1 //===- Local.h - Functions to perform local transformations -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H 15 #define LLVM_TRANSFORMS_UTILS_LOCAL_H 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/Utils/Local.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/IR/User.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/IR/ValueHandle.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Transforms/Utils/SimplifyCFGOptions.h" 33 #include <cstdint> 34 #include <limits> 35 36 namespace llvm { 37 38 class AAResults; 39 class AllocaInst; 40 class AssumptionCache; 41 class BasicBlock; 42 class BranchInst; 43 class CallBase; 44 class CallInst; 45 class DbgDeclareInst; 46 class DbgVariableIntrinsic; 47 class DbgValueInst; 48 class DIBuilder; 49 class DomTreeUpdater; 50 class Function; 51 class Instruction; 52 class InvokeInst; 53 class LoadInst; 54 class MDNode; 55 class MemorySSAUpdater; 56 class PHINode; 57 class StoreInst; 58 class TargetLibraryInfo; 59 class TargetTransformInfo; 60 61 //===----------------------------------------------------------------------===// 62 // Local constant propagation. 63 // 64 65 /// If a terminator instruction is predicated on a constant value, convert it 66 /// into an unconditional branch to the constant destination. 67 /// This is a nontrivial operation because the successors of this basic block 68 /// must have their PHI nodes updated. 69 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 70 /// conditions and indirectbr addresses this might make dead if 71 /// DeleteDeadConditions is true. 72 bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false, 73 const TargetLibraryInfo *TLI = nullptr, 74 DomTreeUpdater *DTU = nullptr); 75 76 //===----------------------------------------------------------------------===// 77 // Local dead code elimination. 78 // 79 80 /// Return true if the result produced by the instruction is not used, and the 81 /// instruction will return. Certain side-effecting instructions are also 82 /// considered dead if there are no uses of the instruction. 83 bool isInstructionTriviallyDead(Instruction *I, 84 const TargetLibraryInfo *TLI = nullptr); 85 86 /// Return true if the result produced by the instruction would have no side 87 /// effects if it was not used. This is equivalent to checking whether 88 /// isInstructionTriviallyDead would be true if the use count was 0. 89 bool wouldInstructionBeTriviallyDead(Instruction *I, 90 const TargetLibraryInfo *TLI = nullptr); 91 92 /// If the specified value is a trivially dead instruction, delete it. 93 /// If that makes any of its operands trivially dead, delete them too, 94 /// recursively. Return true if any instructions were deleted. 95 bool RecursivelyDeleteTriviallyDeadInstructions( 96 Value *V, const TargetLibraryInfo *TLI = nullptr, 97 MemorySSAUpdater *MSSAU = nullptr, 98 std::function<void(Value *)> AboutToDeleteCallback = 99 std::function<void(Value *)>()); 100 101 /// Delete all of the instructions in `DeadInsts`, and all other instructions 102 /// that deleting these in turn causes to be trivially dead. 103 /// 104 /// The initial instructions in the provided vector must all have empty use 105 /// lists and satisfy `isInstructionTriviallyDead`. 106 /// 107 /// `DeadInsts` will be used as scratch storage for this routine and will be 108 /// empty afterward. 109 void RecursivelyDeleteTriviallyDeadInstructions( 110 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 111 const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr, 112 std::function<void(Value *)> AboutToDeleteCallback = 113 std::function<void(Value *)>()); 114 115 /// Same functionality as RecursivelyDeleteTriviallyDeadInstructions, but allow 116 /// instructions that are not trivially dead. These will be ignored. 117 /// Returns true if any changes were made, i.e. any instructions trivially dead 118 /// were found and deleted. 119 bool RecursivelyDeleteTriviallyDeadInstructionsPermissive( 120 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 121 const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr, 122 std::function<void(Value *)> AboutToDeleteCallback = 123 std::function<void(Value *)>()); 124 125 /// If the specified value is an effectively dead PHI node, due to being a 126 /// def-use chain of single-use nodes that either forms a cycle or is terminated 127 /// by a trivially dead instruction, delete it. If that makes any of its 128 /// operands trivially dead, delete them too, recursively. Return true if a 129 /// change was made. 130 bool RecursivelyDeleteDeadPHINode(PHINode *PN, 131 const TargetLibraryInfo *TLI = nullptr, 132 MemorySSAUpdater *MSSAU = nullptr); 133 134 /// Scan the specified basic block and try to simplify any instructions in it 135 /// and recursively delete dead instructions. 136 /// 137 /// This returns true if it changed the code, note that it can delete 138 /// instructions in other blocks as well in this block. 139 bool SimplifyInstructionsInBlock(BasicBlock *BB, 140 const TargetLibraryInfo *TLI = nullptr); 141 142 /// Replace all the uses of an SSA value in @llvm.dbg intrinsics with 143 /// undef. This is useful for signaling that a variable, e.g. has been 144 /// found dead and hence it's unavailable at a given program point. 145 /// Returns true if the dbg values have been changed. 146 bool replaceDbgUsesWithUndef(Instruction *I); 147 148 //===----------------------------------------------------------------------===// 149 // Control Flow Graph Restructuring. 150 // 151 152 /// BB is a block with one predecessor and its predecessor is known to have one 153 /// successor (BB!). Eliminate the edge between them, moving the instructions in 154 /// the predecessor into BB. This deletes the predecessor block. 155 void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU = nullptr); 156 157 /// BB is known to contain an unconditional branch, and contains no instructions 158 /// other than PHI nodes, potential debug intrinsics and the branch. If 159 /// possible, eliminate BB by rewriting all the predecessors to branch to the 160 /// successor block and return true. If we can't transform, return false. 161 bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 162 DomTreeUpdater *DTU = nullptr); 163 164 /// Check for and eliminate duplicate PHI nodes in this block. This doesn't try 165 /// to be clever about PHI nodes which differ only in the order of the incoming 166 /// values, but instcombine orders them so it usually won't matter. 167 bool EliminateDuplicatePHINodes(BasicBlock *BB); 168 169 /// This function is used to do simplification of a CFG. For example, it 170 /// adjusts branches to branches to eliminate the extra hop, it eliminates 171 /// unreachable basic blocks, and does other peephole optimization of the CFG. 172 /// It returns true if a modification was made, possibly deleting the basic 173 /// block that was pointed to. LoopHeaders is an optional input parameter 174 /// providing the set of loop headers that SimplifyCFG should not eliminate. 175 extern cl::opt<bool> RequireAndPreserveDomTree; 176 bool simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 177 DomTreeUpdater *DTU = nullptr, 178 const SimplifyCFGOptions &Options = {}, 179 ArrayRef<WeakVH> LoopHeaders = {}); 180 181 /// This function is used to flatten a CFG. For example, it uses parallel-and 182 /// and parallel-or mode to collapse if-conditions and merge if-regions with 183 /// identical statements. 184 bool FlattenCFG(BasicBlock *BB, AAResults *AA = nullptr); 185 186 /// If this basic block is ONLY a setcc and a branch, and if a predecessor 187 /// branches to us and one of our successors, fold the setcc into the 188 /// predecessor and use logical operations to pick the right destination. 189 bool FoldBranchToCommonDest(BranchInst *BI, llvm::DomTreeUpdater *DTU = nullptr, 190 MemorySSAUpdater *MSSAU = nullptr, 191 const TargetTransformInfo *TTI = nullptr, 192 unsigned BonusInstThreshold = 1); 193 194 /// This function takes a virtual register computed by an Instruction and 195 /// replaces it with a slot in the stack frame, allocated via alloca. 196 /// This allows the CFG to be changed around without fear of invalidating the 197 /// SSA information for the value. It returns the pointer to the alloca inserted 198 /// to create a stack slot for X. 199 AllocaInst *DemoteRegToStack(Instruction &X, 200 bool VolatileLoads = false, 201 Instruction *AllocaPoint = nullptr); 202 203 /// This function takes a virtual register computed by a phi node and replaces 204 /// it with a slot in the stack frame, allocated via alloca. The phi node is 205 /// deleted and it returns the pointer to the alloca inserted. 206 AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr); 207 208 /// Try to ensure that the alignment of \p V is at least \p PrefAlign bytes. If 209 /// the owning object can be modified and has an alignment less than \p 210 /// PrefAlign, it will be increased and \p PrefAlign returned. If the alignment 211 /// cannot be increased, the known alignment of the value is returned. 212 /// 213 /// It is not always possible to modify the alignment of the underlying object, 214 /// so if alignment is important, a more reliable approach is to simply align 215 /// all global variables and allocation instructions to their preferred 216 /// alignment from the beginning. 217 Align getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 218 const DataLayout &DL, 219 const Instruction *CxtI = nullptr, 220 AssumptionCache *AC = nullptr, 221 const DominatorTree *DT = nullptr); 222 223 /// Try to infer an alignment for the specified pointer. 224 inline Align getKnownAlignment(Value *V, const DataLayout &DL, 225 const Instruction *CxtI = nullptr, 226 AssumptionCache *AC = nullptr, 227 const DominatorTree *DT = nullptr) { 228 return getOrEnforceKnownAlignment(V, MaybeAlign(), DL, CxtI, AC, DT); 229 } 230 231 /// Create a call that matches the invoke \p II in terms of arguments, 232 /// attributes, debug information, etc. The call is not placed in a block and it 233 /// will not have a name. The invoke instruction is not removed, nor are the 234 /// uses replaced by the new call. 235 CallInst *createCallMatchingInvoke(InvokeInst *II); 236 237 /// This function converts the specified invoek into a normall call. 238 void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr); 239 240 ///===---------------------------------------------------------------------===// 241 /// Dbg Intrinsic utilities 242 /// 243 244 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 245 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 246 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 247 StoreInst *SI, DIBuilder &Builder); 248 249 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 250 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 251 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 252 LoadInst *LI, DIBuilder &Builder); 253 254 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 255 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 256 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 257 PHINode *LI, DIBuilder &Builder); 258 259 /// Lowers llvm.dbg.declare intrinsics into appropriate set of 260 /// llvm.dbg.value intrinsics. 261 bool LowerDbgDeclare(Function &F); 262 263 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 264 void insertDebugValuesForPHIs(BasicBlock *BB, 265 SmallVectorImpl<PHINode *> &InsertedPHIs); 266 267 /// Replaces llvm.dbg.declare instruction when the address it 268 /// describes is replaced with a new value. If Deref is true, an 269 /// additional DW_OP_deref is prepended to the expression. If Offset 270 /// is non-zero, a constant displacement is added to the expression 271 /// (between the optional Deref operations). Offset can be negative. 272 bool replaceDbgDeclare(Value *Address, Value *NewAddress, DIBuilder &Builder, 273 uint8_t DIExprFlags, int Offset); 274 275 /// Replaces multiple llvm.dbg.value instructions when the alloca it describes 276 /// is replaced with a new value. If Offset is non-zero, a constant displacement 277 /// is added to the expression (after the mandatory Deref). Offset can be 278 /// negative. New llvm.dbg.value instructions are inserted at the locations of 279 /// the instructions they replace. 280 void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 281 DIBuilder &Builder, int Offset = 0); 282 283 /// Assuming the instruction \p I is going to be deleted, attempt to salvage 284 /// debug users of \p I by writing the effect of \p I in a DIExpression. If it 285 /// cannot be salvaged changes its debug uses to undef. 286 void salvageDebugInfo(Instruction &I); 287 288 289 /// Implementation of salvageDebugInfo, applying only to instructions in 290 /// \p Insns, rather than all debug users from findDbgUsers( \p I). 291 /// Returns true if any debug users were updated. 292 /// Mark undef if salvaging cannot be completed. 293 void salvageDebugInfoForDbgValues(Instruction &I, 294 ArrayRef<DbgVariableIntrinsic *> Insns); 295 296 /// Given an instruction \p I and DIExpression \p DIExpr operating on 297 /// it, append the effects of \p I to the DIExpression operand list 298 /// \p Ops, or return \p nullptr if it cannot be salvaged. 299 /// \p CurrentLocOps is the number of SSA values referenced by the 300 /// incoming \p Ops. \return the first non-constant operand 301 /// implicitly referred to by Ops. If \p I references more than one 302 /// non-constant operand, any additional operands are added to 303 /// \p AdditionalValues. 304 /// 305 /// \example 306 //// 307 /// I = add %a, i32 1 308 /// 309 /// Return = %a 310 /// Ops = llvm::dwarf::DW_OP_lit1 llvm::dwarf::DW_OP_add 311 /// 312 /// I = add %a, %b 313 /// 314 /// Return = %a 315 /// Ops = llvm::dwarf::DW_OP_LLVM_arg0 llvm::dwarf::DW_OP_add 316 /// AdditionalValues = %b 317 Value *salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 318 SmallVectorImpl<uint64_t> &Ops, 319 SmallVectorImpl<Value *> &AdditionalValues); 320 321 /// Point debug users of \p From to \p To or salvage them. Use this function 322 /// only when replacing all uses of \p From with \p To, with a guarantee that 323 /// \p From is going to be deleted. 324 /// 325 /// Follow these rules to prevent use-before-def of \p To: 326 /// . If \p To is a linked Instruction, set \p DomPoint to \p To. 327 /// . If \p To is an unlinked Instruction, set \p DomPoint to the Instruction 328 /// \p To will be inserted after. 329 /// . If \p To is not an Instruction (e.g a Constant), the choice of 330 /// \p DomPoint is arbitrary. Pick \p From for simplicity. 331 /// 332 /// If a debug user cannot be preserved without reordering variable updates or 333 /// introducing a use-before-def, it is either salvaged (\ref salvageDebugInfo) 334 /// or deleted. Returns true if any debug users were updated. 335 bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, 336 DominatorTree &DT); 337 338 /// Remove all instructions from a basic block other than its terminator 339 /// and any present EH pad instructions. Returns a pair where the first element 340 /// is the number of instructions (excluding debug info instrinsics) that have 341 /// been removed, and the second element is the number of debug info intrinsics 342 /// that have been removed. 343 std::pair<unsigned, unsigned> 344 removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB); 345 346 /// Insert an unreachable instruction before the specified 347 /// instruction, making it and the rest of the code in the block dead. 348 unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA = false, 349 DomTreeUpdater *DTU = nullptr, 350 MemorySSAUpdater *MSSAU = nullptr); 351 352 /// Convert the CallInst to InvokeInst with the specified unwind edge basic 353 /// block. This also splits the basic block where CI is located, because 354 /// InvokeInst is a terminator instruction. Returns the newly split basic 355 /// block. 356 BasicBlock *changeToInvokeAndSplitBasicBlock(CallInst *CI, 357 BasicBlock *UnwindEdge, 358 DomTreeUpdater *DTU = nullptr); 359 360 /// Replace 'BB's terminator with one that does not have an unwind successor 361 /// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind 362 /// successor. 363 /// 364 /// \param BB Block whose terminator will be replaced. Its terminator must 365 /// have an unwind successor. 366 void removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU = nullptr); 367 368 /// Remove all blocks that can not be reached from the function's entry. 369 /// 370 /// Returns true if any basic block was removed. 371 bool removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU = nullptr, 372 MemorySSAUpdater *MSSAU = nullptr); 373 374 /// Combine the metadata of two instructions so that K can replace J. Some 375 /// metadata kinds can only be kept if K does not move, meaning it dominated 376 /// J in the original IR. 377 /// 378 /// Metadata not listed as known via KnownIDs is removed 379 void combineMetadata(Instruction *K, const Instruction *J, 380 ArrayRef<unsigned> KnownIDs, bool DoesKMove); 381 382 /// Combine the metadata of two instructions so that K can replace J. This 383 /// specifically handles the case of CSE-like transformations. Some 384 /// metadata can only be kept if K dominates J. For this to be correct, 385 /// K cannot be hoisted. 386 /// 387 /// Unknown metadata is removed. 388 void combineMetadataForCSE(Instruction *K, const Instruction *J, 389 bool DoesKMove); 390 391 /// Copy the metadata from the source instruction to the destination (the 392 /// replacement for the source instruction). 393 void copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source); 394 395 /// Patch the replacement so that it is not more restrictive than the value 396 /// being replaced. It assumes that the replacement does not get moved from 397 /// its original position. 398 void patchReplacementInstruction(Instruction *I, Value *Repl); 399 400 // Replace each use of 'From' with 'To', if that use does not belong to basic 401 // block where 'From' is defined. Returns the number of replacements made. 402 unsigned replaceNonLocalUsesWith(Instruction *From, Value *To); 403 404 /// Replace each use of 'From' with 'To' if that use is dominated by 405 /// the given edge. Returns the number of replacements made. 406 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT, 407 const BasicBlockEdge &Edge); 408 /// Replace each use of 'From' with 'To' if that use is dominated by 409 /// the end of the given BasicBlock. Returns the number of replacements made. 410 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT, 411 const BasicBlock *BB); 412 413 /// Return true if this call calls a gc leaf function. 414 /// 415 /// A leaf function is a function that does not safepoint the thread during its 416 /// execution. During a call or invoke to such a function, the callers stack 417 /// does not have to be made parseable. 418 /// 419 /// Most passes can and should ignore this information, and it is only used 420 /// during lowering by the GC infrastructure. 421 bool callsGCLeafFunction(const CallBase *Call, const TargetLibraryInfo &TLI); 422 423 /// Copy a nonnull metadata node to a new load instruction. 424 /// 425 /// This handles mapping it to range metadata if the new load is an integer 426 /// load instead of a pointer load. 427 void copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, LoadInst &NewLI); 428 429 /// Copy a range metadata node to a new load instruction. 430 /// 431 /// This handles mapping it to nonnull metadata if the new load is a pointer 432 /// load instead of an integer load and the range doesn't cover null. 433 void copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, MDNode *N, 434 LoadInst &NewLI); 435 436 /// Remove the debug intrinsic instructions for the given instruction. 437 void dropDebugUsers(Instruction &I); 438 439 /// Hoist all of the instructions in the \p IfBlock to the dominant block 440 /// \p DomBlock, by moving its instructions to the insertion point \p InsertPt. 441 /// 442 /// The moved instructions receive the insertion point debug location values 443 /// (DILocations) and their debug intrinsic instructions are removed. 444 void hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 445 BasicBlock *BB); 446 447 //===----------------------------------------------------------------------===// 448 // Intrinsic pattern matching 449 // 450 451 /// Try to match a bswap or bitreverse idiom. 452 /// 453 /// If an idiom is matched, an intrinsic call is inserted before \c I. Any added 454 /// instructions are returned in \c InsertedInsts. They will all have been added 455 /// to a basic block. 456 /// 457 /// A bitreverse idiom normally requires around 2*BW nodes to be searched (where 458 /// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up 459 /// to BW / 4 nodes to be searched, so is significantly faster. 460 /// 461 /// This function returns true on a successful match or false otherwise. 462 bool recognizeBSwapOrBitReverseIdiom( 463 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 464 SmallVectorImpl<Instruction *> &InsertedInsts); 465 466 //===----------------------------------------------------------------------===// 467 // Sanitizer utilities 468 // 469 470 /// Given a CallInst, check if it calls a string function known to CodeGen, 471 /// and mark it with NoBuiltin if so. To be used by sanitizers that intend 472 /// to intercept string functions and want to avoid converting them to target 473 /// specific instructions. 474 void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI, 475 const TargetLibraryInfo *TLI); 476 477 //===----------------------------------------------------------------------===// 478 // Transform predicates 479 // 480 481 /// Given an instruction, is it legal to set operand OpIdx to a non-constant 482 /// value? 483 bool canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx); 484 485 //===----------------------------------------------------------------------===// 486 // Value helper functions 487 // 488 489 /// Invert the given true/false value, possibly reusing an existing copy. 490 Value *invertCondition(Value *Condition); 491 492 493 //===----------------------------------------------------------------------===// 494 // Assorted 495 // 496 497 /// If we can infer one attribute from another on the declaration of a 498 /// function, explicitly materialize the maximal set in the IR. 499 bool inferAttributesFromOthers(Function &F); 500 501 } // end namespace llvm 502 503 #endif // LLVM_TRANSFORMS_UTILS_LOCAL_H 504