1 //===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements class that drive and introspect deterministic finite- 10 // state automata (DFAs) as generated by TableGen's -gen-automata backend. 11 // 12 // For a description of how to define an automaton, see 13 // include/llvm/TableGen/Automaton.td. 14 // 15 // One important detail is that these deterministic automata are created from 16 // (potentially) nondeterministic definitions. Therefore a unique sequence of 17 // input symbols will produce one path through the DFA but multiple paths 18 // through the original NFA. An automaton by default only returns "accepted" or 19 // "not accepted", but frequently we want to analyze what NFA path was taken. 20 // Finding a path through the NFA states that results in a DFA state can help 21 // answer *what* the solution to a problem was, not just that there exists a 22 // solution. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #ifndef LLVM_SUPPORT_AUTOMATON_H 27 #define LLVM_SUPPORT_AUTOMATON_H 28 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/Support/Allocator.h" 33 #include <deque> 34 #include <map> 35 #include <memory> 36 #include <unordered_map> 37 #include <vector> 38 39 namespace llvm { 40 41 using NfaPath = SmallVector<uint64_t, 4>; 42 43 /// Forward define the pair type used by the automata transition info tables. 44 /// 45 /// Experimental results with large tables have shown a significant (multiple 46 /// orders of magnitude) parsing speedup by using a custom struct here with a 47 /// trivial constructor rather than std::pair<uint64_t, uint64_t>. 48 struct NfaStatePair { 49 uint64_t FromDfaState, ToDfaState; 50 51 bool operator<(const NfaStatePair &Other) const { 52 return std::make_tuple(FromDfaState, ToDfaState) < 53 std::make_tuple(Other.FromDfaState, Other.ToDfaState); 54 } 55 }; 56 57 namespace internal { 58 /// The internal class that maintains all possible paths through an NFA based 59 /// on a path through the DFA. 60 class NfaTranscriber { 61 private: 62 /// Cached transition table. This is a table of NfaStatePairs that contains 63 /// zero-terminated sequences pointed to by DFA transitions. 64 ArrayRef<NfaStatePair> TransitionInfo; 65 66 /// A simple linked-list of traversed states that can have a shared tail. The 67 /// traversed path is stored in reverse order with the latest state as the 68 /// head. 69 struct PathSegment { 70 uint64_t State; 71 PathSegment *Tail; 72 }; 73 74 /// We allocate segment objects frequently. Allocate them upfront and dispose 75 /// at the end of a traversal rather than hammering the system allocator. 76 SpecificBumpPtrAllocator<PathSegment> Allocator; 77 78 /// Heads of each tracked path. These are not ordered. 79 std::deque<PathSegment *> Heads; 80 81 /// The returned paths. This is populated during getPaths. 82 SmallVector<NfaPath, 4> Paths; 83 84 /// Create a new segment and return it. 85 PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) { 86 PathSegment *P = Allocator.Allocate(); 87 *P = {State, Tail}; 88 return P; 89 } 90 91 /// Pairs defines a sequence of possible NFA transitions for a single DFA 92 /// transition. 93 void transition(ArrayRef<NfaStatePair> Pairs) { 94 // Iterate over all existing heads. We will mutate the Heads deque during 95 // iteration. 96 unsigned NumHeads = Heads.size(); 97 for (unsigned I = 0; I < NumHeads; ++I) { 98 PathSegment *Head = Heads[I]; 99 // The sequence of pairs is sorted. Select the set of pairs that 100 // transition from the current head state. 101 auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL}); 102 auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX}); 103 // For every transition from the current head state, add a new path 104 // segment. 105 for (; PI != PE; ++PI) 106 if (PI->FromDfaState == Head->State) 107 Heads.push_back(makePathSegment(PI->ToDfaState, Head)); 108 } 109 // Now we've iterated over all the initial heads and added new ones, 110 // dispose of the original heads. 111 Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads)); 112 } 113 114 public: 115 NfaTranscriber(ArrayRef<NfaStatePair> TransitionInfo) 116 : TransitionInfo(TransitionInfo) { 117 reset(); 118 } 119 120 void reset() { 121 Paths.clear(); 122 Heads.clear(); 123 Allocator.DestroyAll(); 124 // The initial NFA state is 0. 125 Heads.push_back(makePathSegment(0ULL, nullptr)); 126 } 127 128 void transition(unsigned TransitionInfoIdx) { 129 unsigned EndIdx = TransitionInfoIdx; 130 while (TransitionInfo[EndIdx].ToDfaState != 0) 131 ++EndIdx; 132 ArrayRef<NfaStatePair> Pairs(&TransitionInfo[TransitionInfoIdx], 133 EndIdx - TransitionInfoIdx); 134 transition(Pairs); 135 } 136 137 ArrayRef<NfaPath> getPaths() { 138 Paths.clear(); 139 for (auto *Head : Heads) { 140 NfaPath P; 141 while (Head->State != 0) { 142 P.push_back(Head->State); 143 Head = Head->Tail; 144 } 145 std::reverse(P.begin(), P.end()); 146 Paths.push_back(std::move(P)); 147 } 148 return Paths; 149 } 150 }; 151 } // namespace internal 152 153 /// A deterministic finite-state automaton. The automaton is defined in 154 /// TableGen; this object drives an automaton defined by tblgen-emitted tables. 155 /// 156 /// An automaton accepts a sequence of input tokens ("actions"). This class is 157 /// templated on the type of these actions. 158 template <typename ActionT> class Automaton { 159 /// Map from {State, Action} to {NewState, TransitionInfoIdx}. 160 /// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition. 161 /// FIXME: This uses a std::map because ActionT can be a pair type including 162 /// an enum. In particular DenseMapInfo<ActionT> must be defined to use 163 /// DenseMap here. 164 /// This is a shared_ptr to allow very quick copy-construction of Automata; this 165 /// state is immutable after construction so this is safe. 166 using MapTy = std::map<std::pair<uint64_t, ActionT>, std::pair<uint64_t, unsigned>>; 167 std::shared_ptr<MapTy> M; 168 /// An optional transcription object. This uses much more state than simply 169 /// traversing the DFA for acceptance, so is heap allocated. 170 std::shared_ptr<internal::NfaTranscriber> Transcriber; 171 /// The initial DFA state is 1. 172 uint64_t State = 1; 173 /// True if we should transcribe and false if not (even if Transcriber is defined). 174 bool Transcribe; 175 176 public: 177 /// Create an automaton. 178 /// \param Transitions The Transitions table as created by TableGen. Note that 179 /// because the action type differs per automaton, the 180 /// table type is templated as ArrayRef<InfoT>. 181 /// \param TranscriptionTable The TransitionInfo table as created by TableGen. 182 /// 183 /// Providing the TranscriptionTable argument as non-empty will enable the 184 /// use of transcription, which analyzes the possible paths in the original 185 /// NFA taken by the DFA. NOTE: This is substantially more work than simply 186 /// driving the DFA, so unless you require the getPaths() method leave this 187 /// empty. 188 template <typename InfoT> 189 Automaton(ArrayRef<InfoT> Transitions, 190 ArrayRef<NfaStatePair> TranscriptionTable = {}) { 191 if (!TranscriptionTable.empty()) 192 Transcriber = 193 std::make_shared<internal::NfaTranscriber>(TranscriptionTable); 194 Transcribe = Transcriber != nullptr; 195 M = std::make_shared<MapTy>(); 196 for (const auto &I : Transitions) 197 // Greedily read and cache the transition table. 198 M->emplace(std::make_pair(I.FromDfaState, I.Action), 199 std::make_pair(I.ToDfaState, I.InfoIdx)); 200 } 201 Automaton(const Automaton &) = default; 202 203 /// Reset the automaton to its initial state. 204 void reset() { 205 State = 1; 206 if (Transcriber) 207 Transcriber->reset(); 208 } 209 210 /// Enable or disable transcription. Transcription is only available if 211 /// TranscriptionTable was provided to the constructor. 212 void enableTranscription(bool Enable = true) { 213 assert(Transcriber && 214 "Transcription is only available if TranscriptionTable was provided " 215 "to the Automaton constructor"); 216 Transcribe = Enable; 217 } 218 219 /// Transition the automaton based on input symbol A. Return true if the 220 /// automaton transitioned to a valid state, false if the automaton 221 /// transitioned to an invalid state. 222 /// 223 /// If this function returns false, all methods are undefined until reset() is 224 /// called. 225 bool add(const ActionT &A) { 226 auto I = M->find({State, A}); 227 if (I == M->end()) 228 return false; 229 if (Transcriber && Transcribe) 230 Transcriber->transition(I->second.second); 231 State = I->second.first; 232 return true; 233 } 234 235 /// Return true if the automaton can be transitioned based on input symbol A. 236 bool canAdd(const ActionT &A) { 237 auto I = M->find({State, A}); 238 return I != M->end(); 239 } 240 241 /// Obtain a set of possible paths through the input nondeterministic 242 /// automaton that could be obtained from the sequence of input actions 243 /// presented to this deterministic automaton. 244 ArrayRef<NfaPath> getNfaPaths() { 245 assert(Transcriber && Transcribe && 246 "Can only obtain NFA paths if transcribing!"); 247 return Transcriber->getPaths(); 248 } 249 }; 250 251 } // namespace llvm 252 253 #endif // LLVM_SUPPORT_AUTOMATON_H 254