xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/AliasAnalysis.cpp (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic AliasAnalysis interface which is used as the
10 // common interface used by all clients and implementations of alias analysis.
11 //
12 // This file also implements the default version of the AliasAnalysis interface
13 // that is to be used when no other implementation is specified.  This does some
14 // simple tests that detect obvious cases: two different global pointers cannot
15 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
16 // etc.
17 //
18 // This alias analysis implementation really isn't very good for anything, but
19 // it is very fast, and makes a nice clean default implementation.  Because it
20 // handles lots of little corner cases, other, more complex, alias analysis
21 // implementations may choose to rely on this pass to resolve these simple and
22 // easy cases.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
29 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
30 #include "llvm/Analysis/CaptureTracking.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
35 #include "llvm/Analysis/ScopedNoAliasAA.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/AtomicOrdering.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <functional>
54 #include <iterator>
55 
56 using namespace llvm;
57 
58 /// Allow disabling BasicAA from the AA results. This is particularly useful
59 /// when testing to isolate a single AA implementation.
60 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
61                                     cl::init(false));
62 
63 AAResults::AAResults(AAResults &&Arg)
64     : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
65   for (auto &AA : AAs)
66     AA->setAAResults(this);
67 }
68 
69 AAResults::~AAResults() {
70 // FIXME; It would be nice to at least clear out the pointers back to this
71 // aggregation here, but we end up with non-nesting lifetimes in the legacy
72 // pass manager that prevent this from working. In the legacy pass manager
73 // we'll end up with dangling references here in some cases.
74 #if 0
75   for (auto &AA : AAs)
76     AA->setAAResults(nullptr);
77 #endif
78 }
79 
80 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
81                            FunctionAnalysisManager::Invalidator &Inv) {
82   // AAResults preserves the AAManager by default, due to the stateless nature
83   // of AliasAnalysis. There is no need to check whether it has been preserved
84   // explicitly. Check if any module dependency was invalidated and caused the
85   // AAManager to be invalidated. Invalidate ourselves in that case.
86   auto PAC = PA.getChecker<AAManager>();
87   if (!PAC.preservedWhenStateless())
88     return true;
89 
90   // Check if any of the function dependencies were invalidated, and invalidate
91   // ourselves in that case.
92   for (AnalysisKey *ID : AADeps)
93     if (Inv.invalidate(ID, F, PA))
94       return true;
95 
96   // Everything we depend on is still fine, so are we. Nothing to invalidate.
97   return false;
98 }
99 
100 //===----------------------------------------------------------------------===//
101 // Default chaining methods
102 //===----------------------------------------------------------------------===//
103 
104 AliasResult AAResults::alias(const MemoryLocation &LocA,
105                              const MemoryLocation &LocB) {
106   AAQueryInfo AAQIP;
107   return alias(LocA, LocB, AAQIP);
108 }
109 
110 AliasResult AAResults::alias(const MemoryLocation &LocA,
111                              const MemoryLocation &LocB, AAQueryInfo &AAQI) {
112   for (const auto &AA : AAs) {
113     auto Result = AA->alias(LocA, LocB, AAQI);
114     if (Result != MayAlias)
115       return Result;
116   }
117   return MayAlias;
118 }
119 
120 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
121                                        bool OrLocal) {
122   AAQueryInfo AAQIP;
123   return pointsToConstantMemory(Loc, AAQIP, OrLocal);
124 }
125 
126 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
127                                        AAQueryInfo &AAQI, bool OrLocal) {
128   for (const auto &AA : AAs)
129     if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal))
130       return true;
131 
132   return false;
133 }
134 
135 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
136   ModRefInfo Result = ModRefInfo::ModRef;
137 
138   for (const auto &AA : AAs) {
139     Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));
140 
141     // Early-exit the moment we reach the bottom of the lattice.
142     if (isNoModRef(Result))
143       return ModRefInfo::NoModRef;
144   }
145 
146   return Result;
147 }
148 
149 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
150   AAQueryInfo AAQIP;
151   return getModRefInfo(I, Call2, AAQIP);
152 }
153 
154 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2,
155                                     AAQueryInfo &AAQI) {
156   // We may have two calls.
157   if (const auto *Call1 = dyn_cast<CallBase>(I)) {
158     // Check if the two calls modify the same memory.
159     return getModRefInfo(Call1, Call2, AAQI);
160   } else if (I->isFenceLike()) {
161     // If this is a fence, just return ModRef.
162     return ModRefInfo::ModRef;
163   } else {
164     // Otherwise, check if the call modifies or references the
165     // location this memory access defines.  The best we can say
166     // is that if the call references what this instruction
167     // defines, it must be clobbered by this location.
168     const MemoryLocation DefLoc = MemoryLocation::get(I);
169     ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
170     if (isModOrRefSet(MR))
171       return setModAndRef(MR);
172   }
173   return ModRefInfo::NoModRef;
174 }
175 
176 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
177                                     const MemoryLocation &Loc) {
178   AAQueryInfo AAQIP;
179   return getModRefInfo(Call, Loc, AAQIP);
180 }
181 
182 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
183                                     const MemoryLocation &Loc,
184                                     AAQueryInfo &AAQI) {
185   ModRefInfo Result = ModRefInfo::ModRef;
186 
187   for (const auto &AA : AAs) {
188     Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI));
189 
190     // Early-exit the moment we reach the bottom of the lattice.
191     if (isNoModRef(Result))
192       return ModRefInfo::NoModRef;
193   }
194 
195   // Try to refine the mod-ref info further using other API entry points to the
196   // aggregate set of AA results.
197   auto MRB = getModRefBehavior(Call);
198   if (MRB == FMRB_DoesNotAccessMemory ||
199       MRB == FMRB_OnlyAccessesInaccessibleMem)
200     return ModRefInfo::NoModRef;
201 
202   if (onlyReadsMemory(MRB))
203     Result = clearMod(Result);
204   else if (doesNotReadMemory(MRB))
205     Result = clearRef(Result);
206 
207   if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
208     bool IsMustAlias = true;
209     ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
210     if (doesAccessArgPointees(MRB)) {
211       for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) {
212         const Value *Arg = *AI;
213         if (!Arg->getType()->isPointerTy())
214           continue;
215         unsigned ArgIdx = std::distance(Call->arg_begin(), AI);
216         MemoryLocation ArgLoc =
217             MemoryLocation::getForArgument(Call, ArgIdx, TLI);
218         AliasResult ArgAlias = alias(ArgLoc, Loc);
219         if (ArgAlias != NoAlias) {
220           ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
221           AllArgsMask = unionModRef(AllArgsMask, ArgMask);
222         }
223         // Conservatively clear IsMustAlias unless only MustAlias is found.
224         IsMustAlias &= (ArgAlias == MustAlias);
225       }
226     }
227     // Return NoModRef if no alias found with any argument.
228     if (isNoModRef(AllArgsMask))
229       return ModRefInfo::NoModRef;
230     // Logical & between other AA analyses and argument analysis.
231     Result = intersectModRef(Result, AllArgsMask);
232     // If only MustAlias found above, set Must bit.
233     Result = IsMustAlias ? setMust(Result) : clearMust(Result);
234   }
235 
236   // If Loc is a constant memory location, the call definitely could not
237   // modify the memory location.
238   if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false))
239     Result = clearMod(Result);
240 
241   return Result;
242 }
243 
244 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
245                                     const CallBase *Call2) {
246   AAQueryInfo AAQIP;
247   return getModRefInfo(Call1, Call2, AAQIP);
248 }
249 
250 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
251                                     const CallBase *Call2, AAQueryInfo &AAQI) {
252   ModRefInfo Result = ModRefInfo::ModRef;
253 
254   for (const auto &AA : AAs) {
255     Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI));
256 
257     // Early-exit the moment we reach the bottom of the lattice.
258     if (isNoModRef(Result))
259       return ModRefInfo::NoModRef;
260   }
261 
262   // Try to refine the mod-ref info further using other API entry points to the
263   // aggregate set of AA results.
264 
265   // If Call1 or Call2 are readnone, they don't interact.
266   auto Call1B = getModRefBehavior(Call1);
267   if (Call1B == FMRB_DoesNotAccessMemory)
268     return ModRefInfo::NoModRef;
269 
270   auto Call2B = getModRefBehavior(Call2);
271   if (Call2B == FMRB_DoesNotAccessMemory)
272     return ModRefInfo::NoModRef;
273 
274   // If they both only read from memory, there is no dependence.
275   if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
276     return ModRefInfo::NoModRef;
277 
278   // If Call1 only reads memory, the only dependence on Call2 can be
279   // from Call1 reading memory written by Call2.
280   if (onlyReadsMemory(Call1B))
281     Result = clearMod(Result);
282   else if (doesNotReadMemory(Call1B))
283     Result = clearRef(Result);
284 
285   // If Call2 only access memory through arguments, accumulate the mod/ref
286   // information from Call1's references to the memory referenced by
287   // Call2's arguments.
288   if (onlyAccessesArgPointees(Call2B)) {
289     if (!doesAccessArgPointees(Call2B))
290       return ModRefInfo::NoModRef;
291     ModRefInfo R = ModRefInfo::NoModRef;
292     bool IsMustAlias = true;
293     for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
294       const Value *Arg = *I;
295       if (!Arg->getType()->isPointerTy())
296         continue;
297       unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
298       auto Call2ArgLoc =
299           MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
300 
301       // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
302       // dependence of Call1 on that location is the inverse:
303       // - If Call2 modifies location, dependence exists if Call1 reads or
304       //   writes.
305       // - If Call2 only reads location, dependence exists if Call1 writes.
306       ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
307       ModRefInfo ArgMask = ModRefInfo::NoModRef;
308       if (isModSet(ArgModRefC2))
309         ArgMask = ModRefInfo::ModRef;
310       else if (isRefSet(ArgModRefC2))
311         ArgMask = ModRefInfo::Mod;
312 
313       // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
314       // above ArgMask to update dependence info.
315       ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc);
316       ArgMask = intersectModRef(ArgMask, ModRefC1);
317 
318       // Conservatively clear IsMustAlias unless only MustAlias is found.
319       IsMustAlias &= isMustSet(ModRefC1);
320 
321       R = intersectModRef(unionModRef(R, ArgMask), Result);
322       if (R == Result) {
323         // On early exit, not all args were checked, cannot set Must.
324         if (I + 1 != E)
325           IsMustAlias = false;
326         break;
327       }
328     }
329 
330     if (isNoModRef(R))
331       return ModRefInfo::NoModRef;
332 
333     // If MustAlias found above, set Must bit.
334     return IsMustAlias ? setMust(R) : clearMust(R);
335   }
336 
337   // If Call1 only accesses memory through arguments, check if Call2 references
338   // any of the memory referenced by Call1's arguments. If not, return NoModRef.
339   if (onlyAccessesArgPointees(Call1B)) {
340     if (!doesAccessArgPointees(Call1B))
341       return ModRefInfo::NoModRef;
342     ModRefInfo R = ModRefInfo::NoModRef;
343     bool IsMustAlias = true;
344     for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
345       const Value *Arg = *I;
346       if (!Arg->getType()->isPointerTy())
347         continue;
348       unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
349       auto Call1ArgLoc =
350           MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
351 
352       // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
353       // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
354       // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
355       ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
356       ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc);
357       if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
358           (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
359         R = intersectModRef(unionModRef(R, ArgModRefC1), Result);
360 
361       // Conservatively clear IsMustAlias unless only MustAlias is found.
362       IsMustAlias &= isMustSet(ModRefC2);
363 
364       if (R == Result) {
365         // On early exit, not all args were checked, cannot set Must.
366         if (I + 1 != E)
367           IsMustAlias = false;
368         break;
369       }
370     }
371 
372     if (isNoModRef(R))
373       return ModRefInfo::NoModRef;
374 
375     // If MustAlias found above, set Must bit.
376     return IsMustAlias ? setMust(R) : clearMust(R);
377   }
378 
379   return Result;
380 }
381 
382 FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
383   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
384 
385   for (const auto &AA : AAs) {
386     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));
387 
388     // Early-exit the moment we reach the bottom of the lattice.
389     if (Result == FMRB_DoesNotAccessMemory)
390       return Result;
391   }
392 
393   return Result;
394 }
395 
396 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
397   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
398 
399   for (const auto &AA : AAs) {
400     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
401 
402     // Early-exit the moment we reach the bottom of the lattice.
403     if (Result == FMRB_DoesNotAccessMemory)
404       return Result;
405   }
406 
407   return Result;
408 }
409 
410 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
411   switch (AR) {
412   case NoAlias:
413     OS << "NoAlias";
414     break;
415   case MustAlias:
416     OS << "MustAlias";
417     break;
418   case MayAlias:
419     OS << "MayAlias";
420     break;
421   case PartialAlias:
422     OS << "PartialAlias";
423     break;
424   }
425   return OS;
426 }
427 
428 //===----------------------------------------------------------------------===//
429 // Helper method implementation
430 //===----------------------------------------------------------------------===//
431 
432 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
433                                     const MemoryLocation &Loc) {
434   AAQueryInfo AAQIP;
435   return getModRefInfo(L, Loc, AAQIP);
436 }
437 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
438                                     const MemoryLocation &Loc,
439                                     AAQueryInfo &AAQI) {
440   // Be conservative in the face of atomic.
441   if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
442     return ModRefInfo::ModRef;
443 
444   // If the load address doesn't alias the given address, it doesn't read
445   // or write the specified memory.
446   if (Loc.Ptr) {
447     AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI);
448     if (AR == NoAlias)
449       return ModRefInfo::NoModRef;
450     if (AR == MustAlias)
451       return ModRefInfo::MustRef;
452   }
453   // Otherwise, a load just reads.
454   return ModRefInfo::Ref;
455 }
456 
457 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
458                                     const MemoryLocation &Loc) {
459   AAQueryInfo AAQIP;
460   return getModRefInfo(S, Loc, AAQIP);
461 }
462 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
463                                     const MemoryLocation &Loc,
464                                     AAQueryInfo &AAQI) {
465   // Be conservative in the face of atomic.
466   if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
467     return ModRefInfo::ModRef;
468 
469   if (Loc.Ptr) {
470     AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI);
471     // If the store address cannot alias the pointer in question, then the
472     // specified memory cannot be modified by the store.
473     if (AR == NoAlias)
474       return ModRefInfo::NoModRef;
475 
476     // If the pointer is a pointer to constant memory, then it could not have
477     // been modified by this store.
478     if (pointsToConstantMemory(Loc, AAQI))
479       return ModRefInfo::NoModRef;
480 
481     // If the store address aliases the pointer as must alias, set Must.
482     if (AR == MustAlias)
483       return ModRefInfo::MustMod;
484   }
485 
486   // Otherwise, a store just writes.
487   return ModRefInfo::Mod;
488 }
489 
490 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
491   AAQueryInfo AAQIP;
492   return getModRefInfo(S, Loc, AAQIP);
493 }
494 
495 ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
496                                     const MemoryLocation &Loc,
497                                     AAQueryInfo &AAQI) {
498   // If we know that the location is a constant memory location, the fence
499   // cannot modify this location.
500   if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI))
501     return ModRefInfo::Ref;
502   return ModRefInfo::ModRef;
503 }
504 
505 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
506                                     const MemoryLocation &Loc) {
507   AAQueryInfo AAQIP;
508   return getModRefInfo(V, Loc, AAQIP);
509 }
510 
511 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
512                                     const MemoryLocation &Loc,
513                                     AAQueryInfo &AAQI) {
514   if (Loc.Ptr) {
515     AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI);
516     // If the va_arg address cannot alias the pointer in question, then the
517     // specified memory cannot be accessed by the va_arg.
518     if (AR == NoAlias)
519       return ModRefInfo::NoModRef;
520 
521     // If the pointer is a pointer to constant memory, then it could not have
522     // been modified by this va_arg.
523     if (pointsToConstantMemory(Loc, AAQI))
524       return ModRefInfo::NoModRef;
525 
526     // If the va_arg aliases the pointer as must alias, set Must.
527     if (AR == MustAlias)
528       return ModRefInfo::MustModRef;
529   }
530 
531   // Otherwise, a va_arg reads and writes.
532   return ModRefInfo::ModRef;
533 }
534 
535 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
536                                     const MemoryLocation &Loc) {
537   AAQueryInfo AAQIP;
538   return getModRefInfo(CatchPad, Loc, AAQIP);
539 }
540 
541 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
542                                     const MemoryLocation &Loc,
543                                     AAQueryInfo &AAQI) {
544   if (Loc.Ptr) {
545     // If the pointer is a pointer to constant memory,
546     // then it could not have been modified by this catchpad.
547     if (pointsToConstantMemory(Loc, AAQI))
548       return ModRefInfo::NoModRef;
549   }
550 
551   // Otherwise, a catchpad reads and writes.
552   return ModRefInfo::ModRef;
553 }
554 
555 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
556                                     const MemoryLocation &Loc) {
557   AAQueryInfo AAQIP;
558   return getModRefInfo(CatchRet, Loc, AAQIP);
559 }
560 
561 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
562                                     const MemoryLocation &Loc,
563                                     AAQueryInfo &AAQI) {
564   if (Loc.Ptr) {
565     // If the pointer is a pointer to constant memory,
566     // then it could not have been modified by this catchpad.
567     if (pointsToConstantMemory(Loc, AAQI))
568       return ModRefInfo::NoModRef;
569   }
570 
571   // Otherwise, a catchret reads and writes.
572   return ModRefInfo::ModRef;
573 }
574 
575 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
576                                     const MemoryLocation &Loc) {
577   AAQueryInfo AAQIP;
578   return getModRefInfo(CX, Loc, AAQIP);
579 }
580 
581 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
582                                     const MemoryLocation &Loc,
583                                     AAQueryInfo &AAQI) {
584   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
585   if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
586     return ModRefInfo::ModRef;
587 
588   if (Loc.Ptr) {
589     AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI);
590     // If the cmpxchg address does not alias the location, it does not access
591     // it.
592     if (AR == NoAlias)
593       return ModRefInfo::NoModRef;
594 
595     // If the cmpxchg address aliases the pointer as must alias, set Must.
596     if (AR == MustAlias)
597       return ModRefInfo::MustModRef;
598   }
599 
600   return ModRefInfo::ModRef;
601 }
602 
603 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
604                                     const MemoryLocation &Loc) {
605   AAQueryInfo AAQIP;
606   return getModRefInfo(RMW, Loc, AAQIP);
607 }
608 
609 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
610                                     const MemoryLocation &Loc,
611                                     AAQueryInfo &AAQI) {
612   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
613   if (isStrongerThanMonotonic(RMW->getOrdering()))
614     return ModRefInfo::ModRef;
615 
616   if (Loc.Ptr) {
617     AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI);
618     // If the atomicrmw address does not alias the location, it does not access
619     // it.
620     if (AR == NoAlias)
621       return ModRefInfo::NoModRef;
622 
623     // If the atomicrmw address aliases the pointer as must alias, set Must.
624     if (AR == MustAlias)
625       return ModRefInfo::MustModRef;
626   }
627 
628   return ModRefInfo::ModRef;
629 }
630 
631 /// Return information about whether a particular call site modifies
632 /// or reads the specified memory location \p MemLoc before instruction \p I
633 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
634 /// instruction-ordering queries inside the BasicBlock containing \p I.
635 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
636 /// BasicAA isn't willing to spend linear time determining whether an alloca
637 /// was captured before or after this particular call, while we are. However,
638 /// with a smarter AA in place, this test is just wasting compile time.
639 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
640                                          const MemoryLocation &MemLoc,
641                                          DominatorTree *DT,
642                                          OrderedBasicBlock *OBB) {
643   if (!DT)
644     return ModRefInfo::ModRef;
645 
646   const Value *Object =
647       GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
648   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
649       isa<Constant>(Object))
650     return ModRefInfo::ModRef;
651 
652   const auto *Call = dyn_cast<CallBase>(I);
653   if (!Call || Call == Object)
654     return ModRefInfo::ModRef;
655 
656   if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
657                                  /* StoreCaptures */ true, I, DT,
658                                  /* include Object */ true,
659                                  /* OrderedBasicBlock */ OBB))
660     return ModRefInfo::ModRef;
661 
662   unsigned ArgNo = 0;
663   ModRefInfo R = ModRefInfo::NoModRef;
664   bool IsMustAlias = true;
665   // Set flag only if no May found and all operands processed.
666   for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
667        CI != CE; ++CI, ++ArgNo) {
668     // Only look at the no-capture or byval pointer arguments.  If this
669     // pointer were passed to arguments that were neither of these, then it
670     // couldn't be no-capture.
671     if (!(*CI)->getType()->isPointerTy() ||
672         (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() &&
673          !Call->isByValArgument(ArgNo)))
674       continue;
675 
676     AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
677     // If this is a no-capture pointer argument, see if we can tell that it
678     // is impossible to alias the pointer we're checking.  If not, we have to
679     // assume that the call could touch the pointer, even though it doesn't
680     // escape.
681     if (AR != MustAlias)
682       IsMustAlias = false;
683     if (AR == NoAlias)
684       continue;
685     if (Call->doesNotAccessMemory(ArgNo))
686       continue;
687     if (Call->onlyReadsMemory(ArgNo)) {
688       R = ModRefInfo::Ref;
689       continue;
690     }
691     // Not returning MustModRef since we have not seen all the arguments.
692     return ModRefInfo::ModRef;
693   }
694   return IsMustAlias ? setMust(R) : clearMust(R);
695 }
696 
697 /// canBasicBlockModify - Return true if it is possible for execution of the
698 /// specified basic block to modify the location Loc.
699 ///
700 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
701                                     const MemoryLocation &Loc) {
702   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
703 }
704 
705 /// canInstructionRangeModRef - Return true if it is possible for the
706 /// execution of the specified instructions to mod\ref (according to the
707 /// mode) the location Loc. The instructions to consider are all
708 /// of the instructions in the range of [I1,I2] INCLUSIVE.
709 /// I1 and I2 must be in the same basic block.
710 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
711                                           const Instruction &I2,
712                                           const MemoryLocation &Loc,
713                                           const ModRefInfo Mode) {
714   assert(I1.getParent() == I2.getParent() &&
715          "Instructions not in same basic block!");
716   BasicBlock::const_iterator I = I1.getIterator();
717   BasicBlock::const_iterator E = I2.getIterator();
718   ++E;  // Convert from inclusive to exclusive range.
719 
720   for (; I != E; ++I) // Check every instruction in range
721     if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
722       return true;
723   return false;
724 }
725 
726 // Provide a definition for the root virtual destructor.
727 AAResults::Concept::~Concept() = default;
728 
729 // Provide a definition for the static object used to identify passes.
730 AnalysisKey AAManager::Key;
731 
732 namespace {
733 
734 
735 } // end anonymous namespace
736 
737 char ExternalAAWrapperPass::ID = 0;
738 
739 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
740                 false, true)
741 
742 ImmutablePass *
743 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
744   return new ExternalAAWrapperPass(std::move(Callback));
745 }
746 
747 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
748   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
749 }
750 
751 char AAResultsWrapperPass::ID = 0;
752 
753 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
754                       "Function Alias Analysis Results", false, true)
755 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
756 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
757 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
758 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
759 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
760 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
761 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
762 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
763 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
764 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
765                     "Function Alias Analysis Results", false, true)
766 
767 FunctionPass *llvm::createAAResultsWrapperPass() {
768   return new AAResultsWrapperPass();
769 }
770 
771 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
772 ///
773 /// This is the legacy pass manager's interface to the new-style AA results
774 /// aggregation object. Because this is somewhat shoe-horned into the legacy
775 /// pass manager, we hard code all the specific alias analyses available into
776 /// it. While the particular set enabled is configured via commandline flags,
777 /// adding a new alias analysis to LLVM will require adding support for it to
778 /// this list.
779 bool AAResultsWrapperPass::runOnFunction(Function &F) {
780   // NB! This *must* be reset before adding new AA results to the new
781   // AAResults object because in the legacy pass manager, each instance
782   // of these will refer to the *same* immutable analyses, registering and
783   // unregistering themselves with them. We need to carefully tear down the
784   // previous object first, in this case replacing it with an empty one, before
785   // registering new results.
786   AAR.reset(
787       new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
788 
789   // BasicAA is always available for function analyses. Also, we add it first
790   // so that it can trump TBAA results when it proves MustAlias.
791   // FIXME: TBAA should have an explicit mode to support this and then we
792   // should reconsider the ordering here.
793   if (!DisableBasicAA)
794     AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
795 
796   // Populate the results with the currently available AAs.
797   if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
798     AAR->addAAResult(WrapperPass->getResult());
799   if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
800     AAR->addAAResult(WrapperPass->getResult());
801   if (auto *WrapperPass =
802           getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
803     AAR->addAAResult(WrapperPass->getResult());
804   if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
805     AAR->addAAResult(WrapperPass->getResult());
806   if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
807     AAR->addAAResult(WrapperPass->getResult());
808   if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
809     AAR->addAAResult(WrapperPass->getResult());
810   if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
811     AAR->addAAResult(WrapperPass->getResult());
812 
813   // If available, run an external AA providing callback over the results as
814   // well.
815   if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
816     if (WrapperPass->CB)
817       WrapperPass->CB(*this, F, *AAR);
818 
819   // Analyses don't mutate the IR, so return false.
820   return false;
821 }
822 
823 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
824   AU.setPreservesAll();
825   AU.addRequired<BasicAAWrapperPass>();
826   AU.addRequired<TargetLibraryInfoWrapperPass>();
827 
828   // We also need to mark all the alias analysis passes we will potentially
829   // probe in runOnFunction as used here to ensure the legacy pass manager
830   // preserves them. This hard coding of lists of alias analyses is specific to
831   // the legacy pass manager.
832   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
833   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
834   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
835   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
836   AU.addUsedIfAvailable<SCEVAAWrapperPass>();
837   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
838   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
839 }
840 
841 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
842                                         BasicAAResult &BAR) {
843   AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
844 
845   // Add in our explicitly constructed BasicAA results.
846   if (!DisableBasicAA)
847     AAR.addAAResult(BAR);
848 
849   // Populate the results with the other currently available AAs.
850   if (auto *WrapperPass =
851           P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
852     AAR.addAAResult(WrapperPass->getResult());
853   if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
854     AAR.addAAResult(WrapperPass->getResult());
855   if (auto *WrapperPass =
856           P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
857     AAR.addAAResult(WrapperPass->getResult());
858   if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
859     AAR.addAAResult(WrapperPass->getResult());
860   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
861     AAR.addAAResult(WrapperPass->getResult());
862   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
863     AAR.addAAResult(WrapperPass->getResult());
864 
865   return AAR;
866 }
867 
868 bool llvm::isNoAliasCall(const Value *V) {
869   if (const auto *Call = dyn_cast<CallBase>(V))
870     return Call->hasRetAttr(Attribute::NoAlias);
871   return false;
872 }
873 
874 bool llvm::isNoAliasArgument(const Value *V) {
875   if (const Argument *A = dyn_cast<Argument>(V))
876     return A->hasNoAliasAttr();
877   return false;
878 }
879 
880 bool llvm::isIdentifiedObject(const Value *V) {
881   if (isa<AllocaInst>(V))
882     return true;
883   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
884     return true;
885   if (isNoAliasCall(V))
886     return true;
887   if (const Argument *A = dyn_cast<Argument>(V))
888     return A->hasNoAliasAttr() || A->hasByValAttr();
889   return false;
890 }
891 
892 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
893   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
894 }
895 
896 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
897   // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
898   // more alias analyses are added to llvm::createLegacyPMAAResults, they need
899   // to be added here also.
900   AU.addRequired<TargetLibraryInfoWrapperPass>();
901   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
902   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
903   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
904   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
905   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
906   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
907 }
908