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 580 const MemoryLocation &Loc) { 581 AAQueryInfo AAQIP; 582 return getModRefInfo(CatchPad, Loc, AAQIP); 583 } 584 585 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 586 const MemoryLocation &Loc, 587 AAQueryInfo &AAQI) { 588 if (Loc.Ptr) { 589 // If the pointer is a pointer to constant memory, 590 // then it could not have been modified by this catchpad. 591 if (pointsToConstantMemory(Loc, AAQI)) 592 return ModRefInfo::NoModRef; 593 } 594 595 // Otherwise, a catchpad reads and writes. 596 return ModRefInfo::ModRef; 597 } 598 599 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 600 const MemoryLocation &Loc) { 601 AAQueryInfo AAQIP; 602 return getModRefInfo(CatchRet, Loc, AAQIP); 603 } 604 605 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 606 const MemoryLocation &Loc, 607 AAQueryInfo &AAQI) { 608 if (Loc.Ptr) { 609 // If the pointer is a pointer to constant memory, 610 // then it could not have been modified by this catchpad. 611 if (pointsToConstantMemory(Loc, AAQI)) 612 return ModRefInfo::NoModRef; 613 } 614 615 // Otherwise, a catchret reads and writes. 616 return ModRefInfo::ModRef; 617 } 618 619 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 620 const MemoryLocation &Loc) { 621 AAQueryInfo AAQIP; 622 return getModRefInfo(CX, Loc, AAQIP); 623 } 624 625 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 626 const MemoryLocation &Loc, 627 AAQueryInfo &AAQI) { 628 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. 629 if (isStrongerThanMonotonic(CX->getSuccessOrdering())) 630 return ModRefInfo::ModRef; 631 632 if (Loc.Ptr) { 633 AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI); 634 // If the cmpxchg address does not alias the location, it does not access 635 // it. 636 if (AR == AliasResult::NoAlias) 637 return ModRefInfo::NoModRef; 638 639 // If the cmpxchg address aliases the pointer as must alias, set Must. 640 if (AR == AliasResult::MustAlias) 641 return ModRefInfo::MustModRef; 642 } 643 644 return ModRefInfo::ModRef; 645 } 646 647 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 648 const MemoryLocation &Loc) { 649 AAQueryInfo AAQIP; 650 return getModRefInfo(RMW, Loc, AAQIP); 651 } 652 653 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 654 const MemoryLocation &Loc, 655 AAQueryInfo &AAQI) { 656 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. 657 if (isStrongerThanMonotonic(RMW->getOrdering())) 658 return ModRefInfo::ModRef; 659 660 if (Loc.Ptr) { 661 AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI); 662 // If the atomicrmw address does not alias the location, it does not access 663 // it. 664 if (AR == AliasResult::NoAlias) 665 return ModRefInfo::NoModRef; 666 667 // If the atomicrmw address aliases the pointer as must alias, set Must. 668 if (AR == AliasResult::MustAlias) 669 return ModRefInfo::MustModRef; 670 } 671 672 return ModRefInfo::ModRef; 673 } 674 675 ModRefInfo AAResults::getModRefInfo(const Instruction *I, 676 const Optional<MemoryLocation> &OptLoc, 677 AAQueryInfo &AAQIP) { 678 if (OptLoc == None) { 679 if (const auto *Call = dyn_cast<CallBase>(I)) { 680 return createModRefInfo(getModRefBehavior(Call)); 681 } 682 } 683 684 const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation()); 685 686 switch (I->getOpcode()) { 687 case Instruction::VAArg: 688 return getModRefInfo((const VAArgInst *)I, Loc, AAQIP); 689 case Instruction::Load: 690 return getModRefInfo((const LoadInst *)I, Loc, AAQIP); 691 case Instruction::Store: 692 return getModRefInfo((const StoreInst *)I, Loc, AAQIP); 693 case Instruction::Fence: 694 return getModRefInfo((const FenceInst *)I, Loc, AAQIP); 695 case Instruction::AtomicCmpXchg: 696 return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP); 697 case Instruction::AtomicRMW: 698 return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP); 699 case Instruction::Call: 700 return getModRefInfo((const CallInst *)I, Loc, AAQIP); 701 case Instruction::Invoke: 702 return getModRefInfo((const InvokeInst *)I, Loc, AAQIP); 703 case Instruction::CatchPad: 704 return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP); 705 case Instruction::CatchRet: 706 return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP); 707 default: 708 return ModRefInfo::NoModRef; 709 } 710 } 711 712 /// Return information about whether a particular call site modifies 713 /// or reads the specified memory location \p MemLoc before instruction \p I 714 /// in a BasicBlock. 715 /// FIXME: this is really just shoring-up a deficiency in alias analysis. 716 /// BasicAA isn't willing to spend linear time determining whether an alloca 717 /// was captured before or after this particular call, while we are. However, 718 /// with a smarter AA in place, this test is just wasting compile time. 719 ModRefInfo AAResults::callCapturesBefore(const Instruction *I, 720 const MemoryLocation &MemLoc, 721 DominatorTree *DT, 722 AAQueryInfo &AAQI) { 723 if (!DT) 724 return ModRefInfo::ModRef; 725 726 const Value *Object = getUnderlyingObject(MemLoc.Ptr); 727 if (!isIdentifiedFunctionLocal(Object)) 728 return ModRefInfo::ModRef; 729 730 const auto *Call = dyn_cast<CallBase>(I); 731 if (!Call || Call == Object) 732 return ModRefInfo::ModRef; 733 734 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, 735 /* StoreCaptures */ true, I, DT, 736 /* include Object */ true)) 737 return ModRefInfo::ModRef; 738 739 unsigned ArgNo = 0; 740 ModRefInfo R = ModRefInfo::NoModRef; 741 bool IsMustAlias = true; 742 // Set flag only if no May found and all operands processed. 743 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 744 CI != CE; ++CI, ++ArgNo) { 745 // Only look at the no-capture or byval pointer arguments. If this 746 // pointer were passed to arguments that were neither of these, then it 747 // couldn't be no-capture. 748 if (!(*CI)->getType()->isPointerTy() || 749 (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() && 750 !Call->isByValArgument(ArgNo))) 751 continue; 752 753 AliasResult AR = alias( 754 MemoryLocation::getBeforeOrAfter(*CI), 755 MemoryLocation::getBeforeOrAfter(Object), AAQI); 756 // If this is a no-capture pointer argument, see if we can tell that it 757 // is impossible to alias the pointer we're checking. If not, we have to 758 // assume that the call could touch the pointer, even though it doesn't 759 // escape. 760 if (AR != AliasResult::MustAlias) 761 IsMustAlias = false; 762 if (AR == AliasResult::NoAlias) 763 continue; 764 if (Call->doesNotAccessMemory(ArgNo)) 765 continue; 766 if (Call->onlyReadsMemory(ArgNo)) { 767 R = ModRefInfo::Ref; 768 continue; 769 } 770 // Not returning MustModRef since we have not seen all the arguments. 771 return ModRefInfo::ModRef; 772 } 773 return IsMustAlias ? setMust(R) : clearMust(R); 774 } 775 776 /// canBasicBlockModify - Return true if it is possible for execution of the 777 /// specified basic block to modify the location Loc. 778 /// 779 bool AAResults::canBasicBlockModify(const BasicBlock &BB, 780 const MemoryLocation &Loc) { 781 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod); 782 } 783 784 /// canInstructionRangeModRef - Return true if it is possible for the 785 /// execution of the specified instructions to mod\ref (according to the 786 /// mode) the location Loc. The instructions to consider are all 787 /// of the instructions in the range of [I1,I2] INCLUSIVE. 788 /// I1 and I2 must be in the same basic block. 789 bool AAResults::canInstructionRangeModRef(const Instruction &I1, 790 const Instruction &I2, 791 const MemoryLocation &Loc, 792 const ModRefInfo Mode) { 793 assert(I1.getParent() == I2.getParent() && 794 "Instructions not in same basic block!"); 795 BasicBlock::const_iterator I = I1.getIterator(); 796 BasicBlock::const_iterator E = I2.getIterator(); 797 ++E; // Convert from inclusive to exclusive range. 798 799 for (; I != E; ++I) // Check every instruction in range 800 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode))) 801 return true; 802 return false; 803 } 804 805 // Provide a definition for the root virtual destructor. 806 AAResults::Concept::~Concept() = default; 807 808 // Provide a definition for the static object used to identify passes. 809 AnalysisKey AAManager::Key; 810 811 namespace { 812 813 814 } // end anonymous namespace 815 816 ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) { 817 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 818 } 819 820 ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB) 821 : ImmutablePass(ID), CB(std::move(CB)) { 822 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 823 } 824 825 char ExternalAAWrapperPass::ID = 0; 826 827 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", 828 false, true) 829 830 ImmutablePass * 831 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { 832 return new ExternalAAWrapperPass(std::move(Callback)); 833 } 834 835 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { 836 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 837 } 838 839 char AAResultsWrapperPass::ID = 0; 840 841 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", 842 "Function Alias Analysis Results", false, true) 843 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 844 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass) 845 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass) 846 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) 847 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 848 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) 849 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 850 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) 851 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) 852 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", 853 "Function Alias Analysis Results", false, true) 854 855 FunctionPass *llvm::createAAResultsWrapperPass() { 856 return new AAResultsWrapperPass(); 857 } 858 859 /// Run the wrapper pass to rebuild an aggregation over known AA passes. 860 /// 861 /// This is the legacy pass manager's interface to the new-style AA results 862 /// aggregation object. Because this is somewhat shoe-horned into the legacy 863 /// pass manager, we hard code all the specific alias analyses available into 864 /// it. While the particular set enabled is configured via commandline flags, 865 /// adding a new alias analysis to LLVM will require adding support for it to 866 /// this list. 867 bool AAResultsWrapperPass::runOnFunction(Function &F) { 868 // NB! This *must* be reset before adding new AA results to the new 869 // AAResults object because in the legacy pass manager, each instance 870 // of these will refer to the *same* immutable analyses, registering and 871 // unregistering themselves with them. We need to carefully tear down the 872 // previous object first, in this case replacing it with an empty one, before 873 // registering new results. 874 AAR.reset( 875 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F))); 876 877 // BasicAA is always available for function analyses. Also, we add it first 878 // so that it can trump TBAA results when it proves MustAlias. 879 // FIXME: TBAA should have an explicit mode to support this and then we 880 // should reconsider the ordering here. 881 if (!DisableBasicAA) 882 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); 883 884 // Populate the results with the currently available AAs. 885 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 886 AAR->addAAResult(WrapperPass->getResult()); 887 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 888 AAR->addAAResult(WrapperPass->getResult()); 889 if (auto *WrapperPass = 890 getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 891 AAR->addAAResult(WrapperPass->getResult()); 892 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 893 AAR->addAAResult(WrapperPass->getResult()); 894 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) 895 AAR->addAAResult(WrapperPass->getResult()); 896 if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) 897 AAR->addAAResult(WrapperPass->getResult()); 898 if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) 899 AAR->addAAResult(WrapperPass->getResult()); 900 901 // If available, run an external AA providing callback over the results as 902 // well. 903 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>()) 904 if (WrapperPass->CB) 905 WrapperPass->CB(*this, F, *AAR); 906 907 // Analyses don't mutate the IR, so return false. 908 return false; 909 } 910 911 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 912 AU.setPreservesAll(); 913 AU.addRequiredTransitive<BasicAAWrapperPass>(); 914 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 915 916 // We also need to mark all the alias analysis passes we will potentially 917 // probe in runOnFunction as used here to ensure the legacy pass manager 918 // preserves them. This hard coding of lists of alias analyses is specific to 919 // the legacy pass manager. 920 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 921 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 922 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 923 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 924 AU.addUsedIfAvailable<SCEVAAWrapperPass>(); 925 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); 926 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); 927 AU.addUsedIfAvailable<ExternalAAWrapperPass>(); 928 } 929 930 AAManager::Result AAManager::run(Function &F, FunctionAnalysisManager &AM) { 931 Result R(AM.getResult<TargetLibraryAnalysis>(F)); 932 for (auto &Getter : ResultGetters) 933 (*Getter)(F, AM, R); 934 return R; 935 } 936 937 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, 938 BasicAAResult &BAR) { 939 AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 940 941 // Add in our explicitly constructed BasicAA results. 942 if (!DisableBasicAA) 943 AAR.addAAResult(BAR); 944 945 // Populate the results with the other currently available AAs. 946 if (auto *WrapperPass = 947 P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 948 AAR.addAAResult(WrapperPass->getResult()); 949 if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 950 AAR.addAAResult(WrapperPass->getResult()); 951 if (auto *WrapperPass = 952 P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 953 AAR.addAAResult(WrapperPass->getResult()); 954 if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 955 AAR.addAAResult(WrapperPass->getResult()); 956 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) 957 AAR.addAAResult(WrapperPass->getResult()); 958 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) 959 AAR.addAAResult(WrapperPass->getResult()); 960 if (auto *WrapperPass = P.getAnalysisIfAvailable<ExternalAAWrapperPass>()) 961 if (WrapperPass->CB) 962 WrapperPass->CB(P, F, AAR); 963 964 return AAR; 965 } 966 967 bool llvm::isNoAliasCall(const Value *V) { 968 if (const auto *Call = dyn_cast<CallBase>(V)) 969 return Call->hasRetAttr(Attribute::NoAlias); 970 return false; 971 } 972 973 static bool isNoAliasOrByValArgument(const Value *V) { 974 if (const Argument *A = dyn_cast<Argument>(V)) 975 return A->hasNoAliasAttr() || A->hasByValAttr(); 976 return false; 977 } 978 979 bool llvm::isIdentifiedObject(const Value *V) { 980 if (isa<AllocaInst>(V)) 981 return true; 982 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) 983 return true; 984 if (isNoAliasCall(V)) 985 return true; 986 if (isNoAliasOrByValArgument(V)) 987 return true; 988 return false; 989 } 990 991 bool llvm::isIdentifiedFunctionLocal(const Value *V) { 992 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasOrByValArgument(V); 993 } 994 995 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) { 996 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if 997 // more alias analyses are added to llvm::createLegacyPMAAResults, they need 998 // to be added here also. 999 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1000 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 1001 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 1002 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 1003 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 1004 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); 1005 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); 1006 AU.addUsedIfAvailable<ExternalAAWrapperPass>(); 1007 } 1008