xref: /freebsd/contrib/llvm-project/llvm/include/llvm/MC/MCSchedule.h (revision 52d973f52c07b94909a6487be373c269988dc151)
1 //===-- llvm/MC/MCSchedule.h - Scheduling -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the classes used to describe a subtarget's machine model
10 // for scheduling and other instruction cost heuristics.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_MC_MCSCHEDULE_H
15 #define LLVM_MC_MCSCHEDULE_H
16 
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/Config/llvm-config.h"
19 #include "llvm/Support/DataTypes.h"
20 #include <cassert>
21 
22 namespace llvm {
23 
24 template <typename T> class ArrayRef;
25 struct InstrItinerary;
26 class MCSubtargetInfo;
27 class MCInstrInfo;
28 class MCInst;
29 class InstrItineraryData;
30 
31 /// Define a kind of processor resource that will be modeled by the scheduler.
32 struct MCProcResourceDesc {
33   const char *Name;
34   unsigned NumUnits; // Number of resource of this kind
35   unsigned SuperIdx; // Index of the resources kind that contains this kind.
36 
37   // Number of resources that may be buffered.
38   //
39   // Buffered resources (BufferSize != 0) may be consumed at some indeterminate
40   // cycle after dispatch. This should be used for out-of-order cpus when
41   // instructions that use this resource can be buffered in a reservaton
42   // station.
43   //
44   // Unbuffered resources (BufferSize == 0) always consume their resource some
45   // fixed number of cycles after dispatch. If a resource is unbuffered, then
46   // the scheduler will avoid scheduling instructions with conflicting resources
47   // in the same cycle. This is for in-order cpus, or the in-order portion of
48   // an out-of-order cpus.
49   int BufferSize;
50 
51   // If the resource has sub-units, a pointer to the first element of an array
52   // of `NumUnits` elements containing the ProcResourceIdx of the sub units.
53   // nullptr if the resource does not have sub-units.
54   const unsigned *SubUnitsIdxBegin;
55 
56   bool operator==(const MCProcResourceDesc &Other) const {
57     return NumUnits == Other.NumUnits && SuperIdx == Other.SuperIdx
58       && BufferSize == Other.BufferSize;
59   }
60 };
61 
62 /// Identify one of the processor resource kinds consumed by a particular
63 /// scheduling class for the specified number of cycles.
64 struct MCWriteProcResEntry {
65   uint16_t ProcResourceIdx;
66   uint16_t Cycles;
67 
68   bool operator==(const MCWriteProcResEntry &Other) const {
69     return ProcResourceIdx == Other.ProcResourceIdx && Cycles == Other.Cycles;
70   }
71 };
72 
73 /// Specify the latency in cpu cycles for a particular scheduling class and def
74 /// index. -1 indicates an invalid latency. Heuristics would typically consider
75 /// an instruction with invalid latency to have infinite latency.  Also identify
76 /// the WriteResources of this def. When the operand expands to a sequence of
77 /// writes, this ID is the last write in the sequence.
78 struct MCWriteLatencyEntry {
79   int16_t Cycles;
80   uint16_t WriteResourceID;
81 
82   bool operator==(const MCWriteLatencyEntry &Other) const {
83     return Cycles == Other.Cycles && WriteResourceID == Other.WriteResourceID;
84   }
85 };
86 
87 /// Specify the number of cycles allowed after instruction issue before a
88 /// particular use operand reads its registers. This effectively reduces the
89 /// write's latency. Here we allow negative cycles for corner cases where
90 /// latency increases. This rule only applies when the entry's WriteResource
91 /// matches the write's WriteResource.
92 ///
93 /// MCReadAdvanceEntries are sorted first by operand index (UseIdx), then by
94 /// WriteResourceIdx.
95 struct MCReadAdvanceEntry {
96   unsigned UseIdx;
97   unsigned WriteResourceID;
98   int Cycles;
99 
100   bool operator==(const MCReadAdvanceEntry &Other) const {
101     return UseIdx == Other.UseIdx && WriteResourceID == Other.WriteResourceID
102       && Cycles == Other.Cycles;
103   }
104 };
105 
106 /// Summarize the scheduling resources required for an instruction of a
107 /// particular scheduling class.
108 ///
109 /// Defined as an aggregate struct for creating tables with initializer lists.
110 struct MCSchedClassDesc {
111   static const unsigned short InvalidNumMicroOps = (1U << 13) - 1;
112   static const unsigned short VariantNumMicroOps = InvalidNumMicroOps - 1;
113 
114 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
115   const char* Name;
116 #endif
117   uint16_t NumMicroOps : 13;
118   uint16_t BeginGroup : 1;
119   uint16_t EndGroup : 1;
120   uint16_t RetireOOO : 1;
121   uint16_t WriteProcResIdx; // First index into WriteProcResTable.
122   uint16_t NumWriteProcResEntries;
123   uint16_t WriteLatencyIdx; // First index into WriteLatencyTable.
124   uint16_t NumWriteLatencyEntries;
125   uint16_t ReadAdvanceIdx; // First index into ReadAdvanceTable.
126   uint16_t NumReadAdvanceEntries;
127 
128   bool isValid() const {
129     return NumMicroOps != InvalidNumMicroOps;
130   }
131   bool isVariant() const {
132     return NumMicroOps == VariantNumMicroOps;
133   }
134 };
135 
136 /// Specify the cost of a register definition in terms of number of physical
137 /// register allocated at register renaming stage. For example, AMD Jaguar.
138 /// natively supports 128-bit data types, and operations on 256-bit registers
139 /// (i.e. YMM registers) are internally split into two COPs (complex operations)
140 /// and each COP updates a physical register. Basically, on Jaguar, a YMM
141 /// register write effectively consumes two physical registers. That means,
142 /// the cost of a YMM write in the BtVer2 model is 2.
143 struct MCRegisterCostEntry {
144   unsigned RegisterClassID;
145   unsigned Cost;
146   bool AllowMoveElimination;
147 };
148 
149 /// A register file descriptor.
150 ///
151 /// This struct allows to describe processor register files. In particular, it
152 /// helps describing the size of the register file, as well as the cost of
153 /// allocating a register file at register renaming stage.
154 /// FIXME: this struct can be extended to provide information about the number
155 /// of read/write ports to the register file.  A value of zero for field
156 /// 'NumPhysRegs' means: this register file has an unbounded number of physical
157 /// registers.
158 struct MCRegisterFileDesc {
159   const char *Name;
160   uint16_t NumPhysRegs;
161   uint16_t NumRegisterCostEntries;
162   // Index of the first cost entry in MCExtraProcessorInfo::RegisterCostTable.
163   uint16_t RegisterCostEntryIdx;
164   // A value of zero means: there is no limit in the number of moves that can be
165   // eliminated every cycle.
166   uint16_t MaxMovesEliminatedPerCycle;
167   // Ture if this register file only knows how to optimize register moves from
168   // known zero registers.
169   bool AllowZeroMoveEliminationOnly;
170 };
171 
172 /// Provide extra details about the machine processor.
173 ///
174 /// This is a collection of "optional" processor information that is not
175 /// normally used by the LLVM machine schedulers, but that can be consumed by
176 /// external tools like llvm-mca to improve the quality of the peformance
177 /// analysis.
178 struct MCExtraProcessorInfo {
179   // Actual size of the reorder buffer in hardware.
180   unsigned ReorderBufferSize;
181   // Number of instructions retired per cycle.
182   unsigned MaxRetirePerCycle;
183   const MCRegisterFileDesc *RegisterFiles;
184   unsigned NumRegisterFiles;
185   const MCRegisterCostEntry *RegisterCostTable;
186   unsigned NumRegisterCostEntries;
187   unsigned LoadQueueID;
188   unsigned StoreQueueID;
189 };
190 
191 /// Machine model for scheduling, bundling, and heuristics.
192 ///
193 /// The machine model directly provides basic information about the
194 /// microarchitecture to the scheduler in the form of properties. It also
195 /// optionally refers to scheduler resource tables and itinerary
196 /// tables. Scheduler resource tables model the latency and cost for each
197 /// instruction type. Itinerary tables are an independent mechanism that
198 /// provides a detailed reservation table describing each cycle of instruction
199 /// execution. Subtargets may define any or all of the above categories of data
200 /// depending on the type of CPU and selected scheduler.
201 ///
202 /// The machine independent properties defined here are used by the scheduler as
203 /// an abstract machine model. A real micro-architecture has a number of
204 /// buffers, queues, and stages. Declaring that a given machine-independent
205 /// abstract property corresponds to a specific physical property across all
206 /// subtargets can't be done. Nonetheless, the abstract model is
207 /// useful. Futhermore, subtargets typically extend this model with processor
208 /// specific resources to model any hardware features that can be exploited by
209 /// scheduling heuristics and aren't sufficiently represented in the abstract.
210 ///
211 /// The abstract pipeline is built around the notion of an "issue point". This
212 /// is merely a reference point for counting machine cycles. The physical
213 /// machine will have pipeline stages that delay execution. The scheduler does
214 /// not model those delays because they are irrelevant as long as they are
215 /// consistent. Inaccuracies arise when instructions have different execution
216 /// delays relative to each other, in addition to their intrinsic latency. Those
217 /// special cases can be handled by TableGen constructs such as, ReadAdvance,
218 /// which reduces latency when reading data, and ResourceCycles, which consumes
219 /// a processor resource when writing data for a number of abstract
220 /// cycles.
221 ///
222 /// TODO: One tool currently missing is the ability to add a delay to
223 /// ResourceCycles. That would be easy to add and would likely cover all cases
224 /// currently handled by the legacy itinerary tables.
225 ///
226 /// A note on out-of-order execution and, more generally, instruction
227 /// buffers. Part of the CPU pipeline is always in-order. The issue point, which
228 /// is the point of reference for counting cycles, only makes sense as an
229 /// in-order part of the pipeline. Other parts of the pipeline are sometimes
230 /// falling behind and sometimes catching up. It's only interesting to model
231 /// those other, decoupled parts of the pipeline if they may be predictably
232 /// resource constrained in a way that the scheduler can exploit.
233 ///
234 /// The LLVM machine model distinguishes between in-order constraints and
235 /// out-of-order constraints so that the target's scheduling strategy can apply
236 /// appropriate heuristics. For a well-balanced CPU pipeline, out-of-order
237 /// resources would not typically be treated as a hard scheduling
238 /// constraint. For example, in the GenericScheduler, a delay caused by limited
239 /// out-of-order resources is not directly reflected in the number of cycles
240 /// that the scheduler sees between issuing an instruction and its dependent
241 /// instructions. In other words, out-of-order resources don't directly increase
242 /// the latency between pairs of instructions. However, they can still be used
243 /// to detect potential bottlenecks across a sequence of instructions and bias
244 /// the scheduling heuristics appropriately.
245 struct MCSchedModel {
246   // IssueWidth is the maximum number of instructions that may be scheduled in
247   // the same per-cycle group. This is meant to be a hard in-order constraint
248   // (a.k.a. "hazard"). In the GenericScheduler strategy, no more than
249   // IssueWidth micro-ops can ever be scheduled in a particular cycle.
250   //
251   // In practice, IssueWidth is useful to model any bottleneck between the
252   // decoder (after micro-op expansion) and the out-of-order reservation
253   // stations or the decoder bandwidth itself. If the total number of
254   // reservation stations is also a bottleneck, or if any other pipeline stage
255   // has a bandwidth limitation, then that can be naturally modeled by adding an
256   // out-of-order processor resource.
257   unsigned IssueWidth;
258   static const unsigned DefaultIssueWidth = 1;
259 
260   // MicroOpBufferSize is the number of micro-ops that the processor may buffer
261   // for out-of-order execution.
262   //
263   // "0" means operations that are not ready in this cycle are not considered
264   // for scheduling (they go in the pending queue). Latency is paramount. This
265   // may be more efficient if many instructions are pending in a schedule.
266   //
267   // "1" means all instructions are considered for scheduling regardless of
268   // whether they are ready in this cycle. Latency still causes issue stalls,
269   // but we balance those stalls against other heuristics.
270   //
271   // "> 1" means the processor is out-of-order. This is a machine independent
272   // estimate of highly machine specific characteristics such as the register
273   // renaming pool and reorder buffer.
274   unsigned MicroOpBufferSize;
275   static const unsigned DefaultMicroOpBufferSize = 0;
276 
277   // LoopMicroOpBufferSize is the number of micro-ops that the processor may
278   // buffer for optimized loop execution. More generally, this represents the
279   // optimal number of micro-ops in a loop body. A loop may be partially
280   // unrolled to bring the count of micro-ops in the loop body closer to this
281   // number.
282   unsigned LoopMicroOpBufferSize;
283   static const unsigned DefaultLoopMicroOpBufferSize = 0;
284 
285   // LoadLatency is the expected latency of load instructions.
286   unsigned LoadLatency;
287   static const unsigned DefaultLoadLatency = 4;
288 
289   // HighLatency is the expected latency of "very high latency" operations.
290   // See TargetInstrInfo::isHighLatencyDef().
291   // By default, this is set to an arbitrarily high number of cycles
292   // likely to have some impact on scheduling heuristics.
293   unsigned HighLatency;
294   static const unsigned DefaultHighLatency = 10;
295 
296   // MispredictPenalty is the typical number of extra cycles the processor
297   // takes to recover from a branch misprediction.
298   unsigned MispredictPenalty;
299   static const unsigned DefaultMispredictPenalty = 10;
300 
301   bool PostRAScheduler; // default value is false
302 
303   bool CompleteModel;
304 
305   unsigned ProcID;
306   const MCProcResourceDesc *ProcResourceTable;
307   const MCSchedClassDesc *SchedClassTable;
308   unsigned NumProcResourceKinds;
309   unsigned NumSchedClasses;
310   // Instruction itinerary tables used by InstrItineraryData.
311   friend class InstrItineraryData;
312   const InstrItinerary *InstrItineraries;
313 
314   const MCExtraProcessorInfo *ExtraProcessorInfo;
315 
316   bool hasExtraProcessorInfo() const { return ExtraProcessorInfo; }
317 
318   unsigned getProcessorID() const { return ProcID; }
319 
320   /// Does this machine model include instruction-level scheduling.
321   bool hasInstrSchedModel() const { return SchedClassTable; }
322 
323   const MCExtraProcessorInfo &getExtraProcessorInfo() const {
324     assert(hasExtraProcessorInfo() &&
325            "No extra information available for this model");
326     return *ExtraProcessorInfo;
327   }
328 
329   /// Return true if this machine model data for all instructions with a
330   /// scheduling class (itinerary class or SchedRW list).
331   bool isComplete() const { return CompleteModel; }
332 
333   /// Return true if machine supports out of order execution.
334   bool isOutOfOrder() const { return MicroOpBufferSize > 1; }
335 
336   unsigned getNumProcResourceKinds() const {
337     return NumProcResourceKinds;
338   }
339 
340   const MCProcResourceDesc *getProcResource(unsigned ProcResourceIdx) const {
341     assert(hasInstrSchedModel() && "No scheduling machine model");
342 
343     assert(ProcResourceIdx < NumProcResourceKinds && "bad proc resource idx");
344     return &ProcResourceTable[ProcResourceIdx];
345   }
346 
347   const MCSchedClassDesc *getSchedClassDesc(unsigned SchedClassIdx) const {
348     assert(hasInstrSchedModel() && "No scheduling machine model");
349 
350     assert(SchedClassIdx < NumSchedClasses && "bad scheduling class idx");
351     return &SchedClassTable[SchedClassIdx];
352   }
353 
354   /// Returns the latency value for the scheduling class.
355   static int computeInstrLatency(const MCSubtargetInfo &STI,
356                                  const MCSchedClassDesc &SCDesc);
357 
358   int computeInstrLatency(const MCSubtargetInfo &STI, unsigned SClass) const;
359   int computeInstrLatency(const MCSubtargetInfo &STI, const MCInstrInfo &MCII,
360                           const MCInst &Inst) const;
361 
362   // Returns the reciprocal throughput information from a MCSchedClassDesc.
363   static double
364   getReciprocalThroughput(const MCSubtargetInfo &STI,
365                           const MCSchedClassDesc &SCDesc);
366 
367   static double
368   getReciprocalThroughput(unsigned SchedClass, const InstrItineraryData &IID);
369 
370   double
371   getReciprocalThroughput(const MCSubtargetInfo &STI, const MCInstrInfo &MCII,
372                           const MCInst &Inst) const;
373 
374   /// Returns the maximum forwarding delay for register reads dependent on
375   /// writes of scheduling class WriteResourceIdx.
376   static unsigned getForwardingDelayCycles(ArrayRef<MCReadAdvanceEntry> Entries,
377                                            unsigned WriteResourceIdx = 0);
378 
379   /// Returns the default initialized model.
380   static const MCSchedModel &GetDefaultSchedModel() { return Default; }
381   static const MCSchedModel Default;
382 };
383 
384 } // namespace llvm
385 
386 #endif
387