1 //===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements class that drive and introspect deterministic finite- 10 // state automata (DFAs) as generated by TableGen's -gen-automata backend. 11 // 12 // For a description of how to define an automaton, see 13 // include/llvm/TableGen/Automaton.td. 14 // 15 // One important detail is that these deterministic automata are created from 16 // (potentially) nondeterministic definitions. Therefore a unique sequence of 17 // input symbols will produce one path through the DFA but multiple paths 18 // through the original NFA. An automaton by default only returns "accepted" or 19 // "not accepted", but frequently we want to analyze what NFA path was taken. 20 // Finding a path through the NFA states that results in a DFA state can help 21 // answer *what* the solution to a problem was, not just that there exists a 22 // solution. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #ifndef LLVM_SUPPORT_AUTOMATON_H 27 #define LLVM_SUPPORT_AUTOMATON_H 28 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/Support/Allocator.h" 33 #include <deque> 34 #include <map> 35 #include <memory> 36 37 namespace llvm { 38 39 using NfaPath = SmallVector<uint64_t, 4>; 40 41 /// Forward define the pair type used by the automata transition info tables. 42 /// 43 /// Experimental results with large tables have shown a significant (multiple 44 /// orders of magnitude) parsing speedup by using a custom struct here with a 45 /// trivial constructor rather than std::pair<uint64_t, uint64_t>. 46 struct NfaStatePair { 47 uint64_t FromDfaState, ToDfaState; 48 49 bool operator<(const NfaStatePair &Other) const { 50 return std::make_tuple(FromDfaState, ToDfaState) < 51 std::make_tuple(Other.FromDfaState, Other.ToDfaState); 52 } 53 }; 54 55 namespace internal { 56 /// The internal class that maintains all possible paths through an NFA based 57 /// on a path through the DFA. 58 class NfaTranscriber { 59 private: 60 /// Cached transition table. This is a table of NfaStatePairs that contains 61 /// zero-terminated sequences pointed to by DFA transitions. 62 ArrayRef<NfaStatePair> TransitionInfo; 63 64 /// A simple linked-list of traversed states that can have a shared tail. The 65 /// traversed path is stored in reverse order with the latest state as the 66 /// head. 67 struct PathSegment { 68 uint64_t State; 69 PathSegment *Tail; 70 }; 71 72 /// We allocate segment objects frequently. Allocate them upfront and dispose 73 /// at the end of a traversal rather than hammering the system allocator. 74 SpecificBumpPtrAllocator<PathSegment> Allocator; 75 76 /// Heads of each tracked path. These are not ordered. 77 std::deque<PathSegment *> Heads; 78 79 /// The returned paths. This is populated during getPaths. 80 SmallVector<NfaPath, 4> Paths; 81 82 /// Create a new segment and return it. 83 PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) { 84 PathSegment *P = Allocator.Allocate(); 85 *P = {State, Tail}; 86 return P; 87 } 88 89 /// Pairs defines a sequence of possible NFA transitions for a single DFA 90 /// transition. 91 void transition(ArrayRef<NfaStatePair> Pairs) { 92 // Iterate over all existing heads. We will mutate the Heads deque during 93 // iteration. 94 unsigned NumHeads = Heads.size(); 95 for (unsigned I = 0; I < NumHeads; ++I) { 96 PathSegment *Head = Heads[I]; 97 // The sequence of pairs is sorted. Select the set of pairs that 98 // transition from the current head state. 99 auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL}); 100 auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX}); 101 // For every transition from the current head state, add a new path 102 // segment. 103 for (; PI != PE; ++PI) 104 if (PI->FromDfaState == Head->State) 105 Heads.push_back(makePathSegment(PI->ToDfaState, Head)); 106 } 107 // Now we've iterated over all the initial heads and added new ones, 108 // dispose of the original heads. 109 Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads)); 110 } 111 112 public: 113 NfaTranscriber(ArrayRef<NfaStatePair> TransitionInfo) 114 : TransitionInfo(TransitionInfo) { 115 reset(); 116 } 117 118 ArrayRef<NfaStatePair> getTransitionInfo() const { 119 return TransitionInfo; 120 } 121 122 void reset() { 123 Paths.clear(); 124 Heads.clear(); 125 Allocator.DestroyAll(); 126 // The initial NFA state is 0. 127 Heads.push_back(makePathSegment(0ULL, nullptr)); 128 } 129 130 void transition(unsigned TransitionInfoIdx) { 131 unsigned EndIdx = TransitionInfoIdx; 132 while (TransitionInfo[EndIdx].ToDfaState != 0) 133 ++EndIdx; 134 ArrayRef<NfaStatePair> Pairs(&TransitionInfo[TransitionInfoIdx], 135 EndIdx - TransitionInfoIdx); 136 transition(Pairs); 137 } 138 139 ArrayRef<NfaPath> getPaths() { 140 Paths.clear(); 141 for (auto *Head : Heads) { 142 NfaPath P; 143 while (Head->State != 0) { 144 P.push_back(Head->State); 145 Head = Head->Tail; 146 } 147 std::reverse(P.begin(), P.end()); 148 Paths.push_back(std::move(P)); 149 } 150 return Paths; 151 } 152 }; 153 } // namespace internal 154 155 /// A deterministic finite-state automaton. The automaton is defined in 156 /// TableGen; this object drives an automaton defined by tblgen-emitted tables. 157 /// 158 /// An automaton accepts a sequence of input tokens ("actions"). This class is 159 /// templated on the type of these actions. 160 template <typename ActionT> class Automaton { 161 /// Map from {State, Action} to {NewState, TransitionInfoIdx}. 162 /// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition. 163 /// FIXME: This uses a std::map because ActionT can be a pair type including 164 /// an enum. In particular DenseMapInfo<ActionT> must be defined to use 165 /// DenseMap here. 166 /// This is a shared_ptr to allow very quick copy-construction of Automata; this 167 /// state is immutable after construction so this is safe. 168 using MapTy = std::map<std::pair<uint64_t, ActionT>, std::pair<uint64_t, unsigned>>; 169 std::shared_ptr<MapTy> M; 170 /// An optional transcription object. This uses much more state than simply 171 /// traversing the DFA for acceptance, so is heap allocated. 172 std::shared_ptr<internal::NfaTranscriber> Transcriber; 173 /// The initial DFA state is 1. 174 uint64_t State = 1; 175 /// True if we should transcribe and false if not (even if Transcriber is defined). 176 bool Transcribe; 177 178 public: 179 /// Create an automaton. 180 /// \param Transitions The Transitions table as created by TableGen. Note that 181 /// because the action type differs per automaton, the 182 /// table type is templated as ArrayRef<InfoT>. 183 /// \param TranscriptionTable The TransitionInfo table as created by TableGen. 184 /// 185 /// Providing the TranscriptionTable argument as non-empty will enable the 186 /// use of transcription, which analyzes the possible paths in the original 187 /// NFA taken by the DFA. NOTE: This is substantially more work than simply 188 /// driving the DFA, so unless you require the getPaths() method leave this 189 /// empty. 190 template <typename InfoT> 191 Automaton(ArrayRef<InfoT> Transitions, 192 ArrayRef<NfaStatePair> TranscriptionTable = {}) { 193 if (!TranscriptionTable.empty()) 194 Transcriber = 195 std::make_shared<internal::NfaTranscriber>(TranscriptionTable); 196 Transcribe = Transcriber != nullptr; 197 M = std::make_shared<MapTy>(); 198 for (const auto &I : Transitions) 199 // Greedily read and cache the transition table. 200 M->emplace(std::make_pair(I.FromDfaState, I.Action), 201 std::make_pair(I.ToDfaState, I.InfoIdx)); 202 } 203 Automaton(const Automaton &Other) 204 : M(Other.M), State(Other.State), Transcribe(Other.Transcribe) { 205 // Transcriber is not thread-safe, so create a new instance on copy. 206 if (Other.Transcriber) 207 Transcriber = std::make_shared<internal::NfaTranscriber>( 208 Other.Transcriber->getTransitionInfo()); 209 } 210 211 /// Reset the automaton to its initial state. 212 void reset() { 213 State = 1; 214 if (Transcriber) 215 Transcriber->reset(); 216 } 217 218 /// Enable or disable transcription. Transcription is only available if 219 /// TranscriptionTable was provided to the constructor. 220 void enableTranscription(bool Enable = true) { 221 assert(Transcriber && 222 "Transcription is only available if TranscriptionTable was provided " 223 "to the Automaton constructor"); 224 Transcribe = Enable; 225 } 226 227 /// Transition the automaton based on input symbol A. Return true if the 228 /// automaton transitioned to a valid state, false if the automaton 229 /// transitioned to an invalid state. 230 /// 231 /// If this function returns false, all methods are undefined until reset() is 232 /// called. 233 bool add(const ActionT &A) { 234 auto I = M->find({State, A}); 235 if (I == M->end()) 236 return false; 237 if (Transcriber && Transcribe) 238 Transcriber->transition(I->second.second); 239 State = I->second.first; 240 return true; 241 } 242 243 /// Return true if the automaton can be transitioned based on input symbol A. 244 bool canAdd(const ActionT &A) { 245 auto I = M->find({State, A}); 246 return I != M->end(); 247 } 248 249 /// Obtain a set of possible paths through the input nondeterministic 250 /// automaton that could be obtained from the sequence of input actions 251 /// presented to this deterministic automaton. 252 ArrayRef<NfaPath> getNfaPaths() { 253 assert(Transcriber && Transcribe && 254 "Can only obtain NFA paths if transcribing!"); 255 return Transcriber->getPaths(); 256 } 257 }; 258 259 } // namespace llvm 260 261 #endif // LLVM_SUPPORT_AUTOMATON_H 262