1 //===- Local.h - Functions to perform local transformations -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H 15 #define LLVM_TRANSFORMS_UTILS_LOCAL_H 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/Utils/Local.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/IR/User.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/IR/ValueHandle.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Transforms/Utils/SimplifyCFGOptions.h" 33 #include <cstdint> 34 #include <limits> 35 36 namespace llvm { 37 38 class AAResults; 39 class AllocaInst; 40 class AssumptionCache; 41 class BasicBlock; 42 class BranchInst; 43 class CallBase; 44 class CallInst; 45 class DbgDeclareInst; 46 class DbgVariableIntrinsic; 47 class DbgValueInst; 48 class DIBuilder; 49 class DomTreeUpdater; 50 class Function; 51 class Instruction; 52 class InvokeInst; 53 class LoadInst; 54 class MDNode; 55 class MemorySSAUpdater; 56 class PHINode; 57 class StoreInst; 58 class TargetLibraryInfo; 59 class TargetTransformInfo; 60 61 //===----------------------------------------------------------------------===// 62 // Local constant propagation. 63 // 64 65 /// If a terminator instruction is predicated on a constant value, convert it 66 /// into an unconditional branch to the constant destination. 67 /// This is a nontrivial operation because the successors of this basic block 68 /// must have their PHI nodes updated. 69 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 70 /// conditions and indirectbr addresses this might make dead if 71 /// DeleteDeadConditions is true. 72 bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false, 73 const TargetLibraryInfo *TLI = nullptr, 74 DomTreeUpdater *DTU = nullptr); 75 76 //===----------------------------------------------------------------------===// 77 // Local dead code elimination. 78 // 79 80 /// Return true if the result produced by the instruction is not used, and the 81 /// instruction has no side effects. 82 bool isInstructionTriviallyDead(Instruction *I, 83 const TargetLibraryInfo *TLI = nullptr); 84 85 /// Return true if the result produced by the instruction would have no side 86 /// effects if it was not used. This is equivalent to checking whether 87 /// isInstructionTriviallyDead would be true if the use count was 0. 88 bool wouldInstructionBeTriviallyDead(Instruction *I, 89 const TargetLibraryInfo *TLI = nullptr); 90 91 /// If the specified value is a trivially dead instruction, delete it. 92 /// If that makes any of its operands trivially dead, delete them too, 93 /// recursively. Return true if any instructions were deleted. 94 bool RecursivelyDeleteTriviallyDeadInstructions( 95 Value *V, const TargetLibraryInfo *TLI = nullptr, 96 MemorySSAUpdater *MSSAU = nullptr, 97 std::function<void(Value *)> AboutToDeleteCallback = 98 std::function<void(Value *)>()); 99 100 /// Delete all of the instructions in `DeadInsts`, and all other instructions 101 /// that deleting these in turn causes to be trivially dead. 102 /// 103 /// The initial instructions in the provided vector must all have empty use 104 /// lists and satisfy `isInstructionTriviallyDead`. 105 /// 106 /// `DeadInsts` will be used as scratch storage for this routine and will be 107 /// empty afterward. 108 void RecursivelyDeleteTriviallyDeadInstructions( 109 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 110 const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr, 111 std::function<void(Value *)> AboutToDeleteCallback = 112 std::function<void(Value *)>()); 113 114 /// Same functionality as RecursivelyDeleteTriviallyDeadInstructions, but allow 115 /// instructions that are not trivially dead. These will be ignored. 116 /// Returns true if any changes were made, i.e. any instructions trivially dead 117 /// were found and deleted. 118 bool RecursivelyDeleteTriviallyDeadInstructionsPermissive( 119 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 120 const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr, 121 std::function<void(Value *)> AboutToDeleteCallback = 122 std::function<void(Value *)>()); 123 124 /// If the specified value is an effectively dead PHI node, due to being a 125 /// def-use chain of single-use nodes that either forms a cycle or is terminated 126 /// by a trivially dead instruction, delete it. If that makes any of its 127 /// operands trivially dead, delete them too, recursively. Return true if a 128 /// change was made. 129 bool RecursivelyDeleteDeadPHINode(PHINode *PN, 130 const TargetLibraryInfo *TLI = nullptr, 131 MemorySSAUpdater *MSSAU = nullptr); 132 133 /// Scan the specified basic block and try to simplify any instructions in it 134 /// and recursively delete dead instructions. 135 /// 136 /// This returns true if it changed the code, note that it can delete 137 /// instructions in other blocks as well in this block. 138 bool SimplifyInstructionsInBlock(BasicBlock *BB, 139 const TargetLibraryInfo *TLI = nullptr); 140 141 /// Replace all the uses of an SSA value in @llvm.dbg intrinsics with 142 /// undef. This is useful for signaling that a variable, e.g. has been 143 /// found dead and hence it's unavailable at a given program point. 144 /// Returns true if the dbg values have been changed. 145 bool replaceDbgUsesWithUndef(Instruction *I); 146 147 //===----------------------------------------------------------------------===// 148 // Control Flow Graph Restructuring. 149 // 150 151 /// BB is a block with one predecessor and its predecessor is known to have one 152 /// successor (BB!). Eliminate the edge between them, moving the instructions in 153 /// the predecessor into BB. This deletes the predecessor block. 154 void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU = nullptr); 155 156 /// BB is known to contain an unconditional branch, and contains no instructions 157 /// other than PHI nodes, potential debug intrinsics and the branch. If 158 /// possible, eliminate BB by rewriting all the predecessors to branch to the 159 /// successor block and return true. If we can't transform, return false. 160 bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 161 DomTreeUpdater *DTU = nullptr); 162 163 /// Check for and eliminate duplicate PHI nodes in this block. This doesn't try 164 /// to be clever about PHI nodes which differ only in the order of the incoming 165 /// values, but instcombine orders them so it usually won't matter. 166 bool EliminateDuplicatePHINodes(BasicBlock *BB); 167 168 /// This function is used to do simplification of a CFG. For example, it 169 /// adjusts branches to branches to eliminate the extra hop, it eliminates 170 /// unreachable basic blocks, and does other peephole optimization of the CFG. 171 /// It returns true if a modification was made, possibly deleting the basic 172 /// block that was pointed to. LoopHeaders is an optional input parameter 173 /// providing the set of loop headers that SimplifyCFG should not eliminate. 174 extern cl::opt<bool> RequireAndPreserveDomTree; 175 bool simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 176 DomTreeUpdater *DTU = nullptr, 177 const SimplifyCFGOptions &Options = {}, 178 ArrayRef<WeakVH> LoopHeaders = {}); 179 180 /// This function is used to flatten a CFG. For example, it uses parallel-and 181 /// and parallel-or mode to collapse if-conditions and merge if-regions with 182 /// identical statements. 183 bool FlattenCFG(BasicBlock *BB, AAResults *AA = nullptr); 184 185 /// If this basic block is ONLY a setcc and a branch, and if a predecessor 186 /// branches to us and one of our successors, fold the setcc into the 187 /// predecessor and use logical operations to pick the right destination. 188 bool FoldBranchToCommonDest(BranchInst *BI, llvm::DomTreeUpdater *DTU = nullptr, 189 MemorySSAUpdater *MSSAU = nullptr, 190 const TargetTransformInfo *TTI = nullptr, 191 unsigned BonusInstThreshold = 1); 192 193 /// This function takes a virtual register computed by an Instruction and 194 /// replaces it with a slot in the stack frame, allocated via alloca. 195 /// This allows the CFG to be changed around without fear of invalidating the 196 /// SSA information for the value. It returns the pointer to the alloca inserted 197 /// to create a stack slot for X. 198 AllocaInst *DemoteRegToStack(Instruction &X, 199 bool VolatileLoads = false, 200 Instruction *AllocaPoint = nullptr); 201 202 /// This function takes a virtual register computed by a phi node and replaces 203 /// it with a slot in the stack frame, allocated via alloca. The phi node is 204 /// deleted and it returns the pointer to the alloca inserted. 205 AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr); 206 207 /// Try to ensure that the alignment of \p V is at least \p PrefAlign bytes. If 208 /// the owning object can be modified and has an alignment less than \p 209 /// PrefAlign, it will be increased and \p PrefAlign returned. If the alignment 210 /// cannot be increased, the known alignment of the value is returned. 211 /// 212 /// It is not always possible to modify the alignment of the underlying object, 213 /// so if alignment is important, a more reliable approach is to simply align 214 /// all global variables and allocation instructions to their preferred 215 /// alignment from the beginning. 216 Align getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 217 const DataLayout &DL, 218 const Instruction *CxtI = nullptr, 219 AssumptionCache *AC = nullptr, 220 const DominatorTree *DT = nullptr); 221 222 /// Try to infer an alignment for the specified pointer. 223 inline Align getKnownAlignment(Value *V, const DataLayout &DL, 224 const Instruction *CxtI = nullptr, 225 AssumptionCache *AC = nullptr, 226 const DominatorTree *DT = nullptr) { 227 return getOrEnforceKnownAlignment(V, MaybeAlign(), DL, CxtI, AC, DT); 228 } 229 230 /// Create a call that matches the invoke \p II in terms of arguments, 231 /// attributes, debug information, etc. The call is not placed in a block and it 232 /// will not have a name. The invoke instruction is not removed, nor are the 233 /// uses replaced by the new call. 234 CallInst *createCallMatchingInvoke(InvokeInst *II); 235 236 /// This function converts the specified invoek into a normall call. 237 void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr); 238 239 ///===---------------------------------------------------------------------===// 240 /// Dbg Intrinsic utilities 241 /// 242 243 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 244 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 245 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 246 StoreInst *SI, DIBuilder &Builder); 247 248 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 249 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 250 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 251 LoadInst *LI, DIBuilder &Builder); 252 253 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 254 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 255 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 256 PHINode *LI, DIBuilder &Builder); 257 258 /// Lowers llvm.dbg.declare intrinsics into appropriate set of 259 /// llvm.dbg.value intrinsics. 260 bool LowerDbgDeclare(Function &F); 261 262 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 263 void insertDebugValuesForPHIs(BasicBlock *BB, 264 SmallVectorImpl<PHINode *> &InsertedPHIs); 265 266 /// Replaces llvm.dbg.declare instruction when the address it 267 /// describes is replaced with a new value. If Deref is true, an 268 /// additional DW_OP_deref is prepended to the expression. If Offset 269 /// is non-zero, a constant displacement is added to the expression 270 /// (between the optional Deref operations). Offset can be negative. 271 bool replaceDbgDeclare(Value *Address, Value *NewAddress, DIBuilder &Builder, 272 uint8_t DIExprFlags, int Offset); 273 274 /// Replaces multiple llvm.dbg.value instructions when the alloca it describes 275 /// is replaced with a new value. If Offset is non-zero, a constant displacement 276 /// is added to the expression (after the mandatory Deref). Offset can be 277 /// negative. New llvm.dbg.value instructions are inserted at the locations of 278 /// the instructions they replace. 279 void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 280 DIBuilder &Builder, int Offset = 0); 281 282 /// Assuming the instruction \p I is going to be deleted, attempt to salvage 283 /// debug users of \p I by writing the effect of \p I in a DIExpression. If it 284 /// cannot be salvaged changes its debug uses to undef. 285 void salvageDebugInfo(Instruction &I); 286 287 288 /// Implementation of salvageDebugInfo, applying only to instructions in 289 /// \p Insns, rather than all debug users from findDbgUsers( \p I). 290 /// Returns true if any debug users were updated. 291 /// Mark undef if salvaging cannot be completed. 292 void salvageDebugInfoForDbgValues(Instruction &I, 293 ArrayRef<DbgVariableIntrinsic *> Insns); 294 295 /// Given an instruction \p I and DIExpression \p DIExpr operating on it, write 296 /// the effects of \p I into the returned DIExpression, or return nullptr if 297 /// it cannot be salvaged. \p StackVal: whether DW_OP_stack_value should be 298 /// appended to the expression. \p LocNo: the index of the location operand to 299 /// which \p I applies, should be 0 for debug info without a DIArgList. 300 DIExpression *salvageDebugInfoImpl(Instruction &I, DIExpression *DIExpr, 301 bool StackVal, unsigned LocNo, 302 SmallVectorImpl<Value *> &AdditionalValues); 303 304 /// Point debug users of \p From to \p To or salvage them. Use this function 305 /// only when replacing all uses of \p From with \p To, with a guarantee that 306 /// \p From is going to be deleted. 307 /// 308 /// Follow these rules to prevent use-before-def of \p To: 309 /// . If \p To is a linked Instruction, set \p DomPoint to \p To. 310 /// . If \p To is an unlinked Instruction, set \p DomPoint to the Instruction 311 /// \p To will be inserted after. 312 /// . If \p To is not an Instruction (e.g a Constant), the choice of 313 /// \p DomPoint is arbitrary. Pick \p From for simplicity. 314 /// 315 /// If a debug user cannot be preserved without reordering variable updates or 316 /// introducing a use-before-def, it is either salvaged (\ref salvageDebugInfo) 317 /// or deleted. Returns true if any debug users were updated. 318 bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, 319 DominatorTree &DT); 320 321 /// Remove all instructions from a basic block other than its terminator 322 /// and any present EH pad instructions. Returns a pair where the first element 323 /// is the number of instructions (excluding debug info instrinsics) that have 324 /// been removed, and the second element is the number of debug info intrinsics 325 /// that have been removed. 326 std::pair<unsigned, unsigned> 327 removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB); 328 329 /// Insert an unreachable instruction before the specified 330 /// instruction, making it and the rest of the code in the block dead. 331 unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA = false, 332 DomTreeUpdater *DTU = nullptr, 333 MemorySSAUpdater *MSSAU = nullptr); 334 335 /// Convert the CallInst to InvokeInst with the specified unwind edge basic 336 /// block. This also splits the basic block where CI is located, because 337 /// InvokeInst is a terminator instruction. Returns the newly split basic 338 /// block. 339 BasicBlock *changeToInvokeAndSplitBasicBlock(CallInst *CI, 340 BasicBlock *UnwindEdge, 341 DomTreeUpdater *DTU = nullptr); 342 343 /// Replace 'BB's terminator with one that does not have an unwind successor 344 /// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind 345 /// successor. 346 /// 347 /// \param BB Block whose terminator will be replaced. Its terminator must 348 /// have an unwind successor. 349 void removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU = nullptr); 350 351 /// Remove all blocks that can not be reached from the function's entry. 352 /// 353 /// Returns true if any basic block was removed. 354 bool removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU = nullptr, 355 MemorySSAUpdater *MSSAU = nullptr); 356 357 /// Combine the metadata of two instructions so that K can replace J. Some 358 /// metadata kinds can only be kept if K does not move, meaning it dominated 359 /// J in the original IR. 360 /// 361 /// Metadata not listed as known via KnownIDs is removed 362 void combineMetadata(Instruction *K, const Instruction *J, 363 ArrayRef<unsigned> KnownIDs, bool DoesKMove); 364 365 /// Combine the metadata of two instructions so that K can replace J. This 366 /// specifically handles the case of CSE-like transformations. Some 367 /// metadata can only be kept if K dominates J. For this to be correct, 368 /// K cannot be hoisted. 369 /// 370 /// Unknown metadata is removed. 371 void combineMetadataForCSE(Instruction *K, const Instruction *J, 372 bool DoesKMove); 373 374 /// Copy the metadata from the source instruction to the destination (the 375 /// replacement for the source instruction). 376 void copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source); 377 378 /// Patch the replacement so that it is not more restrictive than the value 379 /// being replaced. It assumes that the replacement does not get moved from 380 /// its original position. 381 void patchReplacementInstruction(Instruction *I, Value *Repl); 382 383 // Replace each use of 'From' with 'To', if that use does not belong to basic 384 // block where 'From' is defined. Returns the number of replacements made. 385 unsigned replaceNonLocalUsesWith(Instruction *From, Value *To); 386 387 /// Replace each use of 'From' with 'To' if that use is dominated by 388 /// the given edge. Returns the number of replacements made. 389 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT, 390 const BasicBlockEdge &Edge); 391 /// Replace each use of 'From' with 'To' if that use is dominated by 392 /// the end of the given BasicBlock. Returns the number of replacements made. 393 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT, 394 const BasicBlock *BB); 395 396 /// Return true if this call calls a gc leaf function. 397 /// 398 /// A leaf function is a function that does not safepoint the thread during its 399 /// execution. During a call or invoke to such a function, the callers stack 400 /// does not have to be made parseable. 401 /// 402 /// Most passes can and should ignore this information, and it is only used 403 /// during lowering by the GC infrastructure. 404 bool callsGCLeafFunction(const CallBase *Call, const TargetLibraryInfo &TLI); 405 406 /// Copy a nonnull metadata node to a new load instruction. 407 /// 408 /// This handles mapping it to range metadata if the new load is an integer 409 /// load instead of a pointer load. 410 void copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, LoadInst &NewLI); 411 412 /// Copy a range metadata node to a new load instruction. 413 /// 414 /// This handles mapping it to nonnull metadata if the new load is a pointer 415 /// load instead of an integer load and the range doesn't cover null. 416 void copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, MDNode *N, 417 LoadInst &NewLI); 418 419 /// Remove the debug intrinsic instructions for the given instruction. 420 void dropDebugUsers(Instruction &I); 421 422 /// Hoist all of the instructions in the \p IfBlock to the dominant block 423 /// \p DomBlock, by moving its instructions to the insertion point \p InsertPt. 424 /// 425 /// The moved instructions receive the insertion point debug location values 426 /// (DILocations) and their debug intrinsic instructions are removed. 427 void hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 428 BasicBlock *BB); 429 430 //===----------------------------------------------------------------------===// 431 // Intrinsic pattern matching 432 // 433 434 /// Try to match a bswap or bitreverse idiom. 435 /// 436 /// If an idiom is matched, an intrinsic call is inserted before \c I. Any added 437 /// instructions are returned in \c InsertedInsts. They will all have been added 438 /// to a basic block. 439 /// 440 /// A bitreverse idiom normally requires around 2*BW nodes to be searched (where 441 /// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up 442 /// to BW / 4 nodes to be searched, so is significantly faster. 443 /// 444 /// This function returns true on a successful match or false otherwise. 445 bool recognizeBSwapOrBitReverseIdiom( 446 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 447 SmallVectorImpl<Instruction *> &InsertedInsts); 448 449 //===----------------------------------------------------------------------===// 450 // Sanitizer utilities 451 // 452 453 /// Given a CallInst, check if it calls a string function known to CodeGen, 454 /// and mark it with NoBuiltin if so. To be used by sanitizers that intend 455 /// to intercept string functions and want to avoid converting them to target 456 /// specific instructions. 457 void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI, 458 const TargetLibraryInfo *TLI); 459 460 //===----------------------------------------------------------------------===// 461 // Transform predicates 462 // 463 464 /// Given an instruction, is it legal to set operand OpIdx to a non-constant 465 /// value? 466 bool canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx); 467 468 //===----------------------------------------------------------------------===// 469 // Value helper functions 470 // 471 472 /// Invert the given true/false value, possibly reusing an existing copy. 473 Value *invertCondition(Value *Condition); 474 475 476 //===----------------------------------------------------------------------===// 477 // Assorted 478 // 479 480 /// If we can infer one attribute from another on the declaration of a 481 /// function, explicitly materialize the maximal set in the IR. 482 bool inferAttributesFromOthers(Function &F); 483 484 } // end namespace llvm 485 486 #endif // LLVM_TRANSFORMS_UTILS_LOCAL_H 487