1 //===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements class that drive and introspect deterministic finite- 10 // state automata (DFAs) as generated by TableGen's -gen-automata backend. 11 // 12 // For a description of how to define an automaton, see 13 // include/llvm/TableGen/Automaton.td. 14 // 15 // One important detail is that these deterministic automata are created from 16 // (potentially) nondeterministic definitions. Therefore a unique sequence of 17 // input symbols will produce one path through the DFA but multiple paths 18 // through the original NFA. An automaton by default only returns "accepted" or 19 // "not accepted", but frequently we want to analyze what NFA path was taken. 20 // Finding a path through the NFA states that results in a DFA state can help 21 // answer *what* the solution to a problem was, not just that there exists a 22 // solution. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #ifndef LLVM_SUPPORT_AUTOMATON_H 27 #define LLVM_SUPPORT_AUTOMATON_H 28 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/Support/Allocator.h" 33 #include <deque> 34 #include <map> 35 #include <memory> 36 #include <unordered_map> 37 #include <vector> 38 39 namespace llvm { 40 41 using NfaPath = SmallVector<uint64_t, 4>; 42 43 /// Forward define the pair type used by the automata transition info tables. 44 /// 45 /// Experimental results with large tables have shown a significant (multiple 46 /// orders of magnitude) parsing speedup by using a custom struct here with a 47 /// trivial constructor rather than std::pair<uint64_t, uint64_t>. 48 struct NfaStatePair { 49 uint64_t FromDfaState, ToDfaState; 50 51 bool operator<(const NfaStatePair &Other) const { 52 return std::make_tuple(FromDfaState, ToDfaState) < 53 std::make_tuple(Other.FromDfaState, Other.ToDfaState); 54 } 55 }; 56 57 namespace internal { 58 /// The internal class that maintains all possible paths through an NFA based 59 /// on a path through the DFA. 60 class NfaTranscriber { 61 private: 62 /// Cached transition table. This is a table of NfaStatePairs that contains 63 /// zero-terminated sequences pointed to by DFA transitions. 64 ArrayRef<NfaStatePair> TransitionInfo; 65 66 /// A simple linked-list of traversed states that can have a shared tail. The 67 /// traversed path is stored in reverse order with the latest state as the 68 /// head. 69 struct PathSegment { 70 uint64_t State; 71 PathSegment *Tail; 72 }; 73 74 /// We allocate segment objects frequently. Allocate them upfront and dispose 75 /// at the end of a traversal rather than hammering the system allocator. 76 SpecificBumpPtrAllocator<PathSegment> Allocator; 77 78 /// Heads of each tracked path. These are not ordered. 79 std::deque<PathSegment *> Heads; 80 81 /// The returned paths. This is populated during getPaths. 82 SmallVector<NfaPath, 4> Paths; 83 84 /// Create a new segment and return it. 85 PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) { 86 PathSegment *P = Allocator.Allocate(); 87 *P = {State, Tail}; 88 return P; 89 } 90 91 /// Pairs defines a sequence of possible NFA transitions for a single DFA 92 /// transition. 93 void transition(ArrayRef<NfaStatePair> Pairs) { 94 // Iterate over all existing heads. We will mutate the Heads deque during 95 // iteration. 96 unsigned NumHeads = Heads.size(); 97 for (unsigned I = 0; I < NumHeads; ++I) { 98 PathSegment *Head = Heads[I]; 99 // The sequence of pairs is sorted. Select the set of pairs that 100 // transition from the current head state. 101 auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL}); 102 auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX}); 103 // For every transition from the current head state, add a new path 104 // segment. 105 for (; PI != PE; ++PI) 106 if (PI->FromDfaState == Head->State) 107 Heads.push_back(makePathSegment(PI->ToDfaState, Head)); 108 } 109 // Now we've iterated over all the initial heads and added new ones, 110 // dispose of the original heads. 111 Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads)); 112 } 113 114 public: 115 NfaTranscriber(ArrayRef<NfaStatePair> TransitionInfo) 116 : TransitionInfo(TransitionInfo) { 117 reset(); 118 } 119 120 ArrayRef<NfaStatePair> getTransitionInfo() const { 121 return TransitionInfo; 122 } 123 124 void reset() { 125 Paths.clear(); 126 Heads.clear(); 127 Allocator.DestroyAll(); 128 // The initial NFA state is 0. 129 Heads.push_back(makePathSegment(0ULL, nullptr)); 130 } 131 132 void transition(unsigned TransitionInfoIdx) { 133 unsigned EndIdx = TransitionInfoIdx; 134 while (TransitionInfo[EndIdx].ToDfaState != 0) 135 ++EndIdx; 136 ArrayRef<NfaStatePair> Pairs(&TransitionInfo[TransitionInfoIdx], 137 EndIdx - TransitionInfoIdx); 138 transition(Pairs); 139 } 140 141 ArrayRef<NfaPath> getPaths() { 142 Paths.clear(); 143 for (auto *Head : Heads) { 144 NfaPath P; 145 while (Head->State != 0) { 146 P.push_back(Head->State); 147 Head = Head->Tail; 148 } 149 std::reverse(P.begin(), P.end()); 150 Paths.push_back(std::move(P)); 151 } 152 return Paths; 153 } 154 }; 155 } // namespace internal 156 157 /// A deterministic finite-state automaton. The automaton is defined in 158 /// TableGen; this object drives an automaton defined by tblgen-emitted tables. 159 /// 160 /// An automaton accepts a sequence of input tokens ("actions"). This class is 161 /// templated on the type of these actions. 162 template <typename ActionT> class Automaton { 163 /// Map from {State, Action} to {NewState, TransitionInfoIdx}. 164 /// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition. 165 /// FIXME: This uses a std::map because ActionT can be a pair type including 166 /// an enum. In particular DenseMapInfo<ActionT> must be defined to use 167 /// DenseMap here. 168 /// This is a shared_ptr to allow very quick copy-construction of Automata; this 169 /// state is immutable after construction so this is safe. 170 using MapTy = std::map<std::pair<uint64_t, ActionT>, std::pair<uint64_t, unsigned>>; 171 std::shared_ptr<MapTy> M; 172 /// An optional transcription object. This uses much more state than simply 173 /// traversing the DFA for acceptance, so is heap allocated. 174 std::shared_ptr<internal::NfaTranscriber> Transcriber; 175 /// The initial DFA state is 1. 176 uint64_t State = 1; 177 /// True if we should transcribe and false if not (even if Transcriber is defined). 178 bool Transcribe; 179 180 public: 181 /// Create an automaton. 182 /// \param Transitions The Transitions table as created by TableGen. Note that 183 /// because the action type differs per automaton, the 184 /// table type is templated as ArrayRef<InfoT>. 185 /// \param TranscriptionTable The TransitionInfo table as created by TableGen. 186 /// 187 /// Providing the TranscriptionTable argument as non-empty will enable the 188 /// use of transcription, which analyzes the possible paths in the original 189 /// NFA taken by the DFA. NOTE: This is substantially more work than simply 190 /// driving the DFA, so unless you require the getPaths() method leave this 191 /// empty. 192 template <typename InfoT> 193 Automaton(ArrayRef<InfoT> Transitions, 194 ArrayRef<NfaStatePair> TranscriptionTable = {}) { 195 if (!TranscriptionTable.empty()) 196 Transcriber = 197 std::make_shared<internal::NfaTranscriber>(TranscriptionTable); 198 Transcribe = Transcriber != nullptr; 199 M = std::make_shared<MapTy>(); 200 for (const auto &I : Transitions) 201 // Greedily read and cache the transition table. 202 M->emplace(std::make_pair(I.FromDfaState, I.Action), 203 std::make_pair(I.ToDfaState, I.InfoIdx)); 204 } 205 Automaton(const Automaton &Other) 206 : M(Other.M), State(Other.State), Transcribe(Other.Transcribe) { 207 // Transcriber is not thread-safe, so create a new instance on copy. 208 if (Other.Transcriber) 209 Transcriber = std::make_shared<internal::NfaTranscriber>( 210 Other.Transcriber->getTransitionInfo()); 211 } 212 213 /// Reset the automaton to its initial state. 214 void reset() { 215 State = 1; 216 if (Transcriber) 217 Transcriber->reset(); 218 } 219 220 /// Enable or disable transcription. Transcription is only available if 221 /// TranscriptionTable was provided to the constructor. 222 void enableTranscription(bool Enable = true) { 223 assert(Transcriber && 224 "Transcription is only available if TranscriptionTable was provided " 225 "to the Automaton constructor"); 226 Transcribe = Enable; 227 } 228 229 /// Transition the automaton based on input symbol A. Return true if the 230 /// automaton transitioned to a valid state, false if the automaton 231 /// transitioned to an invalid state. 232 /// 233 /// If this function returns false, all methods are undefined until reset() is 234 /// called. 235 bool add(const ActionT &A) { 236 auto I = M->find({State, A}); 237 if (I == M->end()) 238 return false; 239 if (Transcriber && Transcribe) 240 Transcriber->transition(I->second.second); 241 State = I->second.first; 242 return true; 243 } 244 245 /// Return true if the automaton can be transitioned based on input symbol A. 246 bool canAdd(const ActionT &A) { 247 auto I = M->find({State, A}); 248 return I != M->end(); 249 } 250 251 /// Obtain a set of possible paths through the input nondeterministic 252 /// automaton that could be obtained from the sequence of input actions 253 /// presented to this deterministic automaton. 254 ArrayRef<NfaPath> getNfaPaths() { 255 assert(Transcriber && Transcribe && 256 "Can only obtain NFA paths if transcribing!"); 257 return Transcriber->getPaths(); 258 } 259 }; 260 261 } // namespace llvm 262 263 #endif // LLVM_SUPPORT_AUTOMATON_H 264