xref: /freebsd/contrib/llvm-project/llvm/include/llvm/LTO/LTO.h (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-LTO.h - LLVM Link Time Optimizer ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares functions and classes used to support LTO. It is intended
10 // to be used both by LTO classes as well as by clients (gold-plugin) that
11 // don't utilize the LTO code generator interfaces.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LTO_LTO_H
16 #define LLVM_LTO_LTO_H
17 
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/Bitcode/BitcodeReader.h"
21 #include "llvm/IR/ModuleSummaryIndex.h"
22 #include "llvm/LTO/Config.h"
23 #include "llvm/Object/IRSymtab.h"
24 #include "llvm/Support/Caching.h"
25 #include "llvm/Support/Error.h"
26 #include "llvm/Support/thread.h"
27 #include "llvm/Transforms/IPO/FunctionAttrs.h"
28 #include "llvm/Transforms/IPO/FunctionImport.h"
29 
30 namespace llvm {
31 
32 class Error;
33 class IRMover;
34 class LLVMContext;
35 class MemoryBufferRef;
36 class Module;
37 class raw_pwrite_stream;
38 class ToolOutputFile;
39 
40 /// Resolve linkage for prevailing symbols in the \p Index. Linkage changes
41 /// recorded in the index and the ThinLTO backends must apply the changes to
42 /// the module via thinLTOFinalizeInModule.
43 ///
44 /// This is done for correctness (if value exported, ensure we always
45 /// emit a copy), and compile-time optimization (allow drop of duplicates).
46 void thinLTOResolvePrevailingInIndex(
47     const lto::Config &C, ModuleSummaryIndex &Index,
48     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
49         isPrevailing,
50     function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
51         recordNewLinkage,
52     const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols);
53 
54 /// Update the linkages in the given \p Index to mark exported values
55 /// as external and non-exported values as internal. The ThinLTO backends
56 /// must apply the changes to the Module via thinLTOInternalizeModule.
57 void thinLTOInternalizeAndPromoteInIndex(
58     ModuleSummaryIndex &Index,
59     function_ref<bool(StringRef, ValueInfo)> isExported,
60     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
61         isPrevailing);
62 
63 /// Computes a unique hash for the Module considering the current list of
64 /// export/import and other global analysis results.
65 /// The hash is produced in \p Key.
66 void computeLTOCacheKey(
67     SmallString<40> &Key, const lto::Config &Conf,
68     const ModuleSummaryIndex &Index, StringRef ModuleID,
69     const FunctionImporter::ImportMapTy &ImportList,
70     const FunctionImporter::ExportSetTy &ExportList,
71     const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
72     const GVSummaryMapTy &DefinedGlobals,
73     const std::set<GlobalValue::GUID> &CfiFunctionDefs = {},
74     const std::set<GlobalValue::GUID> &CfiFunctionDecls = {});
75 
76 namespace lto {
77 
78 StringLiteral getThinLTODefaultCPU(const Triple &TheTriple);
79 
80 /// Given the original \p Path to an output file, replace any path
81 /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the
82 /// resulting directory if it does not yet exist.
83 std::string getThinLTOOutputFile(StringRef Path, StringRef OldPrefix,
84                                  StringRef NewPrefix);
85 
86 /// Setup optimization remarks.
87 Expected<std::unique_ptr<ToolOutputFile>> setupLLVMOptimizationRemarks(
88     LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses,
89     StringRef RemarksFormat, bool RemarksWithHotness,
90     std::optional<uint64_t> RemarksHotnessThreshold = 0, int Count = -1);
91 
92 /// Setups the output file for saving statistics.
93 Expected<std::unique_ptr<ToolOutputFile>>
94 setupStatsFile(StringRef StatsFilename);
95 
96 /// Produces a container ordering for optimal multi-threaded processing. Returns
97 /// ordered indices to elements in the input array.
98 std::vector<int> generateModulesOrdering(ArrayRef<BitcodeModule *> R);
99 
100 /// Updates MemProf attributes (and metadata) based on whether the index
101 /// has recorded that we are linking with allocation libraries containing
102 /// the necessary APIs for downstream transformations.
103 void updateMemProfAttributes(Module &Mod, const ModuleSummaryIndex &Index);
104 
105 class LTO;
106 struct SymbolResolution;
107 class ThinBackendProc;
108 
109 /// An input file. This is a symbol table wrapper that only exposes the
110 /// information that an LTO client should need in order to do symbol resolution.
111 class InputFile {
112 public:
113   class Symbol;
114 
115 private:
116   // FIXME: Remove LTO class friendship once we have bitcode symbol tables.
117   friend LTO;
118   InputFile() = default;
119 
120   std::vector<BitcodeModule> Mods;
121   SmallVector<char, 0> Strtab;
122   std::vector<Symbol> Symbols;
123 
124   // [begin, end) for each module
125   std::vector<std::pair<size_t, size_t>> ModuleSymIndices;
126 
127   StringRef TargetTriple, SourceFileName, COFFLinkerOpts;
128   std::vector<StringRef> DependentLibraries;
129   std::vector<std::pair<StringRef, Comdat::SelectionKind>> ComdatTable;
130 
131 public:
132   ~InputFile();
133 
134   /// Create an InputFile.
135   static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object);
136 
137   /// The purpose of this class is to only expose the symbol information that an
138   /// LTO client should need in order to do symbol resolution.
139   class Symbol : irsymtab::Symbol {
140     friend LTO;
141 
142   public:
143     Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {}
144 
145     using irsymtab::Symbol::isUndefined;
146     using irsymtab::Symbol::isCommon;
147     using irsymtab::Symbol::isWeak;
148     using irsymtab::Symbol::isIndirect;
149     using irsymtab::Symbol::getName;
150     using irsymtab::Symbol::getIRName;
151     using irsymtab::Symbol::getVisibility;
152     using irsymtab::Symbol::canBeOmittedFromSymbolTable;
153     using irsymtab::Symbol::isTLS;
154     using irsymtab::Symbol::getComdatIndex;
155     using irsymtab::Symbol::getCommonSize;
156     using irsymtab::Symbol::getCommonAlignment;
157     using irsymtab::Symbol::getCOFFWeakExternalFallback;
158     using irsymtab::Symbol::getSectionName;
159     using irsymtab::Symbol::isExecutable;
160     using irsymtab::Symbol::isUsed;
161   };
162 
163   /// A range over the symbols in this InputFile.
164   ArrayRef<Symbol> symbols() const { return Symbols; }
165 
166   /// Returns linker options specified in the input file.
167   StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; }
168 
169   /// Returns dependent library specifiers from the input file.
170   ArrayRef<StringRef> getDependentLibraries() const { return DependentLibraries; }
171 
172   /// Returns the path to the InputFile.
173   StringRef getName() const;
174 
175   /// Returns the input file's target triple.
176   StringRef getTargetTriple() const { return TargetTriple; }
177 
178   /// Returns the source file path specified at compile time.
179   StringRef getSourceFileName() const { return SourceFileName; }
180 
181   // Returns a table with all the comdats used by this file.
182   ArrayRef<std::pair<StringRef, Comdat::SelectionKind>> getComdatTable() const {
183     return ComdatTable;
184   }
185 
186   // Returns the only BitcodeModule from InputFile.
187   BitcodeModule &getSingleBitcodeModule();
188 
189 private:
190   ArrayRef<Symbol> module_symbols(unsigned I) const {
191     const auto &Indices = ModuleSymIndices[I];
192     return {Symbols.data() + Indices.first, Symbols.data() + Indices.second};
193   }
194 };
195 
196 /// A ThinBackend defines what happens after the thin-link phase during ThinLTO.
197 /// The details of this type definition aren't important; clients can only
198 /// create a ThinBackend using one of the create*ThinBackend() functions below.
199 using ThinBackend = std::function<std::unique_ptr<ThinBackendProc>(
200     const Config &C, ModuleSummaryIndex &CombinedIndex,
201     DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
202     AddStreamFn AddStream, FileCache Cache)>;
203 
204 /// This ThinBackend runs the individual backend jobs in-process.
205 /// The default value means to use one job per hardware core (not hyper-thread).
206 /// OnWrite is callback which receives module identifier and notifies LTO user
207 /// that index file for the module (and optionally imports file) was created.
208 /// ShouldEmitIndexFiles being true will write sharded ThinLTO index files
209 /// to the same path as the input module, with suffix ".thinlto.bc"
210 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a
211 /// similar path with ".imports" appended instead.
212 using IndexWriteCallback = std::function<void(const std::string &)>;
213 ThinBackend createInProcessThinBackend(ThreadPoolStrategy Parallelism,
214                                        IndexWriteCallback OnWrite = nullptr,
215                                        bool ShouldEmitIndexFiles = false,
216                                        bool ShouldEmitImportsFiles = false);
217 
218 /// This ThinBackend writes individual module indexes to files, instead of
219 /// running the individual backend jobs. This backend is for distributed builds
220 /// where separate processes will invoke the real backends.
221 ///
222 /// To find the path to write the index to, the backend checks if the path has a
223 /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then
224 /// appends ".thinlto.bc" and writes the index to that path. If
225 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a
226 /// similar path with ".imports" appended instead.
227 /// LinkedObjectsFile is an output stream to write the list of object files for
228 /// the final ThinLTO linking. Can be nullptr.  If LinkedObjectsFile is not
229 /// nullptr and NativeObjectPrefix is not empty then it replaces the prefix of
230 /// the objects with NativeObjectPrefix instead of NewPrefix. OnWrite is
231 /// callback which receives module identifier and notifies LTO user that index
232 /// file for the module (and optionally imports file) was created.
233 ThinBackend createWriteIndexesThinBackend(std::string OldPrefix,
234                                           std::string NewPrefix,
235                                           std::string NativeObjectPrefix,
236                                           bool ShouldEmitImportsFiles,
237                                           raw_fd_ostream *LinkedObjectsFile,
238                                           IndexWriteCallback OnWrite);
239 
240 /// This class implements a resolution-based interface to LLVM's LTO
241 /// functionality. It supports regular LTO, parallel LTO code generation and
242 /// ThinLTO. You can use it from a linker in the following way:
243 /// - Set hooks and code generation options (see lto::Config struct defined in
244 ///   Config.h), and use the lto::Config object to create an lto::LTO object.
245 /// - Create lto::InputFile objects using lto::InputFile::create(), then use
246 ///   the symbols() function to enumerate its symbols and compute a resolution
247 ///   for each symbol (see SymbolResolution below).
248 /// - After the linker has visited each input file (and each regular object
249 ///   file) and computed a resolution for each symbol, take each lto::InputFile
250 ///   and pass it and an array of symbol resolutions to the add() function.
251 /// - Call the getMaxTasks() function to get an upper bound on the number of
252 ///   native object files that LTO may add to the link.
253 /// - Call the run() function. This function will use the supplied AddStream
254 ///   and Cache functions to add up to getMaxTasks() native object files to
255 ///   the link.
256 class LTO {
257   friend InputFile;
258 
259 public:
260   /// Unified LTO modes
261   enum LTOKind {
262     /// Any LTO mode without Unified LTO. The default mode.
263     LTOK_Default,
264 
265     /// Regular LTO, with Unified LTO enabled.
266     LTOK_UnifiedRegular,
267 
268     /// ThinLTO, with Unified LTO enabled.
269     LTOK_UnifiedThin,
270   };
271 
272   /// Create an LTO object. A default constructed LTO object has a reasonable
273   /// production configuration, but you can customize it by passing arguments to
274   /// this constructor.
275   /// FIXME: We do currently require the DiagHandler field to be set in Conf.
276   /// Until that is fixed, a Config argument is required.
277   LTO(Config Conf, ThinBackend Backend = nullptr,
278       unsigned ParallelCodeGenParallelismLevel = 1,
279       LTOKind LTOMode = LTOK_Default);
280   ~LTO();
281 
282   /// Add an input file to the LTO link, using the provided symbol resolutions.
283   /// The symbol resolutions must appear in the enumeration order given by
284   /// InputFile::symbols().
285   Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res);
286 
287   /// Returns an upper bound on the number of tasks that the client may expect.
288   /// This may only be called after all IR object files have been added. For a
289   /// full description of tasks see LTOBackend.h.
290   unsigned getMaxTasks() const;
291 
292   /// Runs the LTO pipeline. This function calls the supplied AddStream
293   /// function to add native object files to the link.
294   ///
295   /// The Cache parameter is optional. If supplied, it will be used to cache
296   /// native object files and add them to the link.
297   ///
298   /// The client will receive at most one callback (via either AddStream or
299   /// Cache) for each task identifier.
300   Error run(AddStreamFn AddStream, FileCache Cache = nullptr);
301 
302   /// Static method that returns a list of libcall symbols that can be generated
303   /// by LTO but might not be visible from bitcode symbol table.
304   static SmallVector<const char *> getRuntimeLibcallSymbols(const Triple &TT);
305 
306 private:
307   Config Conf;
308 
309   struct RegularLTOState {
310     RegularLTOState(unsigned ParallelCodeGenParallelismLevel,
311                     const Config &Conf);
312     struct CommonResolution {
313       uint64_t Size = 0;
314       Align Alignment;
315       /// Record if at least one instance of the common was marked as prevailing
316       bool Prevailing = false;
317     };
318     std::map<std::string, CommonResolution> Commons;
319 
320     unsigned ParallelCodeGenParallelismLevel;
321     LTOLLVMContext Ctx;
322     std::unique_ptr<Module> CombinedModule;
323     std::unique_ptr<IRMover> Mover;
324 
325     // This stores the information about a regular LTO module that we have added
326     // to the link. It will either be linked immediately (for modules without
327     // summaries) or after summary-based dead stripping (for modules with
328     // summaries).
329     struct AddedModule {
330       std::unique_ptr<Module> M;
331       std::vector<GlobalValue *> Keep;
332     };
333     std::vector<AddedModule> ModsWithSummaries;
334     bool EmptyCombinedModule = true;
335   } RegularLTO;
336 
337   using ModuleMapType = MapVector<StringRef, BitcodeModule>;
338 
339   struct ThinLTOState {
340     ThinLTOState(ThinBackend Backend);
341 
342     ThinBackend Backend;
343     ModuleSummaryIndex CombinedIndex;
344     // The full set of bitcode modules in input order.
345     ModuleMapType ModuleMap;
346     // The bitcode modules to compile, if specified by the LTO Config.
347     std::optional<ModuleMapType> ModulesToCompile;
348     DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID;
349   } ThinLTO;
350 
351   // The global resolution for a particular (mangled) symbol name. This is in
352   // particular necessary to track whether each symbol can be internalized.
353   // Because any input file may introduce a new cross-partition reference, we
354   // cannot make any final internalization decisions until all input files have
355   // been added and the client has called run(). During run() we apply
356   // internalization decisions either directly to the module (for regular LTO)
357   // or to the combined index (for ThinLTO).
358   struct GlobalResolution {
359     /// The unmangled name of the global.
360     std::string IRName;
361 
362     /// Keep track if the symbol is visible outside of a module with a summary
363     /// (i.e. in either a regular object or a regular LTO module without a
364     /// summary).
365     bool VisibleOutsideSummary = false;
366 
367     /// The symbol was exported dynamically, and therefore could be referenced
368     /// by a shared library not visible to the linker.
369     bool ExportDynamic = false;
370 
371     bool UnnamedAddr = true;
372 
373     /// True if module contains the prevailing definition.
374     bool Prevailing = false;
375 
376     /// Returns true if module contains the prevailing definition and symbol is
377     /// an IR symbol. For example when module-level inline asm block is used,
378     /// symbol can be prevailing in module but have no IR name.
379     bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); }
380 
381     /// This field keeps track of the partition number of this global. The
382     /// regular LTO object is partition 0, while each ThinLTO object has its own
383     /// partition number from 1 onwards.
384     ///
385     /// Any global that is defined or used by more than one partition, or that
386     /// is referenced externally, may not be internalized.
387     ///
388     /// Partitions generally have a one-to-one correspondence with tasks, except
389     /// that we use partition 0 for all parallel LTO code generation partitions.
390     /// Any partitioning of the combined LTO object is done internally by the
391     /// LTO backend.
392     unsigned Partition = Unknown;
393 
394     /// Special partition numbers.
395     enum : unsigned {
396       /// A partition number has not yet been assigned to this global.
397       Unknown = -1u,
398 
399       /// This global is either used by more than one partition or has an
400       /// external reference, and therefore cannot be internalized.
401       External = -2u,
402 
403       /// The RegularLTO partition
404       RegularLTO = 0,
405     };
406   };
407 
408   // Global mapping from mangled symbol names to resolutions.
409   // Make this an optional to guard against accessing after it has been reset
410   // (to reduce memory after we're done with it).
411   std::optional<StringMap<GlobalResolution>> GlobalResolutions;
412 
413   void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
414                             ArrayRef<SymbolResolution> Res, unsigned Partition,
415                             bool InSummary);
416 
417   // These functions take a range of symbol resolutions [ResI, ResE) and consume
418   // the resolutions used by a single input module by incrementing ResI. After
419   // these functions return, [ResI, ResE) will refer to the resolution range for
420   // the remaining modules in the InputFile.
421   Error addModule(InputFile &Input, unsigned ModI,
422                   const SymbolResolution *&ResI, const SymbolResolution *ResE);
423 
424   Expected<RegularLTOState::AddedModule>
425   addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
426                 const SymbolResolution *&ResI, const SymbolResolution *ResE);
427   Error linkRegularLTO(RegularLTOState::AddedModule Mod,
428                        bool LivenessFromIndex);
429 
430   Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
431                    const SymbolResolution *&ResI, const SymbolResolution *ResE);
432 
433   Error runRegularLTO(AddStreamFn AddStream);
434   Error runThinLTO(AddStreamFn AddStream, FileCache Cache,
435                    const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols);
436 
437   Error checkPartiallySplit();
438 
439   mutable bool CalledGetMaxTasks = false;
440 
441   // LTO mode when using Unified LTO.
442   LTOKind LTOMode;
443 
444   // Use Optional to distinguish false from not yet initialized.
445   std::optional<bool> EnableSplitLTOUnit;
446 
447   // Identify symbols exported dynamically, and that therefore could be
448   // referenced by a shared library not visible to the linker.
449   DenseSet<GlobalValue::GUID> DynamicExportSymbols;
450 
451   // Diagnostic optimization remarks file
452   std::unique_ptr<ToolOutputFile> DiagnosticOutputFile;
453 };
454 
455 /// The resolution for a symbol. The linker must provide a SymbolResolution for
456 /// each global symbol based on its internal resolution of that symbol.
457 struct SymbolResolution {
458   SymbolResolution()
459       : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0),
460         ExportDynamic(0), LinkerRedefined(0) {}
461 
462   /// The linker has chosen this definition of the symbol.
463   unsigned Prevailing : 1;
464 
465   /// The definition of this symbol is unpreemptable at runtime and is known to
466   /// be in this linkage unit.
467   unsigned FinalDefinitionInLinkageUnit : 1;
468 
469   /// The definition of this symbol is visible outside of the LTO unit.
470   unsigned VisibleToRegularObj : 1;
471 
472   /// The symbol was exported dynamically, and therefore could be referenced
473   /// by a shared library not visible to the linker.
474   unsigned ExportDynamic : 1;
475 
476   /// Linker redefined version of the symbol which appeared in -wrap or -defsym
477   /// linker option.
478   unsigned LinkerRedefined : 1;
479 };
480 
481 } // namespace lto
482 } // namespace llvm
483 
484 #endif
485