1//===- TargetGlobalISel.td - Common code for GlobalISel ----*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file defines the target-independent interfaces used to support 10// SelectionDAG instruction selection patterns (specified in 11// TargetSelectionDAG.td) when generating GlobalISel instruction selectors. 12// 13// This is intended as a compatibility layer, to enable reuse of target 14// descriptions written for SelectionDAG without requiring explicit GlobalISel 15// support. It will eventually supersede SelectionDAG patterns. 16// 17//===----------------------------------------------------------------------===// 18 19// Declare that a generic Instruction is 'equivalent' to an SDNode, that is, 20// SelectionDAG patterns involving the SDNode can be transformed to match the 21// Instruction instead. 22class GINodeEquiv<Instruction i, SDNode node> { 23 Instruction I = i; 24 SDNode Node = node; 25 26 // SelectionDAG has separate nodes for atomic and non-atomic memory operations 27 // (ISD::LOAD, ISD::ATOMIC_LOAD, ISD::STORE, ISD::ATOMIC_STORE) but GlobalISel 28 // stores this information in the MachineMemoryOperand. 29 bit CheckMMOIsNonAtomic = false; 30 bit CheckMMOIsAtomic = false; 31 32 // SelectionDAG has one node for all loads and uses predicates to 33 // differentiate them. GlobalISel on the other hand uses separate opcodes. 34 // When this is true, the resulting opcode is G_LOAD/G_SEXTLOAD/G_ZEXTLOAD 35 // depending on the predicates on the node. 36 Instruction IfSignExtend = ?; 37 Instruction IfZeroExtend = ?; 38 39 // SelectionDAG has one setcc for all compares. This differentiates 40 // for G_ICMP and G_FCMP. 41 Instruction IfFloatingPoint = ?; 42 43 // SelectionDAG does not differentiate between convergent and non-convergent 44 // intrinsics. This specifies an alternate opcode for a convergent intrinsic. 45 Instruction IfConvergent = ?; 46} 47 48// These are defined in the same order as the G_* instructions. 49def : GINodeEquiv<G_ANYEXT, anyext>; 50def : GINodeEquiv<G_SEXT, sext>; 51def : GINodeEquiv<G_ZEXT, zext>; 52def : GINodeEquiv<G_TRUNC, trunc>; 53def : GINodeEquiv<G_BITCAST, bitconvert>; 54// G_INTTOPTR - SelectionDAG has no equivalent. 55// G_PTRTOINT - SelectionDAG has no equivalent. 56def : GINodeEquiv<G_CONSTANT, imm>; 57// timm must not be materialized and therefore has no GlobalISel equivalent 58def : GINodeEquiv<G_FCONSTANT, fpimm>; 59def : GINodeEquiv<G_IMPLICIT_DEF, undef>; 60def : GINodeEquiv<G_FRAME_INDEX, frameindex>; 61def : GINodeEquiv<G_BLOCK_ADDR, blockaddress>; 62def : GINodeEquiv<G_PTR_ADD, ptradd>; 63def : GINodeEquiv<G_ADD, add>; 64def : GINodeEquiv<G_SUB, sub>; 65def : GINodeEquiv<G_MUL, mul>; 66def : GINodeEquiv<G_UMULH, mulhu>; 67def : GINodeEquiv<G_SMULH, mulhs>; 68def : GINodeEquiv<G_SDIV, sdiv>; 69def : GINodeEquiv<G_UDIV, udiv>; 70def : GINodeEquiv<G_SREM, srem>; 71def : GINodeEquiv<G_UREM, urem>; 72def : GINodeEquiv<G_AND, and>; 73def : GINodeEquiv<G_OR, or>; 74def : GINodeEquiv<G_XOR, xor>; 75def : GINodeEquiv<G_SHL, shl>; 76def : GINodeEquiv<G_LSHR, srl>; 77def : GINodeEquiv<G_ASHR, sra>; 78def : GINodeEquiv<G_SADDSAT, saddsat>; 79def : GINodeEquiv<G_UADDSAT, uaddsat>; 80def : GINodeEquiv<G_SSUBSAT, ssubsat>; 81def : GINodeEquiv<G_USUBSAT, usubsat>; 82def : GINodeEquiv<G_SSHLSAT, sshlsat>; 83def : GINodeEquiv<G_USHLSAT, ushlsat>; 84def : GINodeEquiv<G_SMULFIX, smulfix>; 85def : GINodeEquiv<G_UMULFIX, umulfix>; 86def : GINodeEquiv<G_SMULFIXSAT, smulfixsat>; 87def : GINodeEquiv<G_UMULFIXSAT, umulfixsat>; 88def : GINodeEquiv<G_SDIVFIX, sdivfix>; 89def : GINodeEquiv<G_UDIVFIX, udivfix>; 90def : GINodeEquiv<G_SDIVFIXSAT, sdivfixsat>; 91def : GINodeEquiv<G_UDIVFIXSAT, udivfixsat>; 92def : GINodeEquiv<G_SELECT, select>; 93def : GINodeEquiv<G_FNEG, fneg>; 94def : GINodeEquiv<G_FPEXT, fpextend>; 95def : GINodeEquiv<G_FPTRUNC, fpround>; 96def : GINodeEquiv<G_FPTOSI, fp_to_sint>; 97def : GINodeEquiv<G_FPTOUI, fp_to_uint>; 98def : GINodeEquiv<G_SITOFP, sint_to_fp>; 99def : GINodeEquiv<G_UITOFP, uint_to_fp>; 100def : GINodeEquiv<G_FADD, fadd>; 101def : GINodeEquiv<G_FSUB, fsub>; 102def : GINodeEquiv<G_FMA, fma>; 103def : GINodeEquiv<G_FMAD, fmad>; 104def : GINodeEquiv<G_FMUL, fmul>; 105def : GINodeEquiv<G_FDIV, fdiv>; 106def : GINodeEquiv<G_FREM, frem>; 107def : GINodeEquiv<G_FPOW, fpow>; 108def : GINodeEquiv<G_FEXP2, fexp2>; 109def : GINodeEquiv<G_FEXP10, fexp10>; 110def : GINodeEquiv<G_FLOG2, flog2>; 111def : GINodeEquiv<G_FLDEXP, fldexp>; 112def : GINodeEquiv<G_FCANONICALIZE, fcanonicalize>; 113def : GINodeEquiv<G_IS_FPCLASS, is_fpclass>; 114 115def : GINodeEquiv<G_INTRINSIC, intrinsic_wo_chain> { 116 let IfConvergent = G_INTRINSIC_CONVERGENT; 117} 118 119def : GINodeEquiv<G_GET_FPMODE, get_fpmode>; 120def : GINodeEquiv<G_SET_FPMODE, set_fpmode>; 121def : GINodeEquiv<G_RESET_FPMODE, reset_fpmode>; 122 123// ISD::INTRINSIC_VOID can also be handled with G_INTRINSIC_W_SIDE_EFFECTS. 124let IfConvergent = G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS in { 125 def : GINodeEquiv<G_INTRINSIC_W_SIDE_EFFECTS, intrinsic_void>; 126 def : GINodeEquiv<G_INTRINSIC_W_SIDE_EFFECTS, intrinsic_w_chain>; 127} 128 129def : GINodeEquiv<G_BR, br>; 130def : GINodeEquiv<G_BSWAP, bswap>; 131def : GINodeEquiv<G_BITREVERSE, bitreverse>; 132def : GINodeEquiv<G_FSHL, fshl>; 133def : GINodeEquiv<G_FSHR, fshr>; 134def : GINodeEquiv<G_CTLZ, ctlz>; 135def : GINodeEquiv<G_CTTZ, cttz>; 136def : GINodeEquiv<G_CTLZ_ZERO_UNDEF, ctlz_zero_undef>; 137def : GINodeEquiv<G_CTTZ_ZERO_UNDEF, cttz_zero_undef>; 138def : GINodeEquiv<G_CTPOP, ctpop>; 139def : GINodeEquiv<G_EXTRACT_VECTOR_ELT, extractelt>; 140def : GINodeEquiv<G_CONCAT_VECTORS, concat_vectors>; 141def : GINodeEquiv<G_BUILD_VECTOR, build_vector>; 142def : GINodeEquiv<G_FCEIL, fceil>; 143def : GINodeEquiv<G_FCOS, fcos>; 144def : GINodeEquiv<G_FSIN, fsin>; 145def : GINodeEquiv<G_FABS, fabs>; 146def : GINodeEquiv<G_FSQRT, fsqrt>; 147def : GINodeEquiv<G_FFLOOR, ffloor>; 148def : GINodeEquiv<G_FRINT, frint>; 149def : GINodeEquiv<G_FNEARBYINT, fnearbyint>; 150def : GINodeEquiv<G_INTRINSIC_TRUNC, ftrunc>; 151def : GINodeEquiv<G_INTRINSIC_ROUND, fround>; 152def : GINodeEquiv<G_INTRINSIC_ROUNDEVEN, froundeven>; 153def : GINodeEquiv<G_INTRINSIC_LRINT, lrint>; 154def : GINodeEquiv<G_FCOPYSIGN, fcopysign>; 155def : GINodeEquiv<G_SMIN, smin>; 156def : GINodeEquiv<G_SMAX, smax>; 157def : GINodeEquiv<G_UMIN, umin>; 158def : GINodeEquiv<G_UMAX, umax>; 159def : GINodeEquiv<G_ABS, abs>; 160def : GINodeEquiv<G_FMINNUM, fminnum>; 161def : GINodeEquiv<G_FMAXNUM, fmaxnum>; 162def : GINodeEquiv<G_FMINNUM_IEEE, fminnum_ieee>; 163def : GINodeEquiv<G_FMAXNUM_IEEE, fmaxnum_ieee>; 164def : GINodeEquiv<G_FMAXIMUM, fmaximum>; 165def : GINodeEquiv<G_FMINIMUM, fminimum>; 166def : GINodeEquiv<G_READCYCLECOUNTER, readcyclecounter>; 167def : GINodeEquiv<G_ROTR, rotr>; 168def : GINodeEquiv<G_ROTL, rotl>; 169def : GINodeEquiv<G_LROUND, lround>; 170def : GINodeEquiv<G_LLROUND, llround>; 171def : GINodeEquiv<G_VECREDUCE_FADD, vecreduce_fadd>; 172def : GINodeEquiv<G_VECREDUCE_FMAX, vecreduce_fmax>; 173def : GINodeEquiv<G_VECREDUCE_FMIN, vecreduce_fmin>; 174def : GINodeEquiv<G_VECREDUCE_FMAXIMUM, vecreduce_fmaximum>; 175def : GINodeEquiv<G_VECREDUCE_FMINIMUM, vecreduce_fminimum>; 176def : GINodeEquiv<G_VECREDUCE_UMIN, vecreduce_umin>; 177def : GINodeEquiv<G_VECREDUCE_UMAX, vecreduce_umax>; 178def : GINodeEquiv<G_VECREDUCE_SMIN, vecreduce_smin>; 179def : GINodeEquiv<G_VECREDUCE_SMAX, vecreduce_smax>; 180def : GINodeEquiv<G_VECREDUCE_ADD, vecreduce_add>; 181 182def : GINodeEquiv<G_STRICT_FADD, strict_fadd>; 183def : GINodeEquiv<G_STRICT_FSUB, strict_fsub>; 184def : GINodeEquiv<G_STRICT_FMUL, strict_fmul>; 185def : GINodeEquiv<G_STRICT_FDIV, strict_fdiv>; 186def : GINodeEquiv<G_STRICT_FREM, strict_frem>; 187def : GINodeEquiv<G_STRICT_FMA, strict_fma>; 188def : GINodeEquiv<G_STRICT_FSQRT, strict_fsqrt>; 189def : GINodeEquiv<G_STRICT_FLDEXP, strict_fldexp>; 190 191// Broadly speaking G_LOAD is equivalent to ISD::LOAD but there are some 192// complications that tablegen must take care of. For example, Predicates such 193// as isSignExtLoad require that this is not a perfect 1:1 mapping since a 194// sign-extending load is (G_SEXTLOAD x) in GlobalISel. Additionally, 195// G_LOAD handles both atomic and non-atomic loads where as SelectionDAG had 196// separate nodes for them. This GINodeEquiv maps the non-atomic loads to 197// G_LOAD with a non-atomic MachineMemOperand. 198def : GINodeEquiv<G_LOAD, ld> { 199 let CheckMMOIsNonAtomic = true; 200 let IfSignExtend = G_SEXTLOAD; 201 let IfZeroExtend = G_ZEXTLOAD; 202} 203 204def : GINodeEquiv<G_ICMP, setcc> { 205 let IfFloatingPoint = G_FCMP; 206} 207 208// Broadly speaking G_STORE is equivalent to ISD::STORE but there are some 209// complications that tablegen must take care of. For example, predicates such 210// as isTruncStore require that this is not a perfect 1:1 mapping since a 211// truncating store is (G_STORE (G_TRUNCATE x)) in GlobalISel. Additionally, 212// G_STORE handles both atomic and non-atomic stores where as SelectionDAG had 213// separate nodes for them. This GINodeEquiv maps the non-atomic stores to 214// G_STORE with a non-atomic MachineMemOperand. 215def : GINodeEquiv<G_STORE, st> { let CheckMMOIsNonAtomic = true; } 216def : GINodeEquiv<G_STORE, atomic_store> { 217 let CheckMMOIsNonAtomic = false; 218 let CheckMMOIsAtomic = true; 219} 220 221def : GINodeEquiv<G_LOAD, atomic_load> { 222 let CheckMMOIsNonAtomic = false; 223 let CheckMMOIsAtomic = true; 224 let IfSignExtend = G_SEXTLOAD; 225 let IfZeroExtend = G_ZEXTLOAD; 226} 227 228def : GINodeEquiv<G_ATOMIC_CMPXCHG, atomic_cmp_swap>; 229def : GINodeEquiv<G_ATOMICRMW_XCHG, atomic_swap>; 230def : GINodeEquiv<G_ATOMICRMW_ADD, atomic_load_add>; 231def : GINodeEquiv<G_ATOMICRMW_SUB, atomic_load_sub>; 232def : GINodeEquiv<G_ATOMICRMW_AND, atomic_load_and>; 233def : GINodeEquiv<G_ATOMICRMW_NAND, atomic_load_nand>; 234def : GINodeEquiv<G_ATOMICRMW_OR, atomic_load_or>; 235def : GINodeEquiv<G_ATOMICRMW_XOR, atomic_load_xor>; 236def : GINodeEquiv<G_ATOMICRMW_MIN, atomic_load_min>; 237def : GINodeEquiv<G_ATOMICRMW_MAX, atomic_load_max>; 238def : GINodeEquiv<G_ATOMICRMW_UMIN, atomic_load_umin>; 239def : GINodeEquiv<G_ATOMICRMW_UMAX, atomic_load_umax>; 240def : GINodeEquiv<G_ATOMICRMW_FADD, atomic_load_fadd>; 241def : GINodeEquiv<G_ATOMICRMW_FSUB, atomic_load_fsub>; 242def : GINodeEquiv<G_ATOMICRMW_FMAX, atomic_load_fmax>; 243def : GINodeEquiv<G_ATOMICRMW_FMIN, atomic_load_fmin>; 244def : GINodeEquiv<G_ATOMICRMW_UINC_WRAP, atomic_load_uinc_wrap>; 245def : GINodeEquiv<G_ATOMICRMW_UDEC_WRAP, atomic_load_udec_wrap>; 246def : GINodeEquiv<G_FENCE, atomic_fence>; 247 248// Specifies the GlobalISel equivalents for SelectionDAG's ComplexPattern. 249// Should be used on defs that subclass GIComplexOperandMatcher<>. 250class GIComplexPatternEquiv<ComplexPattern seldag> { 251 ComplexPattern SelDAGEquivalent = seldag; 252} 253 254// Specifies the GlobalISel equivalents for SelectionDAG's SDNodeXForm. 255// Should be used on defs that subclass GICustomOperandRenderer<>. 256class GISDNodeXFormEquiv<SDNodeXForm seldag> { 257 SDNodeXForm SelDAGEquivalent = seldag; 258} 259