xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Transforms/Utils/Local.h (revision 7a6dacaca14b62ca4b74406814becb87a3fefac0)
1 //===- Local.h - Functions to perform local transformations -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
15 #define LLVM_TRANSFORMS_UTILS_LOCAL_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/IR/Dominators.h"
19 #include "llvm/Support/CommandLine.h"
20 #include "llvm/Transforms/Utils/SimplifyCFGOptions.h"
21 #include <cstdint>
22 
23 namespace llvm {
24 
25 class DataLayout;
26 class Value;
27 class WeakTrackingVH;
28 class WeakVH;
29 template <typename T> class SmallVectorImpl;
30 class AAResults;
31 class AllocaInst;
32 class AssumptionCache;
33 class BasicBlock;
34 class BranchInst;
35 class CallBase;
36 class CallInst;
37 class DbgVariableIntrinsic;
38 class DIBuilder;
39 class DomTreeUpdater;
40 class Function;
41 class Instruction;
42 class InvokeInst;
43 class LoadInst;
44 class MDNode;
45 class MemorySSAUpdater;
46 class PHINode;
47 class StoreInst;
48 class TargetLibraryInfo;
49 class TargetTransformInfo;
50 
51 //===----------------------------------------------------------------------===//
52 //  Local constant propagation.
53 //
54 
55 /// If a terminator instruction is predicated on a constant value, convert it
56 /// into an unconditional branch to the constant destination.
57 /// This is a nontrivial operation because the successors of this basic block
58 /// must have their PHI nodes updated.
59 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
60 /// conditions and indirectbr addresses this might make dead if
61 /// DeleteDeadConditions is true.
62 bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
63                             const TargetLibraryInfo *TLI = nullptr,
64                             DomTreeUpdater *DTU = nullptr);
65 
66 //===----------------------------------------------------------------------===//
67 //  Local dead code elimination.
68 //
69 
70 /// Return true if the result produced by the instruction is not used, and the
71 /// instruction will return. Certain side-effecting instructions are also
72 /// considered dead if there are no uses of the instruction.
73 bool isInstructionTriviallyDead(Instruction *I,
74                                 const TargetLibraryInfo *TLI = nullptr);
75 
76 /// Return true if the result produced by the instruction would have no side
77 /// effects if it was not used. This is equivalent to checking whether
78 /// isInstructionTriviallyDead would be true if the use count was 0.
79 bool wouldInstructionBeTriviallyDead(const Instruction *I,
80                                      const TargetLibraryInfo *TLI = nullptr);
81 
82 /// Return true if the result produced by the instruction has no side effects on
83 /// any paths other than where it is used. This is less conservative than
84 /// wouldInstructionBeTriviallyDead which is based on the assumption
85 /// that the use count will be 0. An example usage of this API is for
86 /// identifying instructions that can be sunk down to use(s).
87 bool wouldInstructionBeTriviallyDeadOnUnusedPaths(
88     Instruction *I, const TargetLibraryInfo *TLI = nullptr);
89 
90 /// If the specified value is a trivially dead instruction, delete it.
91 /// If that makes any of its operands trivially dead, delete them too,
92 /// recursively. Return true if any instructions were deleted.
93 bool RecursivelyDeleteTriviallyDeadInstructions(
94     Value *V, const TargetLibraryInfo *TLI = nullptr,
95     MemorySSAUpdater *MSSAU = nullptr,
96     std::function<void(Value *)> AboutToDeleteCallback =
97         std::function<void(Value *)>());
98 
99 /// Delete all of the instructions in `DeadInsts`, and all other instructions
100 /// that deleting these in turn causes to be trivially dead.
101 ///
102 /// The initial instructions in the provided vector must all have empty use
103 /// lists and satisfy `isInstructionTriviallyDead`.
104 ///
105 /// `DeadInsts` will be used as scratch storage for this routine and will be
106 /// empty afterward.
107 void RecursivelyDeleteTriviallyDeadInstructions(
108     SmallVectorImpl<WeakTrackingVH> &DeadInsts,
109     const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr,
110     std::function<void(Value *)> AboutToDeleteCallback =
111         std::function<void(Value *)>());
112 
113 /// Same functionality as RecursivelyDeleteTriviallyDeadInstructions, but allow
114 /// instructions that are not trivially dead. These will be ignored.
115 /// Returns true if any changes were made, i.e. any instructions trivially dead
116 /// were found and deleted.
117 bool RecursivelyDeleteTriviallyDeadInstructionsPermissive(
118     SmallVectorImpl<WeakTrackingVH> &DeadInsts,
119     const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr,
120     std::function<void(Value *)> AboutToDeleteCallback =
121         std::function<void(Value *)>());
122 
123 /// If the specified value is an effectively dead PHI node, due to being a
124 /// def-use chain of single-use nodes that either forms a cycle or is terminated
125 /// by a trivially dead instruction, delete it. If that makes any of its
126 /// operands trivially dead, delete them too, recursively. Return true if a
127 /// change was made.
128 bool RecursivelyDeleteDeadPHINode(PHINode *PN,
129                                   const TargetLibraryInfo *TLI = nullptr,
130                                   MemorySSAUpdater *MSSAU = nullptr);
131 
132 /// Scan the specified basic block and try to simplify any instructions in it
133 /// and recursively delete dead instructions.
134 ///
135 /// This returns true if it changed the code, note that it can delete
136 /// instructions in other blocks as well in this block.
137 bool SimplifyInstructionsInBlock(BasicBlock *BB,
138                                  const TargetLibraryInfo *TLI = nullptr);
139 
140 /// Replace all the uses of an SSA value in @llvm.dbg intrinsics with
141 /// undef. This is useful for signaling that a variable, e.g. has been
142 /// found dead and hence it's unavailable at a given program point.
143 /// Returns true if the dbg values have been changed.
144 bool replaceDbgUsesWithUndef(Instruction *I);
145 
146 //===----------------------------------------------------------------------===//
147 //  Control Flow Graph Restructuring.
148 //
149 
150 /// BB is a block with one predecessor and its predecessor is known to have one
151 /// successor (BB!). Eliminate the edge between them, moving the instructions in
152 /// the predecessor into BB. This deletes the predecessor block.
153 void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
154 
155 /// BB is known to contain an unconditional branch, and contains no instructions
156 /// other than PHI nodes, potential debug intrinsics and the branch. If
157 /// possible, eliminate BB by rewriting all the predecessors to branch to the
158 /// successor block and return true. If we can't transform, return false.
159 bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
160                                              DomTreeUpdater *DTU = nullptr);
161 
162 /// Check for and eliminate duplicate PHI nodes in this block. This doesn't try
163 /// to be clever about PHI nodes which differ only in the order of the incoming
164 /// values, but instcombine orders them so it usually won't matter.
165 ///
166 /// This overload removes the duplicate PHI nodes directly.
167 bool EliminateDuplicatePHINodes(BasicBlock *BB);
168 
169 /// Check for and eliminate duplicate PHI nodes in this block. This doesn't try
170 /// to be clever about PHI nodes which differ only in the order of the incoming
171 /// values, but instcombine orders them so it usually won't matter.
172 ///
173 /// This overload collects the PHI nodes to be removed into the ToRemove set.
174 bool EliminateDuplicatePHINodes(BasicBlock *BB,
175                                 SmallPtrSetImpl<PHINode *> &ToRemove);
176 
177 /// This function is used to do simplification of a CFG.  For example, it
178 /// adjusts branches to branches to eliminate the extra hop, it eliminates
179 /// unreachable basic blocks, and does other peephole optimization of the CFG.
180 /// It returns true if a modification was made, possibly deleting the basic
181 /// block that was pointed to. LoopHeaders is an optional input parameter
182 /// providing the set of loop headers that SimplifyCFG should not eliminate.
183 extern cl::opt<bool> RequireAndPreserveDomTree;
184 bool simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
185                  DomTreeUpdater *DTU = nullptr,
186                  const SimplifyCFGOptions &Options = {},
187                  ArrayRef<WeakVH> LoopHeaders = {});
188 
189 /// This function is used to flatten a CFG. For example, it uses parallel-and
190 /// and parallel-or mode to collapse if-conditions and merge if-regions with
191 /// identical statements.
192 bool FlattenCFG(BasicBlock *BB, AAResults *AA = nullptr);
193 
194 /// If this basic block is ONLY a setcc and a branch, and if a predecessor
195 /// branches to us and one of our successors, fold the setcc into the
196 /// predecessor and use logical operations to pick the right destination.
197 bool FoldBranchToCommonDest(BranchInst *BI, llvm::DomTreeUpdater *DTU = nullptr,
198                             MemorySSAUpdater *MSSAU = nullptr,
199                             const TargetTransformInfo *TTI = nullptr,
200                             unsigned BonusInstThreshold = 1);
201 
202 /// This function takes a virtual register computed by an Instruction and
203 /// replaces it with a slot in the stack frame, allocated via alloca.
204 /// This allows the CFG to be changed around without fear of invalidating the
205 /// SSA information for the value. It returns the pointer to the alloca inserted
206 /// to create a stack slot for X.
207 AllocaInst *DemoteRegToStack(Instruction &X,
208                              bool VolatileLoads = false,
209                              Instruction *AllocaPoint = nullptr);
210 
211 /// This function takes a virtual register computed by a phi node and replaces
212 /// it with a slot in the stack frame, allocated via alloca. The phi node is
213 /// deleted and it returns the pointer to the alloca inserted.
214 AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);
215 
216 /// If the specified pointer points to an object that we control, try to modify
217 /// the object's alignment to PrefAlign. Returns a minimum known alignment of
218 /// the value after the operation, which may be lower than PrefAlign.
219 ///
220 /// Increating value alignment isn't often possible though. If alignment is
221 /// important, a more reliable approach is to simply align all global variables
222 /// and allocation instructions to their preferred alignment from the beginning.
223 Align tryEnforceAlignment(Value *V, Align PrefAlign, const DataLayout &DL);
224 
225 /// Try to ensure that the alignment of \p V is at least \p PrefAlign bytes. If
226 /// the owning object can be modified and has an alignment less than \p
227 /// PrefAlign, it will be increased and \p PrefAlign returned. If the alignment
228 /// cannot be increased, the known alignment of the value is returned.
229 ///
230 /// It is not always possible to modify the alignment of the underlying object,
231 /// so if alignment is important, a more reliable approach is to simply align
232 /// all global variables and allocation instructions to their preferred
233 /// alignment from the beginning.
234 Align getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
235                                  const DataLayout &DL,
236                                  const Instruction *CxtI = nullptr,
237                                  AssumptionCache *AC = nullptr,
238                                  const DominatorTree *DT = nullptr);
239 
240 /// Try to infer an alignment for the specified pointer.
241 inline Align getKnownAlignment(Value *V, const DataLayout &DL,
242                                const Instruction *CxtI = nullptr,
243                                AssumptionCache *AC = nullptr,
244                                const DominatorTree *DT = nullptr) {
245   return getOrEnforceKnownAlignment(V, MaybeAlign(), DL, CxtI, AC, DT);
246 }
247 
248 /// Create a call that matches the invoke \p II in terms of arguments,
249 /// attributes, debug information, etc. The call is not placed in a block and it
250 /// will not have a name. The invoke instruction is not removed, nor are the
251 /// uses replaced by the new call.
252 CallInst *createCallMatchingInvoke(InvokeInst *II);
253 
254 /// This function converts the specified invoke into a normal call.
255 CallInst *changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr);
256 
257 ///===---------------------------------------------------------------------===//
258 ///  Dbg Intrinsic utilities
259 ///
260 
261 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
262 /// that has an associated llvm.dbg.declare intrinsic.
263 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
264                                      StoreInst *SI, DIBuilder &Builder);
265 void ConvertDebugDeclareToDebugValue(DPValue *DPV, StoreInst *SI,
266                                      DIBuilder &Builder);
267 
268 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
269 /// that has an associated llvm.dbg.declare intrinsic.
270 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
271                                      LoadInst *LI, DIBuilder &Builder);
272 void ConvertDebugDeclareToDebugValue(DPValue *DPV, LoadInst *LI,
273                                      DIBuilder &Builder);
274 
275 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
276 /// llvm.dbg.declare intrinsic.
277 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
278                                      PHINode *LI, DIBuilder &Builder);
279 void ConvertDebugDeclareToDebugValue(DPValue *DPV, PHINode *LI,
280                                      DIBuilder &Builder);
281 
282 /// Lowers llvm.dbg.declare intrinsics into appropriate set of
283 /// llvm.dbg.value intrinsics.
284 bool LowerDbgDeclare(Function &F);
285 
286 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
287 void insertDebugValuesForPHIs(BasicBlock *BB,
288                               SmallVectorImpl<PHINode *> &InsertedPHIs);
289 
290 /// Replaces llvm.dbg.declare instruction when the address it
291 /// describes is replaced with a new value. If Deref is true, an
292 /// additional DW_OP_deref is prepended to the expression. If Offset
293 /// is non-zero, a constant displacement is added to the expression
294 /// (between the optional Deref operations). Offset can be negative.
295 bool replaceDbgDeclare(Value *Address, Value *NewAddress, DIBuilder &Builder,
296                        uint8_t DIExprFlags, int Offset);
297 
298 /// Replaces multiple llvm.dbg.value instructions when the alloca it describes
299 /// is replaced with a new value. If Offset is non-zero, a constant displacement
300 /// is added to the expression (after the mandatory Deref). Offset can be
301 /// negative. New llvm.dbg.value instructions are inserted at the locations of
302 /// the instructions they replace.
303 void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
304                               DIBuilder &Builder, int Offset = 0);
305 
306 /// Assuming the instruction \p I is going to be deleted, attempt to salvage
307 /// debug users of \p I by writing the effect of \p I in a DIExpression. If it
308 /// cannot be salvaged changes its debug uses to undef.
309 void salvageDebugInfo(Instruction &I);
310 
311 /// Implementation of salvageDebugInfo, applying only to instructions in
312 /// \p Insns, rather than all debug users from findDbgUsers( \p I).
313 /// Mark undef if salvaging cannot be completed.
314 void salvageDebugInfoForDbgValues(Instruction &I,
315                                   ArrayRef<DbgVariableIntrinsic *> Insns,
316                                   ArrayRef<DPValue *> DPInsns);
317 
318 /// Given an instruction \p I and DIExpression \p DIExpr operating on
319 /// it, append the effects of \p I to the DIExpression operand list
320 /// \p Ops, or return \p nullptr if it cannot be salvaged.
321 /// \p CurrentLocOps is the number of SSA values referenced by the
322 /// incoming \p Ops.  \return the first non-constant operand
323 /// implicitly referred to by Ops. If \p I references more than one
324 /// non-constant operand, any additional operands are added to
325 /// \p AdditionalValues.
326 ///
327 /// \example
328 ////
329 ///   I = add %a, i32 1
330 ///
331 ///   Return = %a
332 ///   Ops = llvm::dwarf::DW_OP_lit1 llvm::dwarf::DW_OP_add
333 ///
334 ///   I = add %a, %b
335 ///
336 ///   Return = %a
337 ///   Ops = llvm::dwarf::DW_OP_LLVM_arg0 llvm::dwarf::DW_OP_add
338 ///   AdditionalValues = %b
339 Value *salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
340                             SmallVectorImpl<uint64_t> &Ops,
341                             SmallVectorImpl<Value *> &AdditionalValues);
342 
343 /// Point debug users of \p From to \p To or salvage them. Use this function
344 /// only when replacing all uses of \p From with \p To, with a guarantee that
345 /// \p From is going to be deleted.
346 ///
347 /// Follow these rules to prevent use-before-def of \p To:
348 ///   . If \p To is a linked Instruction, set \p DomPoint to \p To.
349 ///   . If \p To is an unlinked Instruction, set \p DomPoint to the Instruction
350 ///     \p To will be inserted after.
351 ///   . If \p To is not an Instruction (e.g a Constant), the choice of
352 ///     \p DomPoint is arbitrary. Pick \p From for simplicity.
353 ///
354 /// If a debug user cannot be preserved without reordering variable updates or
355 /// introducing a use-before-def, it is either salvaged (\ref salvageDebugInfo)
356 /// or deleted. Returns true if any debug users were updated.
357 bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint,
358                            DominatorTree &DT);
359 
360 /// Remove all instructions from a basic block other than its terminator
361 /// and any present EH pad instructions. Returns a pair where the first element
362 /// is the number of instructions (excluding debug info intrinsics) that have
363 /// been removed, and the second element is the number of debug info intrinsics
364 /// that have been removed.
365 std::pair<unsigned, unsigned>
366 removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB);
367 
368 /// Insert an unreachable instruction before the specified
369 /// instruction, making it and the rest of the code in the block dead.
370 unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA = false,
371                              DomTreeUpdater *DTU = nullptr,
372                              MemorySSAUpdater *MSSAU = nullptr);
373 
374 /// Convert the CallInst to InvokeInst with the specified unwind edge basic
375 /// block.  This also splits the basic block where CI is located, because
376 /// InvokeInst is a terminator instruction.  Returns the newly split basic
377 /// block.
378 BasicBlock *changeToInvokeAndSplitBasicBlock(CallInst *CI,
379                                              BasicBlock *UnwindEdge,
380                                              DomTreeUpdater *DTU = nullptr);
381 
382 /// Replace 'BB's terminator with one that does not have an unwind successor
383 /// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind
384 /// successor. Returns the instruction that replaced the original terminator,
385 /// which might be a call in case the original terminator was an invoke.
386 ///
387 /// \param BB  Block whose terminator will be replaced.  Its terminator must
388 ///            have an unwind successor.
389 Instruction *removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
390 
391 /// Remove all blocks that can not be reached from the function's entry.
392 ///
393 /// Returns true if any basic block was removed.
394 bool removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU = nullptr,
395                              MemorySSAUpdater *MSSAU = nullptr);
396 
397 /// Combine the metadata of two instructions so that K can replace J. Some
398 /// metadata kinds can only be kept if K does not move, meaning it dominated
399 /// J in the original IR.
400 ///
401 /// Metadata not listed as known via KnownIDs is removed
402 void combineMetadata(Instruction *K, const Instruction *J,
403                      ArrayRef<unsigned> KnownIDs, bool DoesKMove);
404 
405 /// Combine the metadata of two instructions so that K can replace J. This
406 /// specifically handles the case of CSE-like transformations. Some
407 /// metadata can only be kept if K dominates J. For this to be correct,
408 /// K cannot be hoisted.
409 ///
410 /// Unknown metadata is removed.
411 void combineMetadataForCSE(Instruction *K, const Instruction *J,
412                            bool DoesKMove);
413 
414 /// Copy the metadata from the source instruction to the destination (the
415 /// replacement for the source instruction).
416 void copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source);
417 
418 /// Patch the replacement so that it is not more restrictive than the value
419 /// being replaced. It assumes that the replacement does not get moved from
420 /// its original position.
421 void patchReplacementInstruction(Instruction *I, Value *Repl);
422 
423 // Replace each use of 'From' with 'To', if that use does not belong to basic
424 // block where 'From' is defined. Returns the number of replacements made.
425 unsigned replaceNonLocalUsesWith(Instruction *From, Value *To);
426 
427 /// Replace each use of 'From' with 'To' if that use is dominated by
428 /// the given edge.  Returns the number of replacements made.
429 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
430                                   const BasicBlockEdge &Edge);
431 /// Replace each use of 'From' with 'To' if that use is dominated by
432 /// the end of the given BasicBlock. Returns the number of replacements made.
433 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
434                                   const BasicBlock *BB);
435 
436 /// Return true if this call calls a gc leaf function.
437 ///
438 /// A leaf function is a function that does not safepoint the thread during its
439 /// execution.  During a call or invoke to such a function, the callers stack
440 /// does not have to be made parseable.
441 ///
442 /// Most passes can and should ignore this information, and it is only used
443 /// during lowering by the GC infrastructure.
444 bool callsGCLeafFunction(const CallBase *Call, const TargetLibraryInfo &TLI);
445 
446 /// Copy a nonnull metadata node to a new load instruction.
447 ///
448 /// This handles mapping it to range metadata if the new load is an integer
449 /// load instead of a pointer load.
450 void copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, LoadInst &NewLI);
451 
452 /// Copy a range metadata node to a new load instruction.
453 ///
454 /// This handles mapping it to nonnull metadata if the new load is a pointer
455 /// load instead of an integer load and the range doesn't cover null.
456 void copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, MDNode *N,
457                        LoadInst &NewLI);
458 
459 /// Remove the debug intrinsic instructions for the given instruction.
460 void dropDebugUsers(Instruction &I);
461 
462 /// Hoist all of the instructions in the \p IfBlock to the dominant block
463 /// \p DomBlock, by moving its instructions to the insertion point \p InsertPt.
464 ///
465 /// The moved instructions receive the insertion point debug location values
466 /// (DILocations) and their debug intrinsic instructions are removed.
467 void hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
468                               BasicBlock *BB);
469 
470 /// Given a constant, create a debug information expression.
471 DIExpression *getExpressionForConstant(DIBuilder &DIB, const Constant &C,
472                                        Type &Ty);
473 
474 //===----------------------------------------------------------------------===//
475 //  Intrinsic pattern matching
476 //
477 
478 /// Try to match a bswap or bitreverse idiom.
479 ///
480 /// If an idiom is matched, an intrinsic call is inserted before \c I. Any added
481 /// instructions are returned in \c InsertedInsts. They will all have been added
482 /// to a basic block.
483 ///
484 /// A bitreverse idiom normally requires around 2*BW nodes to be searched (where
485 /// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up
486 /// to BW / 4 nodes to be searched, so is significantly faster.
487 ///
488 /// This function returns true on a successful match or false otherwise.
489 bool recognizeBSwapOrBitReverseIdiom(
490     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
491     SmallVectorImpl<Instruction *> &InsertedInsts);
492 
493 //===----------------------------------------------------------------------===//
494 //  Sanitizer utilities
495 //
496 
497 /// Given a CallInst, check if it calls a string function known to CodeGen,
498 /// and mark it with NoBuiltin if so.  To be used by sanitizers that intend
499 /// to intercept string functions and want to avoid converting them to target
500 /// specific instructions.
501 void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
502                                             const TargetLibraryInfo *TLI);
503 
504 //===----------------------------------------------------------------------===//
505 //  Transform predicates
506 //
507 
508 /// Given an instruction, is it legal to set operand OpIdx to a non-constant
509 /// value?
510 bool canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx);
511 
512 //===----------------------------------------------------------------------===//
513 //  Value helper functions
514 //
515 
516 /// Invert the given true/false value, possibly reusing an existing copy.
517 Value *invertCondition(Value *Condition);
518 
519 
520 //===----------------------------------------------------------------------===//
521 //  Assorted
522 //
523 
524 /// If we can infer one attribute from another on the declaration of a
525 /// function, explicitly materialize the maximal set in the IR.
526 bool inferAttributesFromOthers(Function &F);
527 
528 } // end namespace llvm
529 
530 #endif // LLVM_TRANSFORMS_UTILS_LOCAL_H
531