1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic AliasAnalysis interface which is used as the 10 // common interface used by all clients and implementations of alias analysis. 11 // 12 // This file also implements the default version of the AliasAnalysis interface 13 // that is to be used when no other implementation is specified. This does some 14 // simple tests that detect obvious cases: two different global pointers cannot 15 // alias, a global cannot alias a malloc, two different mallocs cannot alias, 16 // etc. 17 // 18 // This alias analysis implementation really isn't very good for anything, but 19 // it is very fast, and makes a nice clean default implementation. Because it 20 // handles lots of little corner cases, other, more complex, alias analysis 21 // implementations may choose to rely on this pass to resolve these simple and 22 // easy cases. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 29 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 30 #include "llvm/Analysis/CaptureTracking.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ObjCARCAliasAnalysis.h" 34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 35 #include "llvm/Analysis/ScopedNoAliasAA.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/AtomicOrdering.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <functional> 55 #include <iterator> 56 57 using namespace llvm; 58 59 /// Allow disabling BasicAA from the AA results. This is particularly useful 60 /// when testing to isolate a single AA implementation. 61 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden, 62 cl::init(false)); 63 64 AAResults::AAResults(AAResults &&Arg) 65 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) { 66 for (auto &AA : AAs) 67 AA->setAAResults(this); 68 } 69 70 AAResults::~AAResults() { 71 // FIXME; It would be nice to at least clear out the pointers back to this 72 // aggregation here, but we end up with non-nesting lifetimes in the legacy 73 // pass manager that prevent this from working. In the legacy pass manager 74 // we'll end up with dangling references here in some cases. 75 #if 0 76 for (auto &AA : AAs) 77 AA->setAAResults(nullptr); 78 #endif 79 } 80 81 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA, 82 FunctionAnalysisManager::Invalidator &Inv) { 83 // AAResults preserves the AAManager by default, due to the stateless nature 84 // of AliasAnalysis. There is no need to check whether it has been preserved 85 // explicitly. Check if any module dependency was invalidated and caused the 86 // AAManager to be invalidated. Invalidate ourselves in that case. 87 auto PAC = PA.getChecker<AAManager>(); 88 if (!PAC.preservedWhenStateless()) 89 return true; 90 91 // Check if any of the function dependencies were invalidated, and invalidate 92 // ourselves in that case. 93 for (AnalysisKey *ID : AADeps) 94 if (Inv.invalidate(ID, F, PA)) 95 return true; 96 97 // Everything we depend on is still fine, so are we. Nothing to invalidate. 98 return false; 99 } 100 101 //===----------------------------------------------------------------------===// 102 // Default chaining methods 103 //===----------------------------------------------------------------------===// 104 105 AliasResult AAResults::alias(const MemoryLocation &LocA, 106 const MemoryLocation &LocB) { 107 AAQueryInfo AAQIP; 108 return alias(LocA, LocB, AAQIP); 109 } 110 111 AliasResult AAResults::alias(const MemoryLocation &LocA, 112 const MemoryLocation &LocB, AAQueryInfo &AAQI) { 113 for (const auto &AA : AAs) { 114 auto Result = AA->alias(LocA, LocB, AAQI); 115 if (Result != MayAlias) 116 return Result; 117 } 118 return MayAlias; 119 } 120 121 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, 122 bool OrLocal) { 123 AAQueryInfo AAQIP; 124 return pointsToConstantMemory(Loc, AAQIP, OrLocal); 125 } 126 127 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, 128 AAQueryInfo &AAQI, bool OrLocal) { 129 for (const auto &AA : AAs) 130 if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal)) 131 return true; 132 133 return false; 134 } 135 136 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { 137 ModRefInfo Result = ModRefInfo::ModRef; 138 139 for (const auto &AA : AAs) { 140 Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx)); 141 142 // Early-exit the moment we reach the bottom of the lattice. 143 if (isNoModRef(Result)) 144 return ModRefInfo::NoModRef; 145 } 146 147 return Result; 148 } 149 150 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) { 151 AAQueryInfo AAQIP; 152 return getModRefInfo(I, Call2, AAQIP); 153 } 154 155 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2, 156 AAQueryInfo &AAQI) { 157 // We may have two calls. 158 if (const auto *Call1 = dyn_cast<CallBase>(I)) { 159 // Check if the two calls modify the same memory. 160 return getModRefInfo(Call1, Call2, AAQI); 161 } else if (I->isFenceLike()) { 162 // If this is a fence, just return ModRef. 163 return ModRefInfo::ModRef; 164 } else { 165 // Otherwise, check if the call modifies or references the 166 // location this memory access defines. The best we can say 167 // is that if the call references what this instruction 168 // defines, it must be clobbered by this location. 169 const MemoryLocation DefLoc = MemoryLocation::get(I); 170 ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI); 171 if (isModOrRefSet(MR)) 172 return setModAndRef(MR); 173 } 174 return ModRefInfo::NoModRef; 175 } 176 177 ModRefInfo AAResults::getModRefInfo(const CallBase *Call, 178 const MemoryLocation &Loc) { 179 AAQueryInfo AAQIP; 180 return getModRefInfo(Call, Loc, AAQIP); 181 } 182 183 ModRefInfo AAResults::getModRefInfo(const CallBase *Call, 184 const MemoryLocation &Loc, 185 AAQueryInfo &AAQI) { 186 ModRefInfo Result = ModRefInfo::ModRef; 187 188 for (const auto &AA : AAs) { 189 Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI)); 190 191 // Early-exit the moment we reach the bottom of the lattice. 192 if (isNoModRef(Result)) 193 return ModRefInfo::NoModRef; 194 } 195 196 // Try to refine the mod-ref info further using other API entry points to the 197 // aggregate set of AA results. 198 auto MRB = getModRefBehavior(Call); 199 if (MRB == FMRB_DoesNotAccessMemory || 200 MRB == FMRB_OnlyAccessesInaccessibleMem) 201 return ModRefInfo::NoModRef; 202 203 if (onlyReadsMemory(MRB)) 204 Result = clearMod(Result); 205 else if (doesNotReadMemory(MRB)) 206 Result = clearRef(Result); 207 208 if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) { 209 bool IsMustAlias = true; 210 ModRefInfo AllArgsMask = ModRefInfo::NoModRef; 211 if (doesAccessArgPointees(MRB)) { 212 for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) { 213 const Value *Arg = *AI; 214 if (!Arg->getType()->isPointerTy()) 215 continue; 216 unsigned ArgIdx = std::distance(Call->arg_begin(), AI); 217 MemoryLocation ArgLoc = 218 MemoryLocation::getForArgument(Call, ArgIdx, TLI); 219 AliasResult ArgAlias = alias(ArgLoc, Loc); 220 if (ArgAlias != NoAlias) { 221 ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx); 222 AllArgsMask = unionModRef(AllArgsMask, ArgMask); 223 } 224 // Conservatively clear IsMustAlias unless only MustAlias is found. 225 IsMustAlias &= (ArgAlias == MustAlias); 226 } 227 } 228 // Return NoModRef if no alias found with any argument. 229 if (isNoModRef(AllArgsMask)) 230 return ModRefInfo::NoModRef; 231 // Logical & between other AA analyses and argument analysis. 232 Result = intersectModRef(Result, AllArgsMask); 233 // If only MustAlias found above, set Must bit. 234 Result = IsMustAlias ? setMust(Result) : clearMust(Result); 235 } 236 237 // If Loc is a constant memory location, the call definitely could not 238 // modify the memory location. 239 if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false)) 240 Result = clearMod(Result); 241 242 return Result; 243 } 244 245 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, 246 const CallBase *Call2) { 247 AAQueryInfo AAQIP; 248 return getModRefInfo(Call1, Call2, AAQIP); 249 } 250 251 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, 252 const CallBase *Call2, AAQueryInfo &AAQI) { 253 ModRefInfo Result = ModRefInfo::ModRef; 254 255 for (const auto &AA : AAs) { 256 Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI)); 257 258 // Early-exit the moment we reach the bottom of the lattice. 259 if (isNoModRef(Result)) 260 return ModRefInfo::NoModRef; 261 } 262 263 // Try to refine the mod-ref info further using other API entry points to the 264 // aggregate set of AA results. 265 266 // If Call1 or Call2 are readnone, they don't interact. 267 auto Call1B = getModRefBehavior(Call1); 268 if (Call1B == FMRB_DoesNotAccessMemory) 269 return ModRefInfo::NoModRef; 270 271 auto Call2B = getModRefBehavior(Call2); 272 if (Call2B == FMRB_DoesNotAccessMemory) 273 return ModRefInfo::NoModRef; 274 275 // If they both only read from memory, there is no dependence. 276 if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B)) 277 return ModRefInfo::NoModRef; 278 279 // If Call1 only reads memory, the only dependence on Call2 can be 280 // from Call1 reading memory written by Call2. 281 if (onlyReadsMemory(Call1B)) 282 Result = clearMod(Result); 283 else if (doesNotReadMemory(Call1B)) 284 Result = clearRef(Result); 285 286 // If Call2 only access memory through arguments, accumulate the mod/ref 287 // information from Call1's references to the memory referenced by 288 // Call2's arguments. 289 if (onlyAccessesArgPointees(Call2B)) { 290 if (!doesAccessArgPointees(Call2B)) 291 return ModRefInfo::NoModRef; 292 ModRefInfo R = ModRefInfo::NoModRef; 293 bool IsMustAlias = true; 294 for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) { 295 const Value *Arg = *I; 296 if (!Arg->getType()->isPointerTy()) 297 continue; 298 unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I); 299 auto Call2ArgLoc = 300 MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI); 301 302 // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the 303 // dependence of Call1 on that location is the inverse: 304 // - If Call2 modifies location, dependence exists if Call1 reads or 305 // writes. 306 // - If Call2 only reads location, dependence exists if Call1 writes. 307 ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx); 308 ModRefInfo ArgMask = ModRefInfo::NoModRef; 309 if (isModSet(ArgModRefC2)) 310 ArgMask = ModRefInfo::ModRef; 311 else if (isRefSet(ArgModRefC2)) 312 ArgMask = ModRefInfo::Mod; 313 314 // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use 315 // above ArgMask to update dependence info. 316 ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc); 317 ArgMask = intersectModRef(ArgMask, ModRefC1); 318 319 // Conservatively clear IsMustAlias unless only MustAlias is found. 320 IsMustAlias &= isMustSet(ModRefC1); 321 322 R = intersectModRef(unionModRef(R, ArgMask), Result); 323 if (R == Result) { 324 // On early exit, not all args were checked, cannot set Must. 325 if (I + 1 != E) 326 IsMustAlias = false; 327 break; 328 } 329 } 330 331 if (isNoModRef(R)) 332 return ModRefInfo::NoModRef; 333 334 // If MustAlias found above, set Must bit. 335 return IsMustAlias ? setMust(R) : clearMust(R); 336 } 337 338 // If Call1 only accesses memory through arguments, check if Call2 references 339 // any of the memory referenced by Call1's arguments. If not, return NoModRef. 340 if (onlyAccessesArgPointees(Call1B)) { 341 if (!doesAccessArgPointees(Call1B)) 342 return ModRefInfo::NoModRef; 343 ModRefInfo R = ModRefInfo::NoModRef; 344 bool IsMustAlias = true; 345 for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) { 346 const Value *Arg = *I; 347 if (!Arg->getType()->isPointerTy()) 348 continue; 349 unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I); 350 auto Call1ArgLoc = 351 MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI); 352 353 // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1 354 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by 355 // Call2. If Call1 might Ref, then we care only about a Mod by Call2. 356 ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx); 357 ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc); 358 if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) || 359 (isRefSet(ArgModRefC1) && isModSet(ModRefC2))) 360 R = intersectModRef(unionModRef(R, ArgModRefC1), Result); 361 362 // Conservatively clear IsMustAlias unless only MustAlias is found. 363 IsMustAlias &= isMustSet(ModRefC2); 364 365 if (R == Result) { 366 // On early exit, not all args were checked, cannot set Must. 367 if (I + 1 != E) 368 IsMustAlias = false; 369 break; 370 } 371 } 372 373 if (isNoModRef(R)) 374 return ModRefInfo::NoModRef; 375 376 // If MustAlias found above, set Must bit. 377 return IsMustAlias ? setMust(R) : clearMust(R); 378 } 379 380 return Result; 381 } 382 383 FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) { 384 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 385 386 for (const auto &AA : AAs) { 387 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call)); 388 389 // Early-exit the moment we reach the bottom of the lattice. 390 if (Result == FMRB_DoesNotAccessMemory) 391 return Result; 392 } 393 394 return Result; 395 } 396 397 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) { 398 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 399 400 for (const auto &AA : AAs) { 401 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F)); 402 403 // Early-exit the moment we reach the bottom of the lattice. 404 if (Result == FMRB_DoesNotAccessMemory) 405 return Result; 406 } 407 408 return Result; 409 } 410 411 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) { 412 switch (AR) { 413 case NoAlias: 414 OS << "NoAlias"; 415 break; 416 case MustAlias: 417 OS << "MustAlias"; 418 break; 419 case MayAlias: 420 OS << "MayAlias"; 421 break; 422 case PartialAlias: 423 OS << "PartialAlias"; 424 break; 425 } 426 return OS; 427 } 428 429 //===----------------------------------------------------------------------===// 430 // Helper method implementation 431 //===----------------------------------------------------------------------===// 432 433 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 434 const MemoryLocation &Loc) { 435 AAQueryInfo AAQIP; 436 return getModRefInfo(L, Loc, AAQIP); 437 } 438 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 439 const MemoryLocation &Loc, 440 AAQueryInfo &AAQI) { 441 // Be conservative in the face of atomic. 442 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered)) 443 return ModRefInfo::ModRef; 444 445 // If the load address doesn't alias the given address, it doesn't read 446 // or write the specified memory. 447 if (Loc.Ptr) { 448 AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI); 449 if (AR == NoAlias) 450 return ModRefInfo::NoModRef; 451 if (AR == MustAlias) 452 return ModRefInfo::MustRef; 453 } 454 // Otherwise, a load just reads. 455 return ModRefInfo::Ref; 456 } 457 458 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 459 const MemoryLocation &Loc) { 460 AAQueryInfo AAQIP; 461 return getModRefInfo(S, Loc, AAQIP); 462 } 463 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 464 const MemoryLocation &Loc, 465 AAQueryInfo &AAQI) { 466 // Be conservative in the face of atomic. 467 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered)) 468 return ModRefInfo::ModRef; 469 470 if (Loc.Ptr) { 471 AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI); 472 // If the store address cannot alias the pointer in question, then the 473 // specified memory cannot be modified by the store. 474 if (AR == NoAlias) 475 return ModRefInfo::NoModRef; 476 477 // If the pointer is a pointer to constant memory, then it could not have 478 // been modified by this store. 479 if (pointsToConstantMemory(Loc, AAQI)) 480 return ModRefInfo::NoModRef; 481 482 // If the store address aliases the pointer as must alias, set Must. 483 if (AR == MustAlias) 484 return ModRefInfo::MustMod; 485 } 486 487 // Otherwise, a store just writes. 488 return ModRefInfo::Mod; 489 } 490 491 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) { 492 AAQueryInfo AAQIP; 493 return getModRefInfo(S, Loc, AAQIP); 494 } 495 496 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, 497 const MemoryLocation &Loc, 498 AAQueryInfo &AAQI) { 499 // If we know that the location is a constant memory location, the fence 500 // cannot modify this location. 501 if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI)) 502 return ModRefInfo::Ref; 503 return ModRefInfo::ModRef; 504 } 505 506 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 507 const MemoryLocation &Loc) { 508 AAQueryInfo AAQIP; 509 return getModRefInfo(V, Loc, AAQIP); 510 } 511 512 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 513 const MemoryLocation &Loc, 514 AAQueryInfo &AAQI) { 515 if (Loc.Ptr) { 516 AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI); 517 // If the va_arg address cannot alias the pointer in question, then the 518 // specified memory cannot be accessed by the va_arg. 519 if (AR == NoAlias) 520 return ModRefInfo::NoModRef; 521 522 // If the pointer is a pointer to constant memory, then it could not have 523 // been modified by this va_arg. 524 if (pointsToConstantMemory(Loc, AAQI)) 525 return ModRefInfo::NoModRef; 526 527 // If the va_arg aliases the pointer as must alias, set Must. 528 if (AR == MustAlias) 529 return ModRefInfo::MustModRef; 530 } 531 532 // Otherwise, a va_arg reads and writes. 533 return ModRefInfo::ModRef; 534 } 535 536 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 537 const MemoryLocation &Loc) { 538 AAQueryInfo AAQIP; 539 return getModRefInfo(CatchPad, Loc, AAQIP); 540 } 541 542 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 543 const MemoryLocation &Loc, 544 AAQueryInfo &AAQI) { 545 if (Loc.Ptr) { 546 // If the pointer is a pointer to constant memory, 547 // then it could not have been modified by this catchpad. 548 if (pointsToConstantMemory(Loc, AAQI)) 549 return ModRefInfo::NoModRef; 550 } 551 552 // Otherwise, a catchpad reads and writes. 553 return ModRefInfo::ModRef; 554 } 555 556 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 557 const MemoryLocation &Loc) { 558 AAQueryInfo AAQIP; 559 return getModRefInfo(CatchRet, Loc, AAQIP); 560 } 561 562 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 563 const MemoryLocation &Loc, 564 AAQueryInfo &AAQI) { 565 if (Loc.Ptr) { 566 // If the pointer is a pointer to constant memory, 567 // then it could not have been modified by this catchpad. 568 if (pointsToConstantMemory(Loc, AAQI)) 569 return ModRefInfo::NoModRef; 570 } 571 572 // Otherwise, a catchret reads and writes. 573 return ModRefInfo::ModRef; 574 } 575 576 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 577 const MemoryLocation &Loc) { 578 AAQueryInfo AAQIP; 579 return getModRefInfo(CX, Loc, AAQIP); 580 } 581 582 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 583 const MemoryLocation &Loc, 584 AAQueryInfo &AAQI) { 585 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. 586 if (isStrongerThanMonotonic(CX->getSuccessOrdering())) 587 return ModRefInfo::ModRef; 588 589 if (Loc.Ptr) { 590 AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI); 591 // If the cmpxchg address does not alias the location, it does not access 592 // it. 593 if (AR == NoAlias) 594 return ModRefInfo::NoModRef; 595 596 // If the cmpxchg address aliases the pointer as must alias, set Must. 597 if (AR == MustAlias) 598 return ModRefInfo::MustModRef; 599 } 600 601 return ModRefInfo::ModRef; 602 } 603 604 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 605 const MemoryLocation &Loc) { 606 AAQueryInfo AAQIP; 607 return getModRefInfo(RMW, Loc, AAQIP); 608 } 609 610 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 611 const MemoryLocation &Loc, 612 AAQueryInfo &AAQI) { 613 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. 614 if (isStrongerThanMonotonic(RMW->getOrdering())) 615 return ModRefInfo::ModRef; 616 617 if (Loc.Ptr) { 618 AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI); 619 // If the atomicrmw address does not alias the location, it does not access 620 // it. 621 if (AR == NoAlias) 622 return ModRefInfo::NoModRef; 623 624 // If the atomicrmw address aliases the pointer as must alias, set Must. 625 if (AR == MustAlias) 626 return ModRefInfo::MustModRef; 627 } 628 629 return ModRefInfo::ModRef; 630 } 631 632 /// Return information about whether a particular call site modifies 633 /// or reads the specified memory location \p MemLoc before instruction \p I 634 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up 635 /// instruction-ordering queries inside the BasicBlock containing \p I. 636 /// FIXME: this is really just shoring-up a deficiency in alias analysis. 637 /// BasicAA isn't willing to spend linear time determining whether an alloca 638 /// was captured before or after this particular call, while we are. However, 639 /// with a smarter AA in place, this test is just wasting compile time. 640 ModRefInfo AAResults::callCapturesBefore(const Instruction *I, 641 const MemoryLocation &MemLoc, 642 DominatorTree *DT, 643 OrderedBasicBlock *OBB) { 644 if (!DT) 645 return ModRefInfo::ModRef; 646 647 const Value *Object = 648 GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout()); 649 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || 650 isa<Constant>(Object)) 651 return ModRefInfo::ModRef; 652 653 const auto *Call = dyn_cast<CallBase>(I); 654 if (!Call || Call == Object) 655 return ModRefInfo::ModRef; 656 657 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, 658 /* StoreCaptures */ true, I, DT, 659 /* include Object */ true, 660 /* OrderedBasicBlock */ OBB)) 661 return ModRefInfo::ModRef; 662 663 unsigned ArgNo = 0; 664 ModRefInfo R = ModRefInfo::NoModRef; 665 bool IsMustAlias = true; 666 // Set flag only if no May found and all operands processed. 667 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 668 CI != CE; ++CI, ++ArgNo) { 669 // Only look at the no-capture or byval pointer arguments. If this 670 // pointer were passed to arguments that were neither of these, then it 671 // couldn't be no-capture. 672 if (!(*CI)->getType()->isPointerTy() || 673 (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() && 674 !Call->isByValArgument(ArgNo))) 675 continue; 676 677 AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object)); 678 // If this is a no-capture pointer argument, see if we can tell that it 679 // is impossible to alias the pointer we're checking. If not, we have to 680 // assume that the call could touch the pointer, even though it doesn't 681 // escape. 682 if (AR != MustAlias) 683 IsMustAlias = false; 684 if (AR == NoAlias) 685 continue; 686 if (Call->doesNotAccessMemory(ArgNo)) 687 continue; 688 if (Call->onlyReadsMemory(ArgNo)) { 689 R = ModRefInfo::Ref; 690 continue; 691 } 692 // Not returning MustModRef since we have not seen all the arguments. 693 return ModRefInfo::ModRef; 694 } 695 return IsMustAlias ? setMust(R) : clearMust(R); 696 } 697 698 /// canBasicBlockModify - Return true if it is possible for execution of the 699 /// specified basic block to modify the location Loc. 700 /// 701 bool AAResults::canBasicBlockModify(const BasicBlock &BB, 702 const MemoryLocation &Loc) { 703 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod); 704 } 705 706 /// canInstructionRangeModRef - Return true if it is possible for the 707 /// execution of the specified instructions to mod\ref (according to the 708 /// mode) the location Loc. The instructions to consider are all 709 /// of the instructions in the range of [I1,I2] INCLUSIVE. 710 /// I1 and I2 must be in the same basic block. 711 bool AAResults::canInstructionRangeModRef(const Instruction &I1, 712 const Instruction &I2, 713 const MemoryLocation &Loc, 714 const ModRefInfo Mode) { 715 assert(I1.getParent() == I2.getParent() && 716 "Instructions not in same basic block!"); 717 BasicBlock::const_iterator I = I1.getIterator(); 718 BasicBlock::const_iterator E = I2.getIterator(); 719 ++E; // Convert from inclusive to exclusive range. 720 721 for (; I != E; ++I) // Check every instruction in range 722 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode))) 723 return true; 724 return false; 725 } 726 727 // Provide a definition for the root virtual destructor. 728 AAResults::Concept::~Concept() = default; 729 730 // Provide a definition for the static object used to identify passes. 731 AnalysisKey AAManager::Key; 732 733 namespace { 734 735 736 } // end anonymous namespace 737 738 ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) { 739 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 740 } 741 742 ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB) 743 : ImmutablePass(ID), CB(std::move(CB)) { 744 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 745 } 746 747 char ExternalAAWrapperPass::ID = 0; 748 749 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", 750 false, true) 751 752 ImmutablePass * 753 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { 754 return new ExternalAAWrapperPass(std::move(Callback)); 755 } 756 757 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { 758 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 759 } 760 761 char AAResultsWrapperPass::ID = 0; 762 763 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", 764 "Function Alias Analysis Results", false, true) 765 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 766 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass) 767 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass) 768 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) 769 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 770 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) 771 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 772 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) 773 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) 774 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", 775 "Function Alias Analysis Results", false, true) 776 777 FunctionPass *llvm::createAAResultsWrapperPass() { 778 return new AAResultsWrapperPass(); 779 } 780 781 /// Run the wrapper pass to rebuild an aggregation over known AA passes. 782 /// 783 /// This is the legacy pass manager's interface to the new-style AA results 784 /// aggregation object. Because this is somewhat shoe-horned into the legacy 785 /// pass manager, we hard code all the specific alias analyses available into 786 /// it. While the particular set enabled is configured via commandline flags, 787 /// adding a new alias analysis to LLVM will require adding support for it to 788 /// this list. 789 bool AAResultsWrapperPass::runOnFunction(Function &F) { 790 // NB! This *must* be reset before adding new AA results to the new 791 // AAResults object because in the legacy pass manager, each instance 792 // of these will refer to the *same* immutable analyses, registering and 793 // unregistering themselves with them. We need to carefully tear down the 794 // previous object first, in this case replacing it with an empty one, before 795 // registering new results. 796 AAR.reset( 797 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F))); 798 799 // BasicAA is always available for function analyses. Also, we add it first 800 // so that it can trump TBAA results when it proves MustAlias. 801 // FIXME: TBAA should have an explicit mode to support this and then we 802 // should reconsider the ordering here. 803 if (!DisableBasicAA) 804 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); 805 806 // Populate the results with the currently available AAs. 807 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 808 AAR->addAAResult(WrapperPass->getResult()); 809 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 810 AAR->addAAResult(WrapperPass->getResult()); 811 if (auto *WrapperPass = 812 getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 813 AAR->addAAResult(WrapperPass->getResult()); 814 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 815 AAR->addAAResult(WrapperPass->getResult()); 816 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) 817 AAR->addAAResult(WrapperPass->getResult()); 818 if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) 819 AAR->addAAResult(WrapperPass->getResult()); 820 if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) 821 AAR->addAAResult(WrapperPass->getResult()); 822 823 // If available, run an external AA providing callback over the results as 824 // well. 825 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>()) 826 if (WrapperPass->CB) 827 WrapperPass->CB(*this, F, *AAR); 828 829 // Analyses don't mutate the IR, so return false. 830 return false; 831 } 832 833 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 834 AU.setPreservesAll(); 835 AU.addRequired<BasicAAWrapperPass>(); 836 AU.addRequired<TargetLibraryInfoWrapperPass>(); 837 838 // We also need to mark all the alias analysis passes we will potentially 839 // probe in runOnFunction as used here to ensure the legacy pass manager 840 // preserves them. This hard coding of lists of alias analyses is specific to 841 // the legacy pass manager. 842 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 843 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 844 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 845 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 846 AU.addUsedIfAvailable<SCEVAAWrapperPass>(); 847 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); 848 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); 849 AU.addUsedIfAvailable<ExternalAAWrapperPass>(); 850 } 851 852 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, 853 BasicAAResult &BAR) { 854 AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 855 856 // Add in our explicitly constructed BasicAA results. 857 if (!DisableBasicAA) 858 AAR.addAAResult(BAR); 859 860 // Populate the results with the other currently available AAs. 861 if (auto *WrapperPass = 862 P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 863 AAR.addAAResult(WrapperPass->getResult()); 864 if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 865 AAR.addAAResult(WrapperPass->getResult()); 866 if (auto *WrapperPass = 867 P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 868 AAR.addAAResult(WrapperPass->getResult()); 869 if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 870 AAR.addAAResult(WrapperPass->getResult()); 871 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) 872 AAR.addAAResult(WrapperPass->getResult()); 873 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) 874 AAR.addAAResult(WrapperPass->getResult()); 875 if (auto *WrapperPass = P.getAnalysisIfAvailable<ExternalAAWrapperPass>()) 876 if (WrapperPass->CB) 877 WrapperPass->CB(P, F, AAR); 878 879 return AAR; 880 } 881 882 bool llvm::isNoAliasCall(const Value *V) { 883 if (const auto *Call = dyn_cast<CallBase>(V)) 884 return Call->hasRetAttr(Attribute::NoAlias); 885 return false; 886 } 887 888 bool llvm::isNoAliasArgument(const Value *V) { 889 if (const Argument *A = dyn_cast<Argument>(V)) 890 return A->hasNoAliasAttr(); 891 return false; 892 } 893 894 bool llvm::isIdentifiedObject(const Value *V) { 895 if (isa<AllocaInst>(V)) 896 return true; 897 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) 898 return true; 899 if (isNoAliasCall(V)) 900 return true; 901 if (const Argument *A = dyn_cast<Argument>(V)) 902 return A->hasNoAliasAttr() || A->hasByValAttr(); 903 return false; 904 } 905 906 bool llvm::isIdentifiedFunctionLocal(const Value *V) { 907 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 908 } 909 910 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) { 911 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if 912 // more alias analyses are added to llvm::createLegacyPMAAResults, they need 913 // to be added here also. 914 AU.addRequired<TargetLibraryInfoWrapperPass>(); 915 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 916 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 917 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 918 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 919 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); 920 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); 921 AU.addUsedIfAvailable<ExternalAAWrapperPass>(); 922 } 923