1 //===-LTO.h - LLVM Link Time Optimizer ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares functions and classes used to support LTO. It is intended 10 // to be used both by LTO classes as well as by clients (gold-plugin) that 11 // don't utilize the LTO code generator interfaces. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_LTO_LTO_H 16 #define LLVM_LTO_LTO_H 17 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/Bitcode/BitcodeReader.h" 21 #include "llvm/IR/ModuleSummaryIndex.h" 22 #include "llvm/LTO/Config.h" 23 #include "llvm/Object/IRSymtab.h" 24 #include "llvm/Support/Caching.h" 25 #include "llvm/Support/Error.h" 26 #include "llvm/Support/thread.h" 27 #include "llvm/Transforms/IPO/FunctionAttrs.h" 28 #include "llvm/Transforms/IPO/FunctionImport.h" 29 30 namespace llvm { 31 32 class Error; 33 class IRMover; 34 class LLVMContext; 35 class MemoryBufferRef; 36 class Module; 37 class raw_pwrite_stream; 38 class ToolOutputFile; 39 40 /// Resolve linkage for prevailing symbols in the \p Index. Linkage changes 41 /// recorded in the index and the ThinLTO backends must apply the changes to 42 /// the module via thinLTOFinalizeInModule. 43 /// 44 /// This is done for correctness (if value exported, ensure we always 45 /// emit a copy), and compile-time optimization (allow drop of duplicates). 46 void thinLTOResolvePrevailingInIndex( 47 const lto::Config &C, ModuleSummaryIndex &Index, 48 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 49 isPrevailing, 50 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 51 recordNewLinkage, 52 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols); 53 54 /// Update the linkages in the given \p Index to mark exported values 55 /// as external and non-exported values as internal. The ThinLTO backends 56 /// must apply the changes to the Module via thinLTOInternalizeModule. 57 void thinLTOInternalizeAndPromoteInIndex( 58 ModuleSummaryIndex &Index, 59 function_ref<bool(StringRef, ValueInfo)> isExported, 60 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 61 isPrevailing); 62 63 /// Computes a unique hash for the Module considering the current list of 64 /// export/import and other global analysis results. 65 /// The hash is produced in \p Key. 66 void computeLTOCacheKey( 67 SmallString<40> &Key, const lto::Config &Conf, 68 const ModuleSummaryIndex &Index, StringRef ModuleID, 69 const FunctionImporter::ImportMapTy &ImportList, 70 const FunctionImporter::ExportSetTy &ExportList, 71 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 72 const GVSummaryMapTy &DefinedGlobals, 73 const std::set<GlobalValue::GUID> &CfiFunctionDefs = {}, 74 const std::set<GlobalValue::GUID> &CfiFunctionDecls = {}); 75 76 namespace lto { 77 78 /// Given the original \p Path to an output file, replace any path 79 /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the 80 /// resulting directory if it does not yet exist. 81 std::string getThinLTOOutputFile(const std::string &Path, 82 const std::string &OldPrefix, 83 const std::string &NewPrefix); 84 85 /// Setup optimization remarks. 86 Expected<std::unique_ptr<ToolOutputFile>> setupLLVMOptimizationRemarks( 87 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 88 StringRef RemarksFormat, bool RemarksWithHotness, 89 std::optional<uint64_t> RemarksHotnessThreshold = 0, int Count = -1); 90 91 /// Setups the output file for saving statistics. 92 Expected<std::unique_ptr<ToolOutputFile>> 93 setupStatsFile(StringRef StatsFilename); 94 95 /// Produces a container ordering for optimal multi-threaded processing. Returns 96 /// ordered indices to elements in the input array. 97 std::vector<int> generateModulesOrdering(ArrayRef<BitcodeModule *> R); 98 99 class LTO; 100 struct SymbolResolution; 101 class ThinBackendProc; 102 103 /// An input file. This is a symbol table wrapper that only exposes the 104 /// information that an LTO client should need in order to do symbol resolution. 105 class InputFile { 106 public: 107 class Symbol; 108 109 private: 110 // FIXME: Remove LTO class friendship once we have bitcode symbol tables. 111 friend LTO; 112 InputFile() = default; 113 114 std::vector<BitcodeModule> Mods; 115 SmallVector<char, 0> Strtab; 116 std::vector<Symbol> Symbols; 117 118 // [begin, end) for each module 119 std::vector<std::pair<size_t, size_t>> ModuleSymIndices; 120 121 StringRef TargetTriple, SourceFileName, COFFLinkerOpts; 122 std::vector<StringRef> DependentLibraries; 123 std::vector<std::pair<StringRef, Comdat::SelectionKind>> ComdatTable; 124 125 public: 126 ~InputFile(); 127 128 /// Create an InputFile. 129 static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object); 130 131 /// The purpose of this class is to only expose the symbol information that an 132 /// LTO client should need in order to do symbol resolution. 133 class Symbol : irsymtab::Symbol { 134 friend LTO; 135 136 public: 137 Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {} 138 139 using irsymtab::Symbol::isUndefined; 140 using irsymtab::Symbol::isCommon; 141 using irsymtab::Symbol::isWeak; 142 using irsymtab::Symbol::isIndirect; 143 using irsymtab::Symbol::getName; 144 using irsymtab::Symbol::getIRName; 145 using irsymtab::Symbol::getVisibility; 146 using irsymtab::Symbol::canBeOmittedFromSymbolTable; 147 using irsymtab::Symbol::isTLS; 148 using irsymtab::Symbol::getComdatIndex; 149 using irsymtab::Symbol::getCommonSize; 150 using irsymtab::Symbol::getCommonAlignment; 151 using irsymtab::Symbol::getCOFFWeakExternalFallback; 152 using irsymtab::Symbol::getSectionName; 153 using irsymtab::Symbol::isExecutable; 154 using irsymtab::Symbol::isUsed; 155 }; 156 157 /// A range over the symbols in this InputFile. 158 ArrayRef<Symbol> symbols() const { return Symbols; } 159 160 /// Returns linker options specified in the input file. 161 StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; } 162 163 /// Returns dependent library specifiers from the input file. 164 ArrayRef<StringRef> getDependentLibraries() const { return DependentLibraries; } 165 166 /// Returns the path to the InputFile. 167 StringRef getName() const; 168 169 /// Returns the input file's target triple. 170 StringRef getTargetTriple() const { return TargetTriple; } 171 172 /// Returns the source file path specified at compile time. 173 StringRef getSourceFileName() const { return SourceFileName; } 174 175 // Returns a table with all the comdats used by this file. 176 ArrayRef<std::pair<StringRef, Comdat::SelectionKind>> getComdatTable() const { 177 return ComdatTable; 178 } 179 180 // Returns the only BitcodeModule from InputFile. 181 BitcodeModule &getSingleBitcodeModule(); 182 183 private: 184 ArrayRef<Symbol> module_symbols(unsigned I) const { 185 const auto &Indices = ModuleSymIndices[I]; 186 return {Symbols.data() + Indices.first, Symbols.data() + Indices.second}; 187 } 188 }; 189 190 /// A ThinBackend defines what happens after the thin-link phase during ThinLTO. 191 /// The details of this type definition aren't important; clients can only 192 /// create a ThinBackend using one of the create*ThinBackend() functions below. 193 using ThinBackend = std::function<std::unique_ptr<ThinBackendProc>( 194 const Config &C, ModuleSummaryIndex &CombinedIndex, 195 StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 196 AddStreamFn AddStream, FileCache Cache)>; 197 198 /// This ThinBackend runs the individual backend jobs in-process. 199 /// The default value means to use one job per hardware core (not hyper-thread). 200 /// OnWrite is callback which receives module identifier and notifies LTO user 201 /// that index file for the module (and optionally imports file) was created. 202 /// ShouldEmitIndexFiles being true will write sharded ThinLTO index files 203 /// to the same path as the input module, with suffix ".thinlto.bc" 204 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a 205 /// similar path with ".imports" appended instead. 206 using IndexWriteCallback = std::function<void(const std::string &)>; 207 ThinBackend createInProcessThinBackend(ThreadPoolStrategy Parallelism, 208 IndexWriteCallback OnWrite = nullptr, 209 bool ShouldEmitIndexFiles = false, 210 bool ShouldEmitImportsFiles = false); 211 212 /// This ThinBackend writes individual module indexes to files, instead of 213 /// running the individual backend jobs. This backend is for distributed builds 214 /// where separate processes will invoke the real backends. 215 /// 216 /// To find the path to write the index to, the backend checks if the path has a 217 /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then 218 /// appends ".thinlto.bc" and writes the index to that path. If 219 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a 220 /// similar path with ".imports" appended instead. 221 /// LinkedObjectsFile is an output stream to write the list of object files for 222 /// the final ThinLTO linking. Can be nullptr. 223 /// OnWrite is callback which receives module identifier and notifies LTO user 224 /// that index file for the module (and optionally imports file) was created. 225 ThinBackend createWriteIndexesThinBackend(std::string OldPrefix, 226 std::string NewPrefix, 227 bool ShouldEmitImportsFiles, 228 raw_fd_ostream *LinkedObjectsFile, 229 IndexWriteCallback OnWrite); 230 231 /// This class implements a resolution-based interface to LLVM's LTO 232 /// functionality. It supports regular LTO, parallel LTO code generation and 233 /// ThinLTO. You can use it from a linker in the following way: 234 /// - Set hooks and code generation options (see lto::Config struct defined in 235 /// Config.h), and use the lto::Config object to create an lto::LTO object. 236 /// - Create lto::InputFile objects using lto::InputFile::create(), then use 237 /// the symbols() function to enumerate its symbols and compute a resolution 238 /// for each symbol (see SymbolResolution below). 239 /// - After the linker has visited each input file (and each regular object 240 /// file) and computed a resolution for each symbol, take each lto::InputFile 241 /// and pass it and an array of symbol resolutions to the add() function. 242 /// - Call the getMaxTasks() function to get an upper bound on the number of 243 /// native object files that LTO may add to the link. 244 /// - Call the run() function. This function will use the supplied AddStream 245 /// and Cache functions to add up to getMaxTasks() native object files to 246 /// the link. 247 class LTO { 248 friend InputFile; 249 250 public: 251 /// Create an LTO object. A default constructed LTO object has a reasonable 252 /// production configuration, but you can customize it by passing arguments to 253 /// this constructor. 254 /// FIXME: We do currently require the DiagHandler field to be set in Conf. 255 /// Until that is fixed, a Config argument is required. 256 LTO(Config Conf, ThinBackend Backend = nullptr, 257 unsigned ParallelCodeGenParallelismLevel = 1); 258 ~LTO(); 259 260 /// Add an input file to the LTO link, using the provided symbol resolutions. 261 /// The symbol resolutions must appear in the enumeration order given by 262 /// InputFile::symbols(). 263 Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res); 264 265 /// Returns an upper bound on the number of tasks that the client may expect. 266 /// This may only be called after all IR object files have been added. For a 267 /// full description of tasks see LTOBackend.h. 268 unsigned getMaxTasks() const; 269 270 /// Runs the LTO pipeline. This function calls the supplied AddStream 271 /// function to add native object files to the link. 272 /// 273 /// The Cache parameter is optional. If supplied, it will be used to cache 274 /// native object files and add them to the link. 275 /// 276 /// The client will receive at most one callback (via either AddStream or 277 /// Cache) for each task identifier. 278 Error run(AddStreamFn AddStream, FileCache Cache = nullptr); 279 280 /// Static method that returns a list of libcall symbols that can be generated 281 /// by LTO but might not be visible from bitcode symbol table. 282 static ArrayRef<const char*> getRuntimeLibcallSymbols(); 283 284 private: 285 Config Conf; 286 287 struct RegularLTOState { 288 RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 289 const Config &Conf); 290 struct CommonResolution { 291 uint64_t Size = 0; 292 MaybeAlign Align; 293 /// Record if at least one instance of the common was marked as prevailing 294 bool Prevailing = false; 295 }; 296 std::map<std::string, CommonResolution> Commons; 297 298 unsigned ParallelCodeGenParallelismLevel; 299 LTOLLVMContext Ctx; 300 std::unique_ptr<Module> CombinedModule; 301 std::unique_ptr<IRMover> Mover; 302 303 // This stores the information about a regular LTO module that we have added 304 // to the link. It will either be linked immediately (for modules without 305 // summaries) or after summary-based dead stripping (for modules with 306 // summaries). 307 struct AddedModule { 308 std::unique_ptr<Module> M; 309 std::vector<GlobalValue *> Keep; 310 }; 311 std::vector<AddedModule> ModsWithSummaries; 312 bool EmptyCombinedModule = true; 313 } RegularLTO; 314 315 using ModuleMapType = MapVector<StringRef, BitcodeModule>; 316 317 struct ThinLTOState { 318 ThinLTOState(ThinBackend Backend); 319 320 ThinBackend Backend; 321 ModuleSummaryIndex CombinedIndex; 322 // The full set of bitcode modules in input order. 323 ModuleMapType ModuleMap; 324 // The bitcode modules to compile, if specified by the LTO Config. 325 std::optional<ModuleMapType> ModulesToCompile; 326 DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID; 327 } ThinLTO; 328 329 // The global resolution for a particular (mangled) symbol name. This is in 330 // particular necessary to track whether each symbol can be internalized. 331 // Because any input file may introduce a new cross-partition reference, we 332 // cannot make any final internalization decisions until all input files have 333 // been added and the client has called run(). During run() we apply 334 // internalization decisions either directly to the module (for regular LTO) 335 // or to the combined index (for ThinLTO). 336 struct GlobalResolution { 337 /// The unmangled name of the global. 338 std::string IRName; 339 340 /// Keep track if the symbol is visible outside of a module with a summary 341 /// (i.e. in either a regular object or a regular LTO module without a 342 /// summary). 343 bool VisibleOutsideSummary = false; 344 345 /// The symbol was exported dynamically, and therefore could be referenced 346 /// by a shared library not visible to the linker. 347 bool ExportDynamic = false; 348 349 bool UnnamedAddr = true; 350 351 /// True if module contains the prevailing definition. 352 bool Prevailing = false; 353 354 /// Returns true if module contains the prevailing definition and symbol is 355 /// an IR symbol. For example when module-level inline asm block is used, 356 /// symbol can be prevailing in module but have no IR name. 357 bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); } 358 359 /// This field keeps track of the partition number of this global. The 360 /// regular LTO object is partition 0, while each ThinLTO object has its own 361 /// partition number from 1 onwards. 362 /// 363 /// Any global that is defined or used by more than one partition, or that 364 /// is referenced externally, may not be internalized. 365 /// 366 /// Partitions generally have a one-to-one correspondence with tasks, except 367 /// that we use partition 0 for all parallel LTO code generation partitions. 368 /// Any partitioning of the combined LTO object is done internally by the 369 /// LTO backend. 370 unsigned Partition = Unknown; 371 372 /// Special partition numbers. 373 enum : unsigned { 374 /// A partition number has not yet been assigned to this global. 375 Unknown = -1u, 376 377 /// This global is either used by more than one partition or has an 378 /// external reference, and therefore cannot be internalized. 379 External = -2u, 380 381 /// The RegularLTO partition 382 RegularLTO = 0, 383 }; 384 }; 385 386 // Global mapping from mangled symbol names to resolutions. 387 StringMap<GlobalResolution> GlobalResolutions; 388 389 void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 390 ArrayRef<SymbolResolution> Res, unsigned Partition, 391 bool InSummary); 392 393 // These functions take a range of symbol resolutions [ResI, ResE) and consume 394 // the resolutions used by a single input module by incrementing ResI. After 395 // these functions return, [ResI, ResE) will refer to the resolution range for 396 // the remaining modules in the InputFile. 397 Error addModule(InputFile &Input, unsigned ModI, 398 const SymbolResolution *&ResI, const SymbolResolution *ResE); 399 400 Expected<RegularLTOState::AddedModule> 401 addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 402 const SymbolResolution *&ResI, const SymbolResolution *ResE); 403 Error linkRegularLTO(RegularLTOState::AddedModule Mod, 404 bool LivenessFromIndex); 405 406 Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 407 const SymbolResolution *&ResI, const SymbolResolution *ResE); 408 409 Error runRegularLTO(AddStreamFn AddStream); 410 Error runThinLTO(AddStreamFn AddStream, FileCache Cache, 411 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols); 412 413 Error checkPartiallySplit(); 414 415 mutable bool CalledGetMaxTasks = false; 416 417 // Use Optional to distinguish false from not yet initialized. 418 std::optional<bool> EnableSplitLTOUnit; 419 420 // Identify symbols exported dynamically, and that therefore could be 421 // referenced by a shared library not visible to the linker. 422 DenseSet<GlobalValue::GUID> DynamicExportSymbols; 423 424 // Diagnostic optimization remarks file 425 std::unique_ptr<ToolOutputFile> DiagnosticOutputFile; 426 }; 427 428 /// The resolution for a symbol. The linker must provide a SymbolResolution for 429 /// each global symbol based on its internal resolution of that symbol. 430 struct SymbolResolution { 431 SymbolResolution() 432 : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0), 433 ExportDynamic(0), LinkerRedefined(0) {} 434 435 /// The linker has chosen this definition of the symbol. 436 unsigned Prevailing : 1; 437 438 /// The definition of this symbol is unpreemptable at runtime and is known to 439 /// be in this linkage unit. 440 unsigned FinalDefinitionInLinkageUnit : 1; 441 442 /// The definition of this symbol is visible outside of the LTO unit. 443 unsigned VisibleToRegularObj : 1; 444 445 /// The symbol was exported dynamically, and therefore could be referenced 446 /// by a shared library not visible to the linker. 447 unsigned ExportDynamic : 1; 448 449 /// Linker redefined version of the symbol which appeared in -wrap or -defsym 450 /// linker option. 451 unsigned LinkerRedefined : 1; 452 }; 453 454 } // namespace lto 455 } // namespace llvm 456 457 #endif 458