1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic AliasAnalysis interface which is used as the 10 // common interface used by all clients and implementations of alias analysis. 11 // 12 // This file also implements the default version of the AliasAnalysis interface 13 // that is to be used when no other implementation is specified. This does some 14 // simple tests that detect obvious cases: two different global pointers cannot 15 // alias, a global cannot alias a malloc, two different mallocs cannot alias, 16 // etc. 17 // 18 // This alias analysis implementation really isn't very good for anything, but 19 // it is very fast, and makes a nice clean default implementation. Because it 20 // handles lots of little corner cases, other, more complex, alias analysis 21 // implementations may choose to rely on this pass to resolve these simple and 22 // easy cases. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/Analysis/BasicAliasAnalysis.h" 29 #include "llvm/Analysis/CaptureTracking.h" 30 #include "llvm/Analysis/GlobalsModRef.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/ObjCARCAliasAnalysis.h" 33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 34 #include "llvm/Analysis/ScopedNoAliasAA.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/IR/Argument.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/Value.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/AtomicOrdering.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <functional> 53 #include <iterator> 54 55 #define DEBUG_TYPE "aa" 56 57 using namespace llvm; 58 59 STATISTIC(NumNoAlias, "Number of NoAlias results"); 60 STATISTIC(NumMayAlias, "Number of MayAlias results"); 61 STATISTIC(NumMustAlias, "Number of MustAlias results"); 62 63 namespace llvm { 64 /// Allow disabling BasicAA from the AA results. This is particularly useful 65 /// when testing to isolate a single AA implementation. 66 cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden, cl::init(false)); 67 } // namespace llvm 68 69 #ifndef NDEBUG 70 /// Print a trace of alias analysis queries and their results. 71 static cl::opt<bool> EnableAATrace("aa-trace", cl::Hidden, cl::init(false)); 72 #else 73 static const bool EnableAATrace = false; 74 #endif 75 76 AAResults::AAResults(AAResults &&Arg) 77 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {} 78 79 AAResults::~AAResults() {} 80 81 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA, 82 FunctionAnalysisManager::Invalidator &Inv) { 83 // AAResults preserves the AAManager by default, due to the stateless nature 84 // of AliasAnalysis. There is no need to check whether it has been preserved 85 // explicitly. Check if any module dependency was invalidated and caused the 86 // AAManager to be invalidated. Invalidate ourselves in that case. 87 auto PAC = PA.getChecker<AAManager>(); 88 if (!PAC.preservedWhenStateless()) 89 return true; 90 91 // Check if any of the function dependencies were invalidated, and invalidate 92 // ourselves in that case. 93 for (AnalysisKey *ID : AADeps) 94 if (Inv.invalidate(ID, F, PA)) 95 return true; 96 97 // Everything we depend on is still fine, so are we. Nothing to invalidate. 98 return false; 99 } 100 101 //===----------------------------------------------------------------------===// 102 // Default chaining methods 103 //===----------------------------------------------------------------------===// 104 105 AliasResult AAResults::alias(const MemoryLocation &LocA, 106 const MemoryLocation &LocB) { 107 SimpleAAQueryInfo AAQIP(*this); 108 return alias(LocA, LocB, AAQIP, nullptr); 109 } 110 111 AliasResult AAResults::alias(const MemoryLocation &LocA, 112 const MemoryLocation &LocB, AAQueryInfo &AAQI, 113 const Instruction *CtxI) { 114 AliasResult Result = AliasResult::MayAlias; 115 116 if (EnableAATrace) { 117 for (unsigned I = 0; I < AAQI.Depth; ++I) 118 dbgs() << " "; 119 dbgs() << "Start " << *LocA.Ptr << " @ " << LocA.Size << ", " 120 << *LocB.Ptr << " @ " << LocB.Size << "\n"; 121 } 122 123 AAQI.Depth++; 124 for (const auto &AA : AAs) { 125 Result = AA->alias(LocA, LocB, AAQI, CtxI); 126 if (Result != AliasResult::MayAlias) 127 break; 128 } 129 AAQI.Depth--; 130 131 if (EnableAATrace) { 132 for (unsigned I = 0; I < AAQI.Depth; ++I) 133 dbgs() << " "; 134 dbgs() << "End " << *LocA.Ptr << " @ " << LocA.Size << ", " 135 << *LocB.Ptr << " @ " << LocB.Size << " = " << Result << "\n"; 136 } 137 138 if (AAQI.Depth == 0) { 139 if (Result == AliasResult::NoAlias) 140 ++NumNoAlias; 141 else if (Result == AliasResult::MustAlias) 142 ++NumMustAlias; 143 else 144 ++NumMayAlias; 145 } 146 return Result; 147 } 148 149 ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc, 150 bool IgnoreLocals) { 151 SimpleAAQueryInfo AAQIP(*this); 152 return getModRefInfoMask(Loc, AAQIP, IgnoreLocals); 153 } 154 155 ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc, 156 AAQueryInfo &AAQI, bool IgnoreLocals) { 157 ModRefInfo Result = ModRefInfo::ModRef; 158 159 for (const auto &AA : AAs) { 160 Result &= AA->getModRefInfoMask(Loc, AAQI, IgnoreLocals); 161 162 // Early-exit the moment we reach the bottom of the lattice. 163 if (isNoModRef(Result)) 164 return ModRefInfo::NoModRef; 165 } 166 167 return Result; 168 } 169 170 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { 171 ModRefInfo Result = ModRefInfo::ModRef; 172 173 for (const auto &AA : AAs) { 174 Result &= AA->getArgModRefInfo(Call, ArgIdx); 175 176 // Early-exit the moment we reach the bottom of the lattice. 177 if (isNoModRef(Result)) 178 return ModRefInfo::NoModRef; 179 } 180 181 return Result; 182 } 183 184 ModRefInfo AAResults::getModRefInfo(const Instruction *I, 185 const CallBase *Call2) { 186 SimpleAAQueryInfo AAQIP(*this); 187 return getModRefInfo(I, Call2, AAQIP); 188 } 189 190 ModRefInfo AAResults::getModRefInfo(const Instruction *I, const CallBase *Call2, 191 AAQueryInfo &AAQI) { 192 // We may have two calls. 193 if (const auto *Call1 = dyn_cast<CallBase>(I)) { 194 // Check if the two calls modify the same memory. 195 return getModRefInfo(Call1, Call2, AAQI); 196 } 197 // If this is a fence, just return ModRef. 198 if (I->isFenceLike()) 199 return ModRefInfo::ModRef; 200 // Otherwise, check if the call modifies or references the 201 // location this memory access defines. The best we can say 202 // is that if the call references what this instruction 203 // defines, it must be clobbered by this location. 204 const MemoryLocation DefLoc = MemoryLocation::get(I); 205 ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI); 206 if (isModOrRefSet(MR)) 207 return ModRefInfo::ModRef; 208 return ModRefInfo::NoModRef; 209 } 210 211 ModRefInfo AAResults::getModRefInfo(const CallBase *Call, 212 const MemoryLocation &Loc, 213 AAQueryInfo &AAQI) { 214 ModRefInfo Result = ModRefInfo::ModRef; 215 216 for (const auto &AA : AAs) { 217 Result &= AA->getModRefInfo(Call, Loc, AAQI); 218 219 // Early-exit the moment we reach the bottom of the lattice. 220 if (isNoModRef(Result)) 221 return ModRefInfo::NoModRef; 222 } 223 224 // Try to refine the mod-ref info further using other API entry points to the 225 // aggregate set of AA results. 226 227 // We can completely ignore inaccessible memory here, because MemoryLocations 228 // can only reference accessible memory. 229 auto ME = getMemoryEffects(Call, AAQI) 230 .getWithoutLoc(IRMemLocation::InaccessibleMem); 231 if (ME.doesNotAccessMemory()) 232 return ModRefInfo::NoModRef; 233 234 ModRefInfo ArgMR = ME.getModRef(IRMemLocation::ArgMem); 235 ModRefInfo OtherMR = ME.getWithoutLoc(IRMemLocation::ArgMem).getModRef(); 236 if ((ArgMR | OtherMR) != OtherMR) { 237 // Refine the modref info for argument memory. We only bother to do this 238 // if ArgMR is not a subset of OtherMR, otherwise this won't have an impact 239 // on the final result. 240 ModRefInfo AllArgsMask = ModRefInfo::NoModRef; 241 for (const auto &I : llvm::enumerate(Call->args())) { 242 const Value *Arg = I.value(); 243 if (!Arg->getType()->isPointerTy()) 244 continue; 245 unsigned ArgIdx = I.index(); 246 MemoryLocation ArgLoc = MemoryLocation::getForArgument(Call, ArgIdx, TLI); 247 AliasResult ArgAlias = alias(ArgLoc, Loc, AAQI, Call); 248 if (ArgAlias != AliasResult::NoAlias) 249 AllArgsMask |= getArgModRefInfo(Call, ArgIdx); 250 } 251 ArgMR &= AllArgsMask; 252 } 253 254 Result &= ArgMR | OtherMR; 255 256 // Apply the ModRef mask. This ensures that if Loc is a constant memory 257 // location, we take into account the fact that the call definitely could not 258 // modify the memory location. 259 if (!isNoModRef(Result)) 260 Result &= getModRefInfoMask(Loc); 261 262 return Result; 263 } 264 265 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, 266 const CallBase *Call2, AAQueryInfo &AAQI) { 267 ModRefInfo Result = ModRefInfo::ModRef; 268 269 for (const auto &AA : AAs) { 270 Result &= AA->getModRefInfo(Call1, Call2, AAQI); 271 272 // Early-exit the moment we reach the bottom of the lattice. 273 if (isNoModRef(Result)) 274 return ModRefInfo::NoModRef; 275 } 276 277 // Try to refine the mod-ref info further using other API entry points to the 278 // aggregate set of AA results. 279 280 // If Call1 or Call2 are readnone, they don't interact. 281 auto Call1B = getMemoryEffects(Call1, AAQI); 282 if (Call1B.doesNotAccessMemory()) 283 return ModRefInfo::NoModRef; 284 285 auto Call2B = getMemoryEffects(Call2, AAQI); 286 if (Call2B.doesNotAccessMemory()) 287 return ModRefInfo::NoModRef; 288 289 // If they both only read from memory, there is no dependence. 290 if (Call1B.onlyReadsMemory() && Call2B.onlyReadsMemory()) 291 return ModRefInfo::NoModRef; 292 293 // If Call1 only reads memory, the only dependence on Call2 can be 294 // from Call1 reading memory written by Call2. 295 if (Call1B.onlyReadsMemory()) 296 Result &= ModRefInfo::Ref; 297 else if (Call1B.onlyWritesMemory()) 298 Result &= ModRefInfo::Mod; 299 300 // If Call2 only access memory through arguments, accumulate the mod/ref 301 // information from Call1's references to the memory referenced by 302 // Call2's arguments. 303 if (Call2B.onlyAccessesArgPointees()) { 304 if (!Call2B.doesAccessArgPointees()) 305 return ModRefInfo::NoModRef; 306 ModRefInfo R = ModRefInfo::NoModRef; 307 for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) { 308 const Value *Arg = *I; 309 if (!Arg->getType()->isPointerTy()) 310 continue; 311 unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I); 312 auto Call2ArgLoc = 313 MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI); 314 315 // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the 316 // dependence of Call1 on that location is the inverse: 317 // - If Call2 modifies location, dependence exists if Call1 reads or 318 // writes. 319 // - If Call2 only reads location, dependence exists if Call1 writes. 320 ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx); 321 ModRefInfo ArgMask = ModRefInfo::NoModRef; 322 if (isModSet(ArgModRefC2)) 323 ArgMask = ModRefInfo::ModRef; 324 else if (isRefSet(ArgModRefC2)) 325 ArgMask = ModRefInfo::Mod; 326 327 // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use 328 // above ArgMask to update dependence info. 329 ArgMask &= getModRefInfo(Call1, Call2ArgLoc, AAQI); 330 331 R = (R | ArgMask) & Result; 332 if (R == Result) 333 break; 334 } 335 336 return R; 337 } 338 339 // If Call1 only accesses memory through arguments, check if Call2 references 340 // any of the memory referenced by Call1's arguments. If not, return NoModRef. 341 if (Call1B.onlyAccessesArgPointees()) { 342 if (!Call1B.doesAccessArgPointees()) 343 return ModRefInfo::NoModRef; 344 ModRefInfo R = ModRefInfo::NoModRef; 345 for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) { 346 const Value *Arg = *I; 347 if (!Arg->getType()->isPointerTy()) 348 continue; 349 unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I); 350 auto Call1ArgLoc = 351 MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI); 352 353 // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1 354 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by 355 // Call2. If Call1 might Ref, then we care only about a Mod by Call2. 356 ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx); 357 ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc, AAQI); 358 if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) || 359 (isRefSet(ArgModRefC1) && isModSet(ModRefC2))) 360 R = (R | ArgModRefC1) & Result; 361 362 if (R == Result) 363 break; 364 } 365 366 return R; 367 } 368 369 return Result; 370 } 371 372 MemoryEffects AAResults::getMemoryEffects(const CallBase *Call, 373 AAQueryInfo &AAQI) { 374 MemoryEffects Result = MemoryEffects::unknown(); 375 376 for (const auto &AA : AAs) { 377 Result &= AA->getMemoryEffects(Call, AAQI); 378 379 // Early-exit the moment we reach the bottom of the lattice. 380 if (Result.doesNotAccessMemory()) 381 return Result; 382 } 383 384 return Result; 385 } 386 387 MemoryEffects AAResults::getMemoryEffects(const CallBase *Call) { 388 SimpleAAQueryInfo AAQI(*this); 389 return getMemoryEffects(Call, AAQI); 390 } 391 392 MemoryEffects AAResults::getMemoryEffects(const Function *F) { 393 MemoryEffects Result = MemoryEffects::unknown(); 394 395 for (const auto &AA : AAs) { 396 Result &= AA->getMemoryEffects(F); 397 398 // Early-exit the moment we reach the bottom of the lattice. 399 if (Result.doesNotAccessMemory()) 400 return Result; 401 } 402 403 return Result; 404 } 405 406 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) { 407 switch (AR) { 408 case AliasResult::NoAlias: 409 OS << "NoAlias"; 410 break; 411 case AliasResult::MustAlias: 412 OS << "MustAlias"; 413 break; 414 case AliasResult::MayAlias: 415 OS << "MayAlias"; 416 break; 417 case AliasResult::PartialAlias: 418 OS << "PartialAlias"; 419 if (AR.hasOffset()) 420 OS << " (off " << AR.getOffset() << ")"; 421 break; 422 } 423 return OS; 424 } 425 426 raw_ostream &llvm::operator<<(raw_ostream &OS, ModRefInfo MR) { 427 switch (MR) { 428 case ModRefInfo::NoModRef: 429 OS << "NoModRef"; 430 break; 431 case ModRefInfo::Ref: 432 OS << "Ref"; 433 break; 434 case ModRefInfo::Mod: 435 OS << "Mod"; 436 break; 437 case ModRefInfo::ModRef: 438 OS << "ModRef"; 439 break; 440 } 441 return OS; 442 } 443 444 raw_ostream &llvm::operator<<(raw_ostream &OS, MemoryEffects ME) { 445 for (IRMemLocation Loc : MemoryEffects::locations()) { 446 switch (Loc) { 447 case IRMemLocation::ArgMem: 448 OS << "ArgMem: "; 449 break; 450 case IRMemLocation::InaccessibleMem: 451 OS << "InaccessibleMem: "; 452 break; 453 case IRMemLocation::Other: 454 OS << "Other: "; 455 break; 456 } 457 OS << ME.getModRef(Loc) << ", "; 458 } 459 return OS; 460 } 461 462 //===----------------------------------------------------------------------===// 463 // Helper method implementation 464 //===----------------------------------------------------------------------===// 465 466 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 467 const MemoryLocation &Loc, 468 AAQueryInfo &AAQI) { 469 // Be conservative in the face of atomic. 470 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered)) 471 return ModRefInfo::ModRef; 472 473 // If the load address doesn't alias the given address, it doesn't read 474 // or write the specified memory. 475 if (Loc.Ptr) { 476 AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI, L); 477 if (AR == AliasResult::NoAlias) 478 return ModRefInfo::NoModRef; 479 } 480 // Otherwise, a load just reads. 481 return ModRefInfo::Ref; 482 } 483 484 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 485 const MemoryLocation &Loc, 486 AAQueryInfo &AAQI) { 487 // Be conservative in the face of atomic. 488 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered)) 489 return ModRefInfo::ModRef; 490 491 if (Loc.Ptr) { 492 AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI, S); 493 // If the store address cannot alias the pointer in question, then the 494 // specified memory cannot be modified by the store. 495 if (AR == AliasResult::NoAlias) 496 return ModRefInfo::NoModRef; 497 498 // Examine the ModRef mask. If Mod isn't present, then return NoModRef. 499 // This ensures that if Loc is a constant memory location, we take into 500 // account the fact that the store definitely could not modify the memory 501 // location. 502 if (!isModSet(getModRefInfoMask(Loc))) 503 return ModRefInfo::NoModRef; 504 } 505 506 // Otherwise, a store just writes. 507 return ModRefInfo::Mod; 508 } 509 510 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, 511 const MemoryLocation &Loc, 512 AAQueryInfo &AAQI) { 513 // All we know about a fence instruction is what we get from the ModRef 514 // mask: if Loc is a constant memory location, the fence definitely could 515 // not modify it. 516 if (Loc.Ptr) 517 return getModRefInfoMask(Loc); 518 return ModRefInfo::ModRef; 519 } 520 521 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 522 const MemoryLocation &Loc, 523 AAQueryInfo &AAQI) { 524 if (Loc.Ptr) { 525 AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI, V); 526 // If the va_arg address cannot alias the pointer in question, then the 527 // specified memory cannot be accessed by the va_arg. 528 if (AR == AliasResult::NoAlias) 529 return ModRefInfo::NoModRef; 530 531 // If the pointer is a pointer to invariant memory, then it could not have 532 // been modified by this va_arg. 533 return getModRefInfoMask(Loc, AAQI); 534 } 535 536 // Otherwise, a va_arg reads and writes. 537 return ModRefInfo::ModRef; 538 } 539 540 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 541 const MemoryLocation &Loc, 542 AAQueryInfo &AAQI) { 543 if (Loc.Ptr) { 544 // If the pointer is a pointer to invariant memory, 545 // then it could not have been modified by this catchpad. 546 return getModRefInfoMask(Loc, AAQI); 547 } 548 549 // Otherwise, a catchpad reads and writes. 550 return ModRefInfo::ModRef; 551 } 552 553 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 554 const MemoryLocation &Loc, 555 AAQueryInfo &AAQI) { 556 if (Loc.Ptr) { 557 // If the pointer is a pointer to invariant memory, 558 // then it could not have been modified by this catchpad. 559 return getModRefInfoMask(Loc, AAQI); 560 } 561 562 // Otherwise, a catchret reads and writes. 563 return ModRefInfo::ModRef; 564 } 565 566 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 567 const MemoryLocation &Loc, 568 AAQueryInfo &AAQI) { 569 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. 570 if (isStrongerThanMonotonic(CX->getSuccessOrdering())) 571 return ModRefInfo::ModRef; 572 573 if (Loc.Ptr) { 574 AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI, CX); 575 // If the cmpxchg address does not alias the location, it does not access 576 // it. 577 if (AR == AliasResult::NoAlias) 578 return ModRefInfo::NoModRef; 579 } 580 581 return ModRefInfo::ModRef; 582 } 583 584 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 585 const MemoryLocation &Loc, 586 AAQueryInfo &AAQI) { 587 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. 588 if (isStrongerThanMonotonic(RMW->getOrdering())) 589 return ModRefInfo::ModRef; 590 591 if (Loc.Ptr) { 592 AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI, RMW); 593 // If the atomicrmw address does not alias the location, it does not access 594 // it. 595 if (AR == AliasResult::NoAlias) 596 return ModRefInfo::NoModRef; 597 } 598 599 return ModRefInfo::ModRef; 600 } 601 602 ModRefInfo AAResults::getModRefInfo(const Instruction *I, 603 const std::optional<MemoryLocation> &OptLoc, 604 AAQueryInfo &AAQIP) { 605 if (OptLoc == std::nullopt) { 606 if (const auto *Call = dyn_cast<CallBase>(I)) 607 return getMemoryEffects(Call, AAQIP).getModRef(); 608 } 609 610 const MemoryLocation &Loc = OptLoc.value_or(MemoryLocation()); 611 612 switch (I->getOpcode()) { 613 case Instruction::VAArg: 614 return getModRefInfo((const VAArgInst *)I, Loc, AAQIP); 615 case Instruction::Load: 616 return getModRefInfo((const LoadInst *)I, Loc, AAQIP); 617 case Instruction::Store: 618 return getModRefInfo((const StoreInst *)I, Loc, AAQIP); 619 case Instruction::Fence: 620 return getModRefInfo((const FenceInst *)I, Loc, AAQIP); 621 case Instruction::AtomicCmpXchg: 622 return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP); 623 case Instruction::AtomicRMW: 624 return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP); 625 case Instruction::Call: 626 case Instruction::CallBr: 627 case Instruction::Invoke: 628 return getModRefInfo((const CallBase *)I, Loc, AAQIP); 629 case Instruction::CatchPad: 630 return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP); 631 case Instruction::CatchRet: 632 return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP); 633 default: 634 assert(!I->mayReadOrWriteMemory() && 635 "Unhandled memory access instruction!"); 636 return ModRefInfo::NoModRef; 637 } 638 } 639 640 /// Return information about whether a particular call site modifies 641 /// or reads the specified memory location \p MemLoc before instruction \p I 642 /// in a BasicBlock. 643 /// FIXME: this is really just shoring-up a deficiency in alias analysis. 644 /// BasicAA isn't willing to spend linear time determining whether an alloca 645 /// was captured before or after this particular call, while we are. However, 646 /// with a smarter AA in place, this test is just wasting compile time. 647 ModRefInfo AAResults::callCapturesBefore(const Instruction *I, 648 const MemoryLocation &MemLoc, 649 DominatorTree *DT, 650 AAQueryInfo &AAQI) { 651 if (!DT) 652 return ModRefInfo::ModRef; 653 654 const Value *Object = getUnderlyingObject(MemLoc.Ptr); 655 if (!isIdentifiedFunctionLocal(Object)) 656 return ModRefInfo::ModRef; 657 658 const auto *Call = dyn_cast<CallBase>(I); 659 if (!Call || Call == Object) 660 return ModRefInfo::ModRef; 661 662 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, 663 /* StoreCaptures */ true, I, DT, 664 /* include Object */ true)) 665 return ModRefInfo::ModRef; 666 667 unsigned ArgNo = 0; 668 ModRefInfo R = ModRefInfo::NoModRef; 669 // Set flag only if no May found and all operands processed. 670 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 671 CI != CE; ++CI, ++ArgNo) { 672 // Only look at the no-capture or byval pointer arguments. If this 673 // pointer were passed to arguments that were neither of these, then it 674 // couldn't be no-capture. 675 if (!(*CI)->getType()->isPointerTy() || 676 (!Call->doesNotCapture(ArgNo) && ArgNo < Call->arg_size() && 677 !Call->isByValArgument(ArgNo))) 678 continue; 679 680 AliasResult AR = 681 alias(MemoryLocation::getBeforeOrAfter(*CI), 682 MemoryLocation::getBeforeOrAfter(Object), AAQI, Call); 683 // If this is a no-capture pointer argument, see if we can tell that it 684 // is impossible to alias the pointer we're checking. If not, we have to 685 // assume that the call could touch the pointer, even though it doesn't 686 // escape. 687 if (AR == AliasResult::NoAlias) 688 continue; 689 if (Call->doesNotAccessMemory(ArgNo)) 690 continue; 691 if (Call->onlyReadsMemory(ArgNo)) { 692 R = ModRefInfo::Ref; 693 continue; 694 } 695 return ModRefInfo::ModRef; 696 } 697 return R; 698 } 699 700 /// canBasicBlockModify - Return true if it is possible for execution of the 701 /// specified basic block to modify the location Loc. 702 /// 703 bool AAResults::canBasicBlockModify(const BasicBlock &BB, 704 const MemoryLocation &Loc) { 705 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod); 706 } 707 708 /// canInstructionRangeModRef - Return true if it is possible for the 709 /// execution of the specified instructions to mod\ref (according to the 710 /// mode) the location Loc. The instructions to consider are all 711 /// of the instructions in the range of [I1,I2] INCLUSIVE. 712 /// I1 and I2 must be in the same basic block. 713 bool AAResults::canInstructionRangeModRef(const Instruction &I1, 714 const Instruction &I2, 715 const MemoryLocation &Loc, 716 const ModRefInfo Mode) { 717 assert(I1.getParent() == I2.getParent() && 718 "Instructions not in same basic block!"); 719 BasicBlock::const_iterator I = I1.getIterator(); 720 BasicBlock::const_iterator E = I2.getIterator(); 721 ++E; // Convert from inclusive to exclusive range. 722 723 for (; I != E; ++I) // Check every instruction in range 724 if (isModOrRefSet(getModRefInfo(&*I, Loc) & Mode)) 725 return true; 726 return false; 727 } 728 729 // Provide a definition for the root virtual destructor. 730 AAResults::Concept::~Concept() = default; 731 732 // Provide a definition for the static object used to identify passes. 733 AnalysisKey AAManager::Key; 734 735 ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) { 736 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 737 } 738 739 ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB) 740 : ImmutablePass(ID), CB(std::move(CB)) { 741 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 742 } 743 744 char ExternalAAWrapperPass::ID = 0; 745 746 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", 747 false, true) 748 749 ImmutablePass * 750 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { 751 return new ExternalAAWrapperPass(std::move(Callback)); 752 } 753 754 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { 755 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 756 } 757 758 char AAResultsWrapperPass::ID = 0; 759 760 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", 761 "Function Alias Analysis Results", false, true) 762 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 763 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) 764 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 765 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 766 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) 767 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) 768 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", 769 "Function Alias Analysis Results", false, true) 770 771 /// Run the wrapper pass to rebuild an aggregation over known AA passes. 772 /// 773 /// This is the legacy pass manager's interface to the new-style AA results 774 /// aggregation object. Because this is somewhat shoe-horned into the legacy 775 /// pass manager, we hard code all the specific alias analyses available into 776 /// it. While the particular set enabled is configured via commandline flags, 777 /// adding a new alias analysis to LLVM will require adding support for it to 778 /// this list. 779 bool AAResultsWrapperPass::runOnFunction(Function &F) { 780 // NB! This *must* be reset before adding new AA results to the new 781 // AAResults object because in the legacy pass manager, each instance 782 // of these will refer to the *same* immutable analyses, registering and 783 // unregistering themselves with them. We need to carefully tear down the 784 // previous object first, in this case replacing it with an empty one, before 785 // registering new results. 786 AAR.reset( 787 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F))); 788 789 // BasicAA is always available for function analyses. Also, we add it first 790 // so that it can trump TBAA results when it proves MustAlias. 791 // FIXME: TBAA should have an explicit mode to support this and then we 792 // should reconsider the ordering here. 793 if (!DisableBasicAA) 794 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); 795 796 // Populate the results with the currently available AAs. 797 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 798 AAR->addAAResult(WrapperPass->getResult()); 799 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 800 AAR->addAAResult(WrapperPass->getResult()); 801 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 802 AAR->addAAResult(WrapperPass->getResult()); 803 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) 804 AAR->addAAResult(WrapperPass->getResult()); 805 806 // If available, run an external AA providing callback over the results as 807 // well. 808 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>()) 809 if (WrapperPass->CB) 810 WrapperPass->CB(*this, F, *AAR); 811 812 // Analyses don't mutate the IR, so return false. 813 return false; 814 } 815 816 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 817 AU.setPreservesAll(); 818 AU.addRequiredTransitive<BasicAAWrapperPass>(); 819 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 820 821 // We also need to mark all the alias analysis passes we will potentially 822 // probe in runOnFunction as used here to ensure the legacy pass manager 823 // preserves them. This hard coding of lists of alias analyses is specific to 824 // the legacy pass manager. 825 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 826 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 827 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 828 AU.addUsedIfAvailable<SCEVAAWrapperPass>(); 829 AU.addUsedIfAvailable<ExternalAAWrapperPass>(); 830 } 831 832 AAManager::Result AAManager::run(Function &F, FunctionAnalysisManager &AM) { 833 Result R(AM.getResult<TargetLibraryAnalysis>(F)); 834 for (auto &Getter : ResultGetters) 835 (*Getter)(F, AM, R); 836 return R; 837 } 838 839 bool llvm::isNoAliasCall(const Value *V) { 840 if (const auto *Call = dyn_cast<CallBase>(V)) 841 return Call->hasRetAttr(Attribute::NoAlias); 842 return false; 843 } 844 845 static bool isNoAliasOrByValArgument(const Value *V) { 846 if (const Argument *A = dyn_cast<Argument>(V)) 847 return A->hasNoAliasAttr() || A->hasByValAttr(); 848 return false; 849 } 850 851 bool llvm::isIdentifiedObject(const Value *V) { 852 if (isa<AllocaInst>(V)) 853 return true; 854 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) 855 return true; 856 if (isNoAliasCall(V)) 857 return true; 858 if (isNoAliasOrByValArgument(V)) 859 return true; 860 return false; 861 } 862 863 bool llvm::isIdentifiedFunctionLocal(const Value *V) { 864 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasOrByValArgument(V); 865 } 866 867 bool llvm::isEscapeSource(const Value *V) { 868 if (auto *CB = dyn_cast<CallBase>(V)) 869 return !isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CB, 870 true); 871 872 // The load case works because isNonEscapingLocalObject considers all 873 // stores to be escapes (it passes true for the StoreCaptures argument 874 // to PointerMayBeCaptured). 875 if (isa<LoadInst>(V)) 876 return true; 877 878 // The inttoptr case works because isNonEscapingLocalObject considers all 879 // means of converting or equating a pointer to an int (ptrtoint, ptr store 880 // which could be followed by an integer load, ptr<->int compare) as 881 // escaping, and objects located at well-known addresses via platform-specific 882 // means cannot be considered non-escaping local objects. 883 if (isa<IntToPtrInst>(V)) 884 return true; 885 886 // Same for inttoptr constant expressions. 887 if (auto *CE = dyn_cast<ConstantExpr>(V)) 888 if (CE->getOpcode() == Instruction::IntToPtr) 889 return true; 890 891 return false; 892 } 893 894 bool llvm::isNotVisibleOnUnwind(const Value *Object, 895 bool &RequiresNoCaptureBeforeUnwind) { 896 RequiresNoCaptureBeforeUnwind = false; 897 898 // Alloca goes out of scope on unwind. 899 if (isa<AllocaInst>(Object)) 900 return true; 901 902 // Byval goes out of scope on unwind. 903 if (auto *A = dyn_cast<Argument>(Object)) 904 return A->hasByValAttr() || A->hasAttribute(Attribute::DeadOnUnwind); 905 906 // A noalias return is not accessible from any other code. If the pointer 907 // does not escape prior to the unwind, then the caller cannot access the 908 // memory either. 909 if (isNoAliasCall(Object)) { 910 RequiresNoCaptureBeforeUnwind = true; 911 return true; 912 } 913 914 return false; 915 } 916 917 // We don't consider globals as writable: While the physical memory is writable, 918 // we may not have provenance to perform the write. 919 bool llvm::isWritableObject(const Value *Object, 920 bool &ExplicitlyDereferenceableOnly) { 921 ExplicitlyDereferenceableOnly = false; 922 923 // TODO: Alloca might not be writable after its lifetime ends. 924 // See https://github.com/llvm/llvm-project/issues/51838. 925 if (isa<AllocaInst>(Object)) 926 return true; 927 928 if (auto *A = dyn_cast<Argument>(Object)) { 929 if (A->hasAttribute(Attribute::Writable)) { 930 ExplicitlyDereferenceableOnly = true; 931 return true; 932 } 933 934 return A->hasByValAttr(); 935 } 936 937 // TODO: Noalias shouldn't imply writability, this should check for an 938 // allocator function instead. 939 return isNoAliasCall(Object); 940 } 941