xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Transforms/Utils/Local.h (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===- Local.h - Functions to perform local transformations -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
15 #define LLVM_TRANSFORMS_UTILS_LOCAL_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/Utils/Local.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/IR/User.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/IR/ValueHandle.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Transforms/Utils/SimplifyCFGOptions.h"
33 #include <cstdint>
34 #include <limits>
35 
36 namespace llvm {
37 
38 class AAResults;
39 class AllocaInst;
40 class AssumptionCache;
41 class BasicBlock;
42 class BranchInst;
43 class CallBase;
44 class CallInst;
45 class DbgDeclareInst;
46 class DbgVariableIntrinsic;
47 class DbgValueInst;
48 class DIBuilder;
49 class DomTreeUpdater;
50 class Function;
51 class Instruction;
52 class InvokeInst;
53 class LoadInst;
54 class MDNode;
55 class MemorySSAUpdater;
56 class PHINode;
57 class StoreInst;
58 class TargetLibraryInfo;
59 class TargetTransformInfo;
60 
61 //===----------------------------------------------------------------------===//
62 //  Local constant propagation.
63 //
64 
65 /// If a terminator instruction is predicated on a constant value, convert it
66 /// into an unconditional branch to the constant destination.
67 /// This is a nontrivial operation because the successors of this basic block
68 /// must have their PHI nodes updated.
69 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
70 /// conditions and indirectbr addresses this might make dead if
71 /// DeleteDeadConditions is true.
72 bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
73                             const TargetLibraryInfo *TLI = nullptr,
74                             DomTreeUpdater *DTU = nullptr);
75 
76 //===----------------------------------------------------------------------===//
77 //  Local dead code elimination.
78 //
79 
80 /// Return true if the result produced by the instruction is not used, and the
81 /// instruction will return. Certain side-effecting instructions are also
82 /// considered dead if there are no uses of the instruction.
83 bool isInstructionTriviallyDead(Instruction *I,
84                                 const TargetLibraryInfo *TLI = nullptr);
85 
86 /// Return true if the result produced by the instruction would have no side
87 /// effects if it was not used. This is equivalent to checking whether
88 /// isInstructionTriviallyDead would be true if the use count was 0.
89 bool wouldInstructionBeTriviallyDead(Instruction *I,
90                                      const TargetLibraryInfo *TLI = nullptr);
91 
92 /// If the specified value is a trivially dead instruction, delete it.
93 /// If that makes any of its operands trivially dead, delete them too,
94 /// recursively. Return true if any instructions were deleted.
95 bool RecursivelyDeleteTriviallyDeadInstructions(
96     Value *V, const TargetLibraryInfo *TLI = nullptr,
97     MemorySSAUpdater *MSSAU = nullptr,
98     std::function<void(Value *)> AboutToDeleteCallback =
99         std::function<void(Value *)>());
100 
101 /// Delete all of the instructions in `DeadInsts`, and all other instructions
102 /// that deleting these in turn causes to be trivially dead.
103 ///
104 /// The initial instructions in the provided vector must all have empty use
105 /// lists and satisfy `isInstructionTriviallyDead`.
106 ///
107 /// `DeadInsts` will be used as scratch storage for this routine and will be
108 /// empty afterward.
109 void RecursivelyDeleteTriviallyDeadInstructions(
110     SmallVectorImpl<WeakTrackingVH> &DeadInsts,
111     const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr,
112     std::function<void(Value *)> AboutToDeleteCallback =
113         std::function<void(Value *)>());
114 
115 /// Same functionality as RecursivelyDeleteTriviallyDeadInstructions, but allow
116 /// instructions that are not trivially dead. These will be ignored.
117 /// Returns true if any changes were made, i.e. any instructions trivially dead
118 /// were found and deleted.
119 bool RecursivelyDeleteTriviallyDeadInstructionsPermissive(
120     SmallVectorImpl<WeakTrackingVH> &DeadInsts,
121     const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr,
122     std::function<void(Value *)> AboutToDeleteCallback =
123         std::function<void(Value *)>());
124 
125 /// If the specified value is an effectively dead PHI node, due to being a
126 /// def-use chain of single-use nodes that either forms a cycle or is terminated
127 /// by a trivially dead instruction, delete it. If that makes any of its
128 /// operands trivially dead, delete them too, recursively. Return true if a
129 /// change was made.
130 bool RecursivelyDeleteDeadPHINode(PHINode *PN,
131                                   const TargetLibraryInfo *TLI = nullptr,
132                                   MemorySSAUpdater *MSSAU = nullptr);
133 
134 /// Scan the specified basic block and try to simplify any instructions in it
135 /// and recursively delete dead instructions.
136 ///
137 /// This returns true if it changed the code, note that it can delete
138 /// instructions in other blocks as well in this block.
139 bool SimplifyInstructionsInBlock(BasicBlock *BB,
140                                  const TargetLibraryInfo *TLI = nullptr);
141 
142 /// Replace all the uses of an SSA value in @llvm.dbg intrinsics with
143 /// undef. This is useful for signaling that a variable, e.g. has been
144 /// found dead and hence it's unavailable at a given program point.
145 /// Returns true if the dbg values have been changed.
146 bool replaceDbgUsesWithUndef(Instruction *I);
147 
148 //===----------------------------------------------------------------------===//
149 //  Control Flow Graph Restructuring.
150 //
151 
152 /// BB is a block with one predecessor and its predecessor is known to have one
153 /// successor (BB!). Eliminate the edge between them, moving the instructions in
154 /// the predecessor into BB. This deletes the predecessor block.
155 void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
156 
157 /// BB is known to contain an unconditional branch, and contains no instructions
158 /// other than PHI nodes, potential debug intrinsics and the branch. If
159 /// possible, eliminate BB by rewriting all the predecessors to branch to the
160 /// successor block and return true. If we can't transform, return false.
161 bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
162                                              DomTreeUpdater *DTU = nullptr);
163 
164 /// Check for and eliminate duplicate PHI nodes in this block. This doesn't try
165 /// to be clever about PHI nodes which differ only in the order of the incoming
166 /// values, but instcombine orders them so it usually won't matter.
167 bool EliminateDuplicatePHINodes(BasicBlock *BB);
168 
169 /// This function is used to do simplification of a CFG.  For example, it
170 /// adjusts branches to branches to eliminate the extra hop, it eliminates
171 /// unreachable basic blocks, and does other peephole optimization of the CFG.
172 /// It returns true if a modification was made, possibly deleting the basic
173 /// block that was pointed to. LoopHeaders is an optional input parameter
174 /// providing the set of loop headers that SimplifyCFG should not eliminate.
175 extern cl::opt<bool> RequireAndPreserveDomTree;
176 bool simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
177                  DomTreeUpdater *DTU = nullptr,
178                  const SimplifyCFGOptions &Options = {},
179                  ArrayRef<WeakVH> LoopHeaders = {});
180 
181 /// This function is used to flatten a CFG. For example, it uses parallel-and
182 /// and parallel-or mode to collapse if-conditions and merge if-regions with
183 /// identical statements.
184 bool FlattenCFG(BasicBlock *BB, AAResults *AA = nullptr);
185 
186 /// If this basic block is ONLY a setcc and a branch, and if a predecessor
187 /// branches to us and one of our successors, fold the setcc into the
188 /// predecessor and use logical operations to pick the right destination.
189 bool FoldBranchToCommonDest(BranchInst *BI, llvm::DomTreeUpdater *DTU = nullptr,
190                             MemorySSAUpdater *MSSAU = nullptr,
191                             const TargetTransformInfo *TTI = nullptr,
192                             unsigned BonusInstThreshold = 1);
193 
194 /// This function takes a virtual register computed by an Instruction and
195 /// replaces it with a slot in the stack frame, allocated via alloca.
196 /// This allows the CFG to be changed around without fear of invalidating the
197 /// SSA information for the value. It returns the pointer to the alloca inserted
198 /// to create a stack slot for X.
199 AllocaInst *DemoteRegToStack(Instruction &X,
200                              bool VolatileLoads = false,
201                              Instruction *AllocaPoint = nullptr);
202 
203 /// This function takes a virtual register computed by a phi node and replaces
204 /// it with a slot in the stack frame, allocated via alloca. The phi node is
205 /// deleted and it returns the pointer to the alloca inserted.
206 AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);
207 
208 /// Try to ensure that the alignment of \p V is at least \p PrefAlign bytes. If
209 /// the owning object can be modified and has an alignment less than \p
210 /// PrefAlign, it will be increased and \p PrefAlign returned. If the alignment
211 /// cannot be increased, the known alignment of the value is returned.
212 ///
213 /// It is not always possible to modify the alignment of the underlying object,
214 /// so if alignment is important, a more reliable approach is to simply align
215 /// all global variables and allocation instructions to their preferred
216 /// alignment from the beginning.
217 Align getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
218                                  const DataLayout &DL,
219                                  const Instruction *CxtI = nullptr,
220                                  AssumptionCache *AC = nullptr,
221                                  const DominatorTree *DT = nullptr);
222 
223 /// Try to infer an alignment for the specified pointer.
224 inline Align getKnownAlignment(Value *V, const DataLayout &DL,
225                                const Instruction *CxtI = nullptr,
226                                AssumptionCache *AC = nullptr,
227                                const DominatorTree *DT = nullptr) {
228   return getOrEnforceKnownAlignment(V, MaybeAlign(), DL, CxtI, AC, DT);
229 }
230 
231 /// Create a call that matches the invoke \p II in terms of arguments,
232 /// attributes, debug information, etc. The call is not placed in a block and it
233 /// will not have a name. The invoke instruction is not removed, nor are the
234 /// uses replaced by the new call.
235 CallInst *createCallMatchingInvoke(InvokeInst *II);
236 
237 /// This function converts the specified invoek into a normall call.
238 void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr);
239 
240 ///===---------------------------------------------------------------------===//
241 ///  Dbg Intrinsic utilities
242 ///
243 
244 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
245 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
246 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
247                                      StoreInst *SI, DIBuilder &Builder);
248 
249 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
250 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
251 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
252                                      LoadInst *LI, DIBuilder &Builder);
253 
254 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
255 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
256 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
257                                      PHINode *LI, DIBuilder &Builder);
258 
259 /// Lowers llvm.dbg.declare intrinsics into appropriate set of
260 /// llvm.dbg.value intrinsics.
261 bool LowerDbgDeclare(Function &F);
262 
263 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
264 void insertDebugValuesForPHIs(BasicBlock *BB,
265                               SmallVectorImpl<PHINode *> &InsertedPHIs);
266 
267 /// Replaces llvm.dbg.declare instruction when the address it
268 /// describes is replaced with a new value. If Deref is true, an
269 /// additional DW_OP_deref is prepended to the expression. If Offset
270 /// is non-zero, a constant displacement is added to the expression
271 /// (between the optional Deref operations). Offset can be negative.
272 bool replaceDbgDeclare(Value *Address, Value *NewAddress, DIBuilder &Builder,
273                        uint8_t DIExprFlags, int Offset);
274 
275 /// Replaces multiple llvm.dbg.value instructions when the alloca it describes
276 /// is replaced with a new value. If Offset is non-zero, a constant displacement
277 /// is added to the expression (after the mandatory Deref). Offset can be
278 /// negative. New llvm.dbg.value instructions are inserted at the locations of
279 /// the instructions they replace.
280 void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
281                               DIBuilder &Builder, int Offset = 0);
282 
283 /// Assuming the instruction \p I is going to be deleted, attempt to salvage
284 /// debug users of \p I by writing the effect of \p I in a DIExpression. If it
285 /// cannot be salvaged changes its debug uses to undef.
286 void salvageDebugInfo(Instruction &I);
287 
288 
289 /// Implementation of salvageDebugInfo, applying only to instructions in
290 /// \p Insns, rather than all debug users from findDbgUsers( \p I).
291 /// Returns true if any debug users were updated.
292 /// Mark undef if salvaging cannot be completed.
293 void salvageDebugInfoForDbgValues(Instruction &I,
294                                   ArrayRef<DbgVariableIntrinsic *> Insns);
295 
296 /// Given an instruction \p I and DIExpression \p DIExpr operating on
297 /// it, append the effects of \p I to the DIExpression operand list
298 /// \p Ops, or return \p nullptr if it cannot be salvaged.
299 /// \p CurrentLocOps is the number of SSA values referenced by the
300 /// incoming \p Ops.  \return the first non-constant operand
301 /// implicitly referred to by Ops. If \p I references more than one
302 /// non-constant operand, any additional operands are added to
303 /// \p AdditionalValues.
304 ///
305 /// \example
306 ////
307 ///   I = add %a, i32 1
308 ///
309 ///   Return = %a
310 ///   Ops = llvm::dwarf::DW_OP_lit1 llvm::dwarf::DW_OP_add
311 ///
312 ///   I = add %a, %b
313 ///
314 ///   Return = %a
315 ///   Ops = llvm::dwarf::DW_OP_LLVM_arg0 llvm::dwarf::DW_OP_add
316 ///   AdditionalValues = %b
317 Value *salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
318                             SmallVectorImpl<uint64_t> &Ops,
319                             SmallVectorImpl<Value *> &AdditionalValues);
320 
321 /// Point debug users of \p From to \p To or salvage them. Use this function
322 /// only when replacing all uses of \p From with \p To, with a guarantee that
323 /// \p From is going to be deleted.
324 ///
325 /// Follow these rules to prevent use-before-def of \p To:
326 ///   . If \p To is a linked Instruction, set \p DomPoint to \p To.
327 ///   . If \p To is an unlinked Instruction, set \p DomPoint to the Instruction
328 ///     \p To will be inserted after.
329 ///   . If \p To is not an Instruction (e.g a Constant), the choice of
330 ///     \p DomPoint is arbitrary. Pick \p From for simplicity.
331 ///
332 /// If a debug user cannot be preserved without reordering variable updates or
333 /// introducing a use-before-def, it is either salvaged (\ref salvageDebugInfo)
334 /// or deleted. Returns true if any debug users were updated.
335 bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint,
336                            DominatorTree &DT);
337 
338 /// Remove all instructions from a basic block other than its terminator
339 /// and any present EH pad instructions. Returns a pair where the first element
340 /// is the number of instructions (excluding debug info instrinsics) that have
341 /// been removed, and the second element is the number of debug info intrinsics
342 /// that have been removed.
343 std::pair<unsigned, unsigned>
344 removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB);
345 
346 /// Insert an unreachable instruction before the specified
347 /// instruction, making it and the rest of the code in the block dead.
348 unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA = false,
349                              DomTreeUpdater *DTU = nullptr,
350                              MemorySSAUpdater *MSSAU = nullptr);
351 
352 /// Convert the CallInst to InvokeInst with the specified unwind edge basic
353 /// block.  This also splits the basic block where CI is located, because
354 /// InvokeInst is a terminator instruction.  Returns the newly split basic
355 /// block.
356 BasicBlock *changeToInvokeAndSplitBasicBlock(CallInst *CI,
357                                              BasicBlock *UnwindEdge,
358                                              DomTreeUpdater *DTU = nullptr);
359 
360 /// Replace 'BB's terminator with one that does not have an unwind successor
361 /// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind
362 /// successor.
363 ///
364 /// \param BB  Block whose terminator will be replaced.  Its terminator must
365 ///            have an unwind successor.
366 void removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
367 
368 /// Remove all blocks that can not be reached from the function's entry.
369 ///
370 /// Returns true if any basic block was removed.
371 bool removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU = nullptr,
372                              MemorySSAUpdater *MSSAU = nullptr);
373 
374 /// Combine the metadata of two instructions so that K can replace J. Some
375 /// metadata kinds can only be kept if K does not move, meaning it dominated
376 /// J in the original IR.
377 ///
378 /// Metadata not listed as known via KnownIDs is removed
379 void combineMetadata(Instruction *K, const Instruction *J,
380                      ArrayRef<unsigned> KnownIDs, bool DoesKMove);
381 
382 /// Combine the metadata of two instructions so that K can replace J. This
383 /// specifically handles the case of CSE-like transformations. Some
384 /// metadata can only be kept if K dominates J. For this to be correct,
385 /// K cannot be hoisted.
386 ///
387 /// Unknown metadata is removed.
388 void combineMetadataForCSE(Instruction *K, const Instruction *J,
389                            bool DoesKMove);
390 
391 /// Copy the metadata from the source instruction to the destination (the
392 /// replacement for the source instruction).
393 void copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source);
394 
395 /// Patch the replacement so that it is not more restrictive than the value
396 /// being replaced. It assumes that the replacement does not get moved from
397 /// its original position.
398 void patchReplacementInstruction(Instruction *I, Value *Repl);
399 
400 // Replace each use of 'From' with 'To', if that use does not belong to basic
401 // block where 'From' is defined. Returns the number of replacements made.
402 unsigned replaceNonLocalUsesWith(Instruction *From, Value *To);
403 
404 /// Replace each use of 'From' with 'To' if that use is dominated by
405 /// the given edge.  Returns the number of replacements made.
406 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
407                                   const BasicBlockEdge &Edge);
408 /// Replace each use of 'From' with 'To' if that use is dominated by
409 /// the end of the given BasicBlock. Returns the number of replacements made.
410 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
411                                   const BasicBlock *BB);
412 
413 /// Return true if this call calls a gc leaf function.
414 ///
415 /// A leaf function is a function that does not safepoint the thread during its
416 /// execution.  During a call or invoke to such a function, the callers stack
417 /// does not have to be made parseable.
418 ///
419 /// Most passes can and should ignore this information, and it is only used
420 /// during lowering by the GC infrastructure.
421 bool callsGCLeafFunction(const CallBase *Call, const TargetLibraryInfo &TLI);
422 
423 /// Copy a nonnull metadata node to a new load instruction.
424 ///
425 /// This handles mapping it to range metadata if the new load is an integer
426 /// load instead of a pointer load.
427 void copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, LoadInst &NewLI);
428 
429 /// Copy a range metadata node to a new load instruction.
430 ///
431 /// This handles mapping it to nonnull metadata if the new load is a pointer
432 /// load instead of an integer load and the range doesn't cover null.
433 void copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, MDNode *N,
434                        LoadInst &NewLI);
435 
436 /// Remove the debug intrinsic instructions for the given instruction.
437 void dropDebugUsers(Instruction &I);
438 
439 /// Hoist all of the instructions in the \p IfBlock to the dominant block
440 /// \p DomBlock, by moving its instructions to the insertion point \p InsertPt.
441 ///
442 /// The moved instructions receive the insertion point debug location values
443 /// (DILocations) and their debug intrinsic instructions are removed.
444 void hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
445                               BasicBlock *BB);
446 
447 //===----------------------------------------------------------------------===//
448 //  Intrinsic pattern matching
449 //
450 
451 /// Try to match a bswap or bitreverse idiom.
452 ///
453 /// If an idiom is matched, an intrinsic call is inserted before \c I. Any added
454 /// instructions are returned in \c InsertedInsts. They will all have been added
455 /// to a basic block.
456 ///
457 /// A bitreverse idiom normally requires around 2*BW nodes to be searched (where
458 /// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up
459 /// to BW / 4 nodes to be searched, so is significantly faster.
460 ///
461 /// This function returns true on a successful match or false otherwise.
462 bool recognizeBSwapOrBitReverseIdiom(
463     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
464     SmallVectorImpl<Instruction *> &InsertedInsts);
465 
466 //===----------------------------------------------------------------------===//
467 //  Sanitizer utilities
468 //
469 
470 /// Given a CallInst, check if it calls a string function known to CodeGen,
471 /// and mark it with NoBuiltin if so.  To be used by sanitizers that intend
472 /// to intercept string functions and want to avoid converting them to target
473 /// specific instructions.
474 void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
475                                             const TargetLibraryInfo *TLI);
476 
477 //===----------------------------------------------------------------------===//
478 //  Transform predicates
479 //
480 
481 /// Given an instruction, is it legal to set operand OpIdx to a non-constant
482 /// value?
483 bool canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx);
484 
485 //===----------------------------------------------------------------------===//
486 //  Value helper functions
487 //
488 
489 /// Invert the given true/false value, possibly reusing an existing copy.
490 Value *invertCondition(Value *Condition);
491 
492 
493 //===----------------------------------------------------------------------===//
494 //  Assorted
495 //
496 
497 /// If we can infer one attribute from another on the declaration of a
498 /// function, explicitly materialize the maximal set in the IR.
499 bool inferAttributesFromOthers(Function &F);
500 
501 } // end namespace llvm
502 
503 #endif // LLVM_TRANSFORMS_UTILS_LOCAL_H
504