xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Transforms/Utils/Local.h (revision f126d349810fdb512c0b01e101342d430b947488)
1 //===- Local.h - Functions to perform local transformations -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
15 #define LLVM_TRANSFORMS_UTILS_LOCAL_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/Utils/Local.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/IR/User.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/IR/ValueHandle.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Transforms/Utils/SimplifyCFGOptions.h"
33 #include <cstdint>
34 #include <limits>
35 
36 namespace llvm {
37 
38 class AAResults;
39 class AllocaInst;
40 class AssumptionCache;
41 class BasicBlock;
42 class BranchInst;
43 class CallBase;
44 class CallInst;
45 class DbgVariableIntrinsic;
46 class DIBuilder;
47 class DomTreeUpdater;
48 class Function;
49 class Instruction;
50 class InvokeInst;
51 class LoadInst;
52 class MDNode;
53 class MemorySSAUpdater;
54 class PHINode;
55 class StoreInst;
56 class TargetLibraryInfo;
57 class TargetTransformInfo;
58 
59 //===----------------------------------------------------------------------===//
60 //  Local constant propagation.
61 //
62 
63 /// If a terminator instruction is predicated on a constant value, convert it
64 /// into an unconditional branch to the constant destination.
65 /// This is a nontrivial operation because the successors of this basic block
66 /// must have their PHI nodes updated.
67 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
68 /// conditions and indirectbr addresses this might make dead if
69 /// DeleteDeadConditions is true.
70 bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
71                             const TargetLibraryInfo *TLI = nullptr,
72                             DomTreeUpdater *DTU = nullptr);
73 
74 //===----------------------------------------------------------------------===//
75 //  Local dead code elimination.
76 //
77 
78 /// Return true if the result produced by the instruction is not used, and the
79 /// instruction will return. Certain side-effecting instructions are also
80 /// considered dead if there are no uses of the instruction.
81 bool isInstructionTriviallyDead(Instruction *I,
82                                 const TargetLibraryInfo *TLI = nullptr);
83 
84 /// Return true if the result produced by the instruction would have no side
85 /// effects if it was not used. This is equivalent to checking whether
86 /// isInstructionTriviallyDead would be true if the use count was 0.
87 bool wouldInstructionBeTriviallyDead(Instruction *I,
88                                      const TargetLibraryInfo *TLI = nullptr);
89 
90 /// Return true if the result produced by the instruction has no side effects on
91 /// any paths other than where it is used. This is less conservative than
92 /// wouldInstructionBeTriviallyDead which is based on the assumption
93 /// that the use count will be 0. An example usage of this API is for
94 /// identifying instructions that can be sunk down to use(s).
95 bool wouldInstructionBeTriviallyDeadOnUnusedPaths(
96     Instruction *I, const TargetLibraryInfo *TLI = nullptr);
97 
98 /// If the specified value is a trivially dead instruction, delete it.
99 /// If that makes any of its operands trivially dead, delete them too,
100 /// recursively. Return true if any instructions were deleted.
101 bool RecursivelyDeleteTriviallyDeadInstructions(
102     Value *V, const TargetLibraryInfo *TLI = nullptr,
103     MemorySSAUpdater *MSSAU = nullptr,
104     std::function<void(Value *)> AboutToDeleteCallback =
105         std::function<void(Value *)>());
106 
107 /// Delete all of the instructions in `DeadInsts`, and all other instructions
108 /// that deleting these in turn causes to be trivially dead.
109 ///
110 /// The initial instructions in the provided vector must all have empty use
111 /// lists and satisfy `isInstructionTriviallyDead`.
112 ///
113 /// `DeadInsts` will be used as scratch storage for this routine and will be
114 /// empty afterward.
115 void RecursivelyDeleteTriviallyDeadInstructions(
116     SmallVectorImpl<WeakTrackingVH> &DeadInsts,
117     const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr,
118     std::function<void(Value *)> AboutToDeleteCallback =
119         std::function<void(Value *)>());
120 
121 /// Same functionality as RecursivelyDeleteTriviallyDeadInstructions, but allow
122 /// instructions that are not trivially dead. These will be ignored.
123 /// Returns true if any changes were made, i.e. any instructions trivially dead
124 /// were found and deleted.
125 bool RecursivelyDeleteTriviallyDeadInstructionsPermissive(
126     SmallVectorImpl<WeakTrackingVH> &DeadInsts,
127     const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr,
128     std::function<void(Value *)> AboutToDeleteCallback =
129         std::function<void(Value *)>());
130 
131 /// If the specified value is an effectively dead PHI node, due to being a
132 /// def-use chain of single-use nodes that either forms a cycle or is terminated
133 /// by a trivially dead instruction, delete it. If that makes any of its
134 /// operands trivially dead, delete them too, recursively. Return true if a
135 /// change was made.
136 bool RecursivelyDeleteDeadPHINode(PHINode *PN,
137                                   const TargetLibraryInfo *TLI = nullptr,
138                                   MemorySSAUpdater *MSSAU = nullptr);
139 
140 /// Scan the specified basic block and try to simplify any instructions in it
141 /// and recursively delete dead instructions.
142 ///
143 /// This returns true if it changed the code, note that it can delete
144 /// instructions in other blocks as well in this block.
145 bool SimplifyInstructionsInBlock(BasicBlock *BB,
146                                  const TargetLibraryInfo *TLI = nullptr);
147 
148 /// Replace all the uses of an SSA value in @llvm.dbg intrinsics with
149 /// undef. This is useful for signaling that a variable, e.g. has been
150 /// found dead and hence it's unavailable at a given program point.
151 /// Returns true if the dbg values have been changed.
152 bool replaceDbgUsesWithUndef(Instruction *I);
153 
154 //===----------------------------------------------------------------------===//
155 //  Control Flow Graph Restructuring.
156 //
157 
158 /// BB is a block with one predecessor and its predecessor is known to have one
159 /// successor (BB!). Eliminate the edge between them, moving the instructions in
160 /// the predecessor into BB. This deletes the predecessor block.
161 void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
162 
163 /// BB is known to contain an unconditional branch, and contains no instructions
164 /// other than PHI nodes, potential debug intrinsics and the branch. If
165 /// possible, eliminate BB by rewriting all the predecessors to branch to the
166 /// successor block and return true. If we can't transform, return false.
167 bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
168                                              DomTreeUpdater *DTU = nullptr);
169 
170 /// Check for and eliminate duplicate PHI nodes in this block. This doesn't try
171 /// to be clever about PHI nodes which differ only in the order of the incoming
172 /// values, but instcombine orders them so it usually won't matter.
173 bool EliminateDuplicatePHINodes(BasicBlock *BB);
174 
175 /// This function is used to do simplification of a CFG.  For example, it
176 /// adjusts branches to branches to eliminate the extra hop, it eliminates
177 /// unreachable basic blocks, and does other peephole optimization of the CFG.
178 /// It returns true if a modification was made, possibly deleting the basic
179 /// block that was pointed to. LoopHeaders is an optional input parameter
180 /// providing the set of loop headers that SimplifyCFG should not eliminate.
181 extern cl::opt<bool> RequireAndPreserveDomTree;
182 bool simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
183                  DomTreeUpdater *DTU = nullptr,
184                  const SimplifyCFGOptions &Options = {},
185                  ArrayRef<WeakVH> LoopHeaders = {});
186 
187 /// This function is used to flatten a CFG. For example, it uses parallel-and
188 /// and parallel-or mode to collapse if-conditions and merge if-regions with
189 /// identical statements.
190 bool FlattenCFG(BasicBlock *BB, AAResults *AA = nullptr);
191 
192 /// If this basic block is ONLY a setcc and a branch, and if a predecessor
193 /// branches to us and one of our successors, fold the setcc into the
194 /// predecessor and use logical operations to pick the right destination.
195 bool FoldBranchToCommonDest(BranchInst *BI, llvm::DomTreeUpdater *DTU = nullptr,
196                             MemorySSAUpdater *MSSAU = nullptr,
197                             const TargetTransformInfo *TTI = nullptr,
198                             unsigned BonusInstThreshold = 1);
199 
200 /// This function takes a virtual register computed by an Instruction and
201 /// replaces it with a slot in the stack frame, allocated via alloca.
202 /// This allows the CFG to be changed around without fear of invalidating the
203 /// SSA information for the value. It returns the pointer to the alloca inserted
204 /// to create a stack slot for X.
205 AllocaInst *DemoteRegToStack(Instruction &X,
206                              bool VolatileLoads = false,
207                              Instruction *AllocaPoint = nullptr);
208 
209 /// This function takes a virtual register computed by a phi node and replaces
210 /// it with a slot in the stack frame, allocated via alloca. The phi node is
211 /// deleted and it returns the pointer to the alloca inserted.
212 AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);
213 
214 /// Try to ensure that the alignment of \p V is at least \p PrefAlign bytes. If
215 /// the owning object can be modified and has an alignment less than \p
216 /// PrefAlign, it will be increased and \p PrefAlign returned. If the alignment
217 /// cannot be increased, the known alignment of the value is returned.
218 ///
219 /// It is not always possible to modify the alignment of the underlying object,
220 /// so if alignment is important, a more reliable approach is to simply align
221 /// all global variables and allocation instructions to their preferred
222 /// alignment from the beginning.
223 Align getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
224                                  const DataLayout &DL,
225                                  const Instruction *CxtI = nullptr,
226                                  AssumptionCache *AC = nullptr,
227                                  const DominatorTree *DT = nullptr);
228 
229 /// Try to infer an alignment for the specified pointer.
230 inline Align getKnownAlignment(Value *V, const DataLayout &DL,
231                                const Instruction *CxtI = nullptr,
232                                AssumptionCache *AC = nullptr,
233                                const DominatorTree *DT = nullptr) {
234   return getOrEnforceKnownAlignment(V, MaybeAlign(), DL, CxtI, AC, DT);
235 }
236 
237 /// Create a call that matches the invoke \p II in terms of arguments,
238 /// attributes, debug information, etc. The call is not placed in a block and it
239 /// will not have a name. The invoke instruction is not removed, nor are the
240 /// uses replaced by the new call.
241 CallInst *createCallMatchingInvoke(InvokeInst *II);
242 
243 /// This function converts the specified invoek into a normall call.
244 CallInst *changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr);
245 
246 ///===---------------------------------------------------------------------===//
247 ///  Dbg Intrinsic utilities
248 ///
249 
250 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
251 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
252 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
253                                      StoreInst *SI, DIBuilder &Builder);
254 
255 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
256 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
257 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
258                                      LoadInst *LI, DIBuilder &Builder);
259 
260 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
261 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
262 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
263                                      PHINode *LI, DIBuilder &Builder);
264 
265 /// Lowers llvm.dbg.declare intrinsics into appropriate set of
266 /// llvm.dbg.value intrinsics.
267 bool LowerDbgDeclare(Function &F);
268 
269 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
270 void insertDebugValuesForPHIs(BasicBlock *BB,
271                               SmallVectorImpl<PHINode *> &InsertedPHIs);
272 
273 /// Replaces llvm.dbg.declare instruction when the address it
274 /// describes is replaced with a new value. If Deref is true, an
275 /// additional DW_OP_deref is prepended to the expression. If Offset
276 /// is non-zero, a constant displacement is added to the expression
277 /// (between the optional Deref operations). Offset can be negative.
278 bool replaceDbgDeclare(Value *Address, Value *NewAddress, DIBuilder &Builder,
279                        uint8_t DIExprFlags, int Offset);
280 
281 /// Replaces multiple llvm.dbg.value instructions when the alloca it describes
282 /// is replaced with a new value. If Offset is non-zero, a constant displacement
283 /// is added to the expression (after the mandatory Deref). Offset can be
284 /// negative. New llvm.dbg.value instructions are inserted at the locations of
285 /// the instructions they replace.
286 void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
287                               DIBuilder &Builder, int Offset = 0);
288 
289 /// Assuming the instruction \p I is going to be deleted, attempt to salvage
290 /// debug users of \p I by writing the effect of \p I in a DIExpression. If it
291 /// cannot be salvaged changes its debug uses to undef.
292 void salvageDebugInfo(Instruction &I);
293 
294 
295 /// Implementation of salvageDebugInfo, applying only to instructions in
296 /// \p Insns, rather than all debug users from findDbgUsers( \p I).
297 /// Returns true if any debug users were updated.
298 /// Mark undef if salvaging cannot be completed.
299 void salvageDebugInfoForDbgValues(Instruction &I,
300                                   ArrayRef<DbgVariableIntrinsic *> Insns);
301 
302 /// Given an instruction \p I and DIExpression \p DIExpr operating on
303 /// it, append the effects of \p I to the DIExpression operand list
304 /// \p Ops, or return \p nullptr if it cannot be salvaged.
305 /// \p CurrentLocOps is the number of SSA values referenced by the
306 /// incoming \p Ops.  \return the first non-constant operand
307 /// implicitly referred to by Ops. If \p I references more than one
308 /// non-constant operand, any additional operands are added to
309 /// \p AdditionalValues.
310 ///
311 /// \example
312 ////
313 ///   I = add %a, i32 1
314 ///
315 ///   Return = %a
316 ///   Ops = llvm::dwarf::DW_OP_lit1 llvm::dwarf::DW_OP_add
317 ///
318 ///   I = add %a, %b
319 ///
320 ///   Return = %a
321 ///   Ops = llvm::dwarf::DW_OP_LLVM_arg0 llvm::dwarf::DW_OP_add
322 ///   AdditionalValues = %b
323 Value *salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
324                             SmallVectorImpl<uint64_t> &Ops,
325                             SmallVectorImpl<Value *> &AdditionalValues);
326 
327 /// Point debug users of \p From to \p To or salvage them. Use this function
328 /// only when replacing all uses of \p From with \p To, with a guarantee that
329 /// \p From is going to be deleted.
330 ///
331 /// Follow these rules to prevent use-before-def of \p To:
332 ///   . If \p To is a linked Instruction, set \p DomPoint to \p To.
333 ///   . If \p To is an unlinked Instruction, set \p DomPoint to the Instruction
334 ///     \p To will be inserted after.
335 ///   . If \p To is not an Instruction (e.g a Constant), the choice of
336 ///     \p DomPoint is arbitrary. Pick \p From for simplicity.
337 ///
338 /// If a debug user cannot be preserved without reordering variable updates or
339 /// introducing a use-before-def, it is either salvaged (\ref salvageDebugInfo)
340 /// or deleted. Returns true if any debug users were updated.
341 bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint,
342                            DominatorTree &DT);
343 
344 /// Remove all instructions from a basic block other than its terminator
345 /// and any present EH pad instructions. Returns a pair where the first element
346 /// is the number of instructions (excluding debug info instrinsics) that have
347 /// been removed, and the second element is the number of debug info intrinsics
348 /// that have been removed.
349 std::pair<unsigned, unsigned>
350 removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB);
351 
352 /// Insert an unreachable instruction before the specified
353 /// instruction, making it and the rest of the code in the block dead.
354 unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA = false,
355                              DomTreeUpdater *DTU = nullptr,
356                              MemorySSAUpdater *MSSAU = nullptr);
357 
358 /// Convert the CallInst to InvokeInst with the specified unwind edge basic
359 /// block.  This also splits the basic block where CI is located, because
360 /// InvokeInst is a terminator instruction.  Returns the newly split basic
361 /// block.
362 BasicBlock *changeToInvokeAndSplitBasicBlock(CallInst *CI,
363                                              BasicBlock *UnwindEdge,
364                                              DomTreeUpdater *DTU = nullptr);
365 
366 /// Replace 'BB's terminator with one that does not have an unwind successor
367 /// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind
368 /// successor.
369 ///
370 /// \param BB  Block whose terminator will be replaced.  Its terminator must
371 ///            have an unwind successor.
372 void removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
373 
374 /// Remove all blocks that can not be reached from the function's entry.
375 ///
376 /// Returns true if any basic block was removed.
377 bool removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU = nullptr,
378                              MemorySSAUpdater *MSSAU = nullptr);
379 
380 /// Combine the metadata of two instructions so that K can replace J. Some
381 /// metadata kinds can only be kept if K does not move, meaning it dominated
382 /// J in the original IR.
383 ///
384 /// Metadata not listed as known via KnownIDs is removed
385 void combineMetadata(Instruction *K, const Instruction *J,
386                      ArrayRef<unsigned> KnownIDs, bool DoesKMove);
387 
388 /// Combine the metadata of two instructions so that K can replace J. This
389 /// specifically handles the case of CSE-like transformations. Some
390 /// metadata can only be kept if K dominates J. For this to be correct,
391 /// K cannot be hoisted.
392 ///
393 /// Unknown metadata is removed.
394 void combineMetadataForCSE(Instruction *K, const Instruction *J,
395                            bool DoesKMove);
396 
397 /// Copy the metadata from the source instruction to the destination (the
398 /// replacement for the source instruction).
399 void copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source);
400 
401 /// Patch the replacement so that it is not more restrictive than the value
402 /// being replaced. It assumes that the replacement does not get moved from
403 /// its original position.
404 void patchReplacementInstruction(Instruction *I, Value *Repl);
405 
406 // Replace each use of 'From' with 'To', if that use does not belong to basic
407 // block where 'From' is defined. Returns the number of replacements made.
408 unsigned replaceNonLocalUsesWith(Instruction *From, Value *To);
409 
410 /// Replace each use of 'From' with 'To' if that use is dominated by
411 /// the given edge.  Returns the number of replacements made.
412 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
413                                   const BasicBlockEdge &Edge);
414 /// Replace each use of 'From' with 'To' if that use is dominated by
415 /// the end of the given BasicBlock. Returns the number of replacements made.
416 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
417                                   const BasicBlock *BB);
418 
419 /// Return true if this call calls a gc leaf function.
420 ///
421 /// A leaf function is a function that does not safepoint the thread during its
422 /// execution.  During a call or invoke to such a function, the callers stack
423 /// does not have to be made parseable.
424 ///
425 /// Most passes can and should ignore this information, and it is only used
426 /// during lowering by the GC infrastructure.
427 bool callsGCLeafFunction(const CallBase *Call, const TargetLibraryInfo &TLI);
428 
429 /// Copy a nonnull metadata node to a new load instruction.
430 ///
431 /// This handles mapping it to range metadata if the new load is an integer
432 /// load instead of a pointer load.
433 void copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, LoadInst &NewLI);
434 
435 /// Copy a range metadata node to a new load instruction.
436 ///
437 /// This handles mapping it to nonnull metadata if the new load is a pointer
438 /// load instead of an integer load and the range doesn't cover null.
439 void copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, MDNode *N,
440                        LoadInst &NewLI);
441 
442 /// Remove the debug intrinsic instructions for the given instruction.
443 void dropDebugUsers(Instruction &I);
444 
445 /// Hoist all of the instructions in the \p IfBlock to the dominant block
446 /// \p DomBlock, by moving its instructions to the insertion point \p InsertPt.
447 ///
448 /// The moved instructions receive the insertion point debug location values
449 /// (DILocations) and their debug intrinsic instructions are removed.
450 void hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
451                               BasicBlock *BB);
452 
453 //===----------------------------------------------------------------------===//
454 //  Intrinsic pattern matching
455 //
456 
457 /// Try to match a bswap or bitreverse idiom.
458 ///
459 /// If an idiom is matched, an intrinsic call is inserted before \c I. Any added
460 /// instructions are returned in \c InsertedInsts. They will all have been added
461 /// to a basic block.
462 ///
463 /// A bitreverse idiom normally requires around 2*BW nodes to be searched (where
464 /// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up
465 /// to BW / 4 nodes to be searched, so is significantly faster.
466 ///
467 /// This function returns true on a successful match or false otherwise.
468 bool recognizeBSwapOrBitReverseIdiom(
469     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
470     SmallVectorImpl<Instruction *> &InsertedInsts);
471 
472 //===----------------------------------------------------------------------===//
473 //  Sanitizer utilities
474 //
475 
476 /// Given a CallInst, check if it calls a string function known to CodeGen,
477 /// and mark it with NoBuiltin if so.  To be used by sanitizers that intend
478 /// to intercept string functions and want to avoid converting them to target
479 /// specific instructions.
480 void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
481                                             const TargetLibraryInfo *TLI);
482 
483 //===----------------------------------------------------------------------===//
484 //  Transform predicates
485 //
486 
487 /// Given an instruction, is it legal to set operand OpIdx to a non-constant
488 /// value?
489 bool canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx);
490 
491 //===----------------------------------------------------------------------===//
492 //  Value helper functions
493 //
494 
495 /// Invert the given true/false value, possibly reusing an existing copy.
496 Value *invertCondition(Value *Condition);
497 
498 
499 //===----------------------------------------------------------------------===//
500 //  Assorted
501 //
502 
503 /// If we can infer one attribute from another on the declaration of a
504 /// function, explicitly materialize the maximal set in the IR.
505 bool inferAttributesFromOthers(Function &F);
506 
507 } // end namespace llvm
508 
509 #endif // LLVM_TRANSFORMS_UTILS_LOCAL_H
510