xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Support/Automaton.h (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1 //===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements class that drive and introspect deterministic finite-
10 // state automata (DFAs) as generated by TableGen's -gen-automata backend.
11 //
12 // For a description of how to define an automaton, see
13 // include/llvm/TableGen/Automaton.td.
14 //
15 // One important detail is that these deterministic automata are created from
16 // (potentially) nondeterministic definitions. Therefore a unique sequence of
17 // input symbols will produce one path through the DFA but multiple paths
18 // through the original NFA. An automaton by default only returns "accepted" or
19 // "not accepted", but frequently we want to analyze what NFA path was taken.
20 // Finding a path through the NFA states that results in a DFA state can help
21 // answer *what* the solution to a problem was, not just that there exists a
22 // solution.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #ifndef LLVM_SUPPORT_AUTOMATON_H
27 #define LLVM_SUPPORT_AUTOMATON_H
28 
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/Support/Allocator.h"
33 #include <deque>
34 #include <map>
35 #include <memory>
36 #include <unordered_map>
37 #include <vector>
38 
39 namespace llvm {
40 
41 using NfaPath = SmallVector<uint64_t, 4>;
42 
43 /// Forward define the pair type used by the automata transition info tables.
44 ///
45 /// Experimental results with large tables have shown a significant (multiple
46 /// orders of magnitude) parsing speedup by using a custom struct here with a
47 /// trivial constructor rather than std::pair<uint64_t, uint64_t>.
48 struct NfaStatePair {
49   uint64_t FromDfaState, ToDfaState;
50 
51   bool operator<(const NfaStatePair &Other) const {
52     return std::make_tuple(FromDfaState, ToDfaState) <
53            std::make_tuple(Other.FromDfaState, Other.ToDfaState);
54   }
55 };
56 
57 namespace internal {
58 /// The internal class that maintains all possible paths through an NFA based
59 /// on a path through the DFA.
60 class NfaTranscriber {
61 private:
62   /// Cached transition table. This is a table of NfaStatePairs that contains
63   /// zero-terminated sequences pointed to by DFA transitions.
64   ArrayRef<NfaStatePair> TransitionInfo;
65 
66   /// A simple linked-list of traversed states that can have a shared tail. The
67   /// traversed path is stored in reverse order with the latest state as the
68   /// head.
69   struct PathSegment {
70     uint64_t State;
71     PathSegment *Tail;
72   };
73 
74   /// We allocate segment objects frequently. Allocate them upfront and dispose
75   /// at the end of a traversal rather than hammering the system allocator.
76   SpecificBumpPtrAllocator<PathSegment> Allocator;
77 
78   /// Heads of each tracked path. These are not ordered.
79   std::deque<PathSegment *> Heads;
80 
81   /// The returned paths. This is populated during getPaths.
82   SmallVector<NfaPath, 4> Paths;
83 
84   /// Create a new segment and return it.
85   PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) {
86     PathSegment *P = Allocator.Allocate();
87     *P = {State, Tail};
88     return P;
89   }
90 
91   /// Pairs defines a sequence of possible NFA transitions for a single DFA
92   /// transition.
93   void transition(ArrayRef<NfaStatePair> Pairs) {
94     // Iterate over all existing heads. We will mutate the Heads deque during
95     // iteration.
96     unsigned NumHeads = Heads.size();
97     for (unsigned I = 0; I < NumHeads; ++I) {
98       PathSegment *Head = Heads[I];
99       // The sequence of pairs is sorted. Select the set of pairs that
100       // transition from the current head state.
101       auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL});
102       auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX});
103       // For every transition from the current head state, add a new path
104       // segment.
105       for (; PI != PE; ++PI)
106         if (PI->FromDfaState == Head->State)
107           Heads.push_back(makePathSegment(PI->ToDfaState, Head));
108     }
109     // Now we've iterated over all the initial heads and added new ones,
110     // dispose of the original heads.
111     Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads));
112   }
113 
114 public:
115   NfaTranscriber(ArrayRef<NfaStatePair> TransitionInfo)
116       : TransitionInfo(TransitionInfo) {
117     reset();
118   }
119 
120   ArrayRef<NfaStatePair> getTransitionInfo() const {
121     return TransitionInfo;
122   }
123 
124   void reset() {
125     Paths.clear();
126     Heads.clear();
127     Allocator.DestroyAll();
128     // The initial NFA state is 0.
129     Heads.push_back(makePathSegment(0ULL, nullptr));
130   }
131 
132   void transition(unsigned TransitionInfoIdx) {
133     unsigned EndIdx = TransitionInfoIdx;
134     while (TransitionInfo[EndIdx].ToDfaState != 0)
135       ++EndIdx;
136     ArrayRef<NfaStatePair> Pairs(&TransitionInfo[TransitionInfoIdx],
137                                  EndIdx - TransitionInfoIdx);
138     transition(Pairs);
139   }
140 
141   ArrayRef<NfaPath> getPaths() {
142     Paths.clear();
143     for (auto *Head : Heads) {
144       NfaPath P;
145       while (Head->State != 0) {
146         P.push_back(Head->State);
147         Head = Head->Tail;
148       }
149       std::reverse(P.begin(), P.end());
150       Paths.push_back(std::move(P));
151     }
152     return Paths;
153   }
154 };
155 } // namespace internal
156 
157 /// A deterministic finite-state automaton. The automaton is defined in
158 /// TableGen; this object drives an automaton defined by tblgen-emitted tables.
159 ///
160 /// An automaton accepts a sequence of input tokens ("actions"). This class is
161 /// templated on the type of these actions.
162 template <typename ActionT> class Automaton {
163   /// Map from {State, Action} to {NewState, TransitionInfoIdx}.
164   /// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition.
165   /// FIXME: This uses a std::map because ActionT can be a pair type including
166   /// an enum. In particular DenseMapInfo<ActionT> must be defined to use
167   /// DenseMap here.
168   /// This is a shared_ptr to allow very quick copy-construction of Automata; this
169   /// state is immutable after construction so this is safe.
170   using MapTy = std::map<std::pair<uint64_t, ActionT>, std::pair<uint64_t, unsigned>>;
171   std::shared_ptr<MapTy> M;
172   /// An optional transcription object. This uses much more state than simply
173   /// traversing the DFA for acceptance, so is heap allocated.
174   std::shared_ptr<internal::NfaTranscriber> Transcriber;
175   /// The initial DFA state is 1.
176   uint64_t State = 1;
177   /// True if we should transcribe and false if not (even if Transcriber is defined).
178   bool Transcribe;
179 
180 public:
181   /// Create an automaton.
182   /// \param Transitions The Transitions table as created by TableGen. Note that
183   ///                    because the action type differs per automaton, the
184   ///                    table type is templated as ArrayRef<InfoT>.
185   /// \param TranscriptionTable The TransitionInfo table as created by TableGen.
186   ///
187   /// Providing the TranscriptionTable argument as non-empty will enable the
188   /// use of transcription, which analyzes the possible paths in the original
189   /// NFA taken by the DFA. NOTE: This is substantially more work than simply
190   /// driving the DFA, so unless you require the getPaths() method leave this
191   /// empty.
192   template <typename InfoT>
193   Automaton(ArrayRef<InfoT> Transitions,
194             ArrayRef<NfaStatePair> TranscriptionTable = {}) {
195     if (!TranscriptionTable.empty())
196       Transcriber =
197           std::make_shared<internal::NfaTranscriber>(TranscriptionTable);
198     Transcribe = Transcriber != nullptr;
199     M = std::make_shared<MapTy>();
200     for (const auto &I : Transitions)
201       // Greedily read and cache the transition table.
202       M->emplace(std::make_pair(I.FromDfaState, I.Action),
203                  std::make_pair(I.ToDfaState, I.InfoIdx));
204   }
205   Automaton(const Automaton &Other)
206       : M(Other.M), State(Other.State), Transcribe(Other.Transcribe) {
207     // Transcriber is not thread-safe, so create a new instance on copy.
208     if (Other.Transcriber)
209       Transcriber = std::make_shared<internal::NfaTranscriber>(
210           Other.Transcriber->getTransitionInfo());
211   }
212 
213   /// Reset the automaton to its initial state.
214   void reset() {
215     State = 1;
216     if (Transcriber)
217       Transcriber->reset();
218   }
219 
220   /// Enable or disable transcription. Transcription is only available if
221   /// TranscriptionTable was provided to the constructor.
222   void enableTranscription(bool Enable = true) {
223     assert(Transcriber &&
224            "Transcription is only available if TranscriptionTable was provided "
225            "to the Automaton constructor");
226     Transcribe = Enable;
227   }
228 
229   /// Transition the automaton based on input symbol A. Return true if the
230   /// automaton transitioned to a valid state, false if the automaton
231   /// transitioned to an invalid state.
232   ///
233   /// If this function returns false, all methods are undefined until reset() is
234   /// called.
235   bool add(const ActionT &A) {
236     auto I = M->find({State, A});
237     if (I == M->end())
238       return false;
239     if (Transcriber && Transcribe)
240       Transcriber->transition(I->second.second);
241     State = I->second.first;
242     return true;
243   }
244 
245   /// Return true if the automaton can be transitioned based on input symbol A.
246   bool canAdd(const ActionT &A) {
247     auto I = M->find({State, A});
248     return I != M->end();
249   }
250 
251   /// Obtain a set of possible paths through the input nondeterministic
252   /// automaton that could be obtained from the sequence of input actions
253   /// presented to this deterministic automaton.
254   ArrayRef<NfaPath> getNfaPaths() {
255     assert(Transcriber && Transcribe &&
256            "Can only obtain NFA paths if transcribing!");
257     return Transcriber->getPaths();
258   }
259 };
260 
261 } // namespace llvm
262 
263 #endif // LLVM_SUPPORT_AUTOMATON_H
264