1 //===-LTO.h - LLVM Link Time Optimizer ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares functions and classes used to support LTO. It is intended 10 // to be used both by LTO classes as well as by clients (gold-plugin) that 11 // don't utilize the LTO code generator interfaces. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_LTO_LTO_H 16 #define LLVM_LTO_LTO_H 17 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/StringSet.h" 21 #include "llvm/IR/DiagnosticInfo.h" 22 #include "llvm/IR/ModuleSummaryIndex.h" 23 #include "llvm/IR/RemarkStreamer.h" 24 #include "llvm/LTO/Config.h" 25 #include "llvm/Linker/IRMover.h" 26 #include "llvm/Object/IRSymtab.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ToolOutputFile.h" 29 #include "llvm/Support/thread.h" 30 #include "llvm/Target/TargetOptions.h" 31 #include "llvm/Transforms/IPO/FunctionImport.h" 32 33 namespace llvm { 34 35 class BitcodeModule; 36 class Error; 37 class LLVMContext; 38 class MemoryBufferRef; 39 class Module; 40 class Target; 41 class raw_pwrite_stream; 42 43 /// Resolve linkage for prevailing symbols in the \p Index. Linkage changes 44 /// recorded in the index and the ThinLTO backends must apply the changes to 45 /// the module via thinLTOResolvePrevailingInModule. 46 /// 47 /// This is done for correctness (if value exported, ensure we always 48 /// emit a copy), and compile-time optimization (allow drop of duplicates). 49 void thinLTOResolvePrevailingInIndex( 50 ModuleSummaryIndex &Index, 51 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 52 isPrevailing, 53 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 54 recordNewLinkage, 55 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols); 56 57 /// Update the linkages in the given \p Index to mark exported values 58 /// as external and non-exported values as internal. The ThinLTO backends 59 /// must apply the changes to the Module via thinLTOInternalizeModule. 60 void thinLTOInternalizeAndPromoteInIndex( 61 ModuleSummaryIndex &Index, 62 function_ref<bool(StringRef, ValueInfo)> isExported, 63 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 64 isPrevailing); 65 66 /// Computes a unique hash for the Module considering the current list of 67 /// export/import and other global analysis results. 68 /// The hash is produced in \p Key. 69 void computeLTOCacheKey( 70 SmallString<40> &Key, const lto::Config &Conf, 71 const ModuleSummaryIndex &Index, StringRef ModuleID, 72 const FunctionImporter::ImportMapTy &ImportList, 73 const FunctionImporter::ExportSetTy &ExportList, 74 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 75 const GVSummaryMapTy &DefinedGlobals, 76 const std::set<GlobalValue::GUID> &CfiFunctionDefs = {}, 77 const std::set<GlobalValue::GUID> &CfiFunctionDecls = {}); 78 79 namespace lto { 80 81 /// Given the original \p Path to an output file, replace any path 82 /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the 83 /// resulting directory if it does not yet exist. 84 std::string getThinLTOOutputFile(const std::string &Path, 85 const std::string &OldPrefix, 86 const std::string &NewPrefix); 87 88 /// Setup optimization remarks. 89 Expected<std::unique_ptr<ToolOutputFile>> 90 setupOptimizationRemarks(LLVMContext &Context, StringRef RemarksFilename, 91 StringRef RemarksPasses, StringRef RemarksFormat, 92 bool RemarksWithHotness, int Count = -1); 93 94 /// Setups the output file for saving statistics. 95 Expected<std::unique_ptr<ToolOutputFile>> 96 setupStatsFile(StringRef StatsFilename); 97 98 class LTO; 99 struct SymbolResolution; 100 class ThinBackendProc; 101 102 /// An input file. This is a symbol table wrapper that only exposes the 103 /// information that an LTO client should need in order to do symbol resolution. 104 class InputFile { 105 public: 106 class Symbol; 107 108 private: 109 // FIXME: Remove LTO class friendship once we have bitcode symbol tables. 110 friend LTO; 111 InputFile() = default; 112 113 std::vector<BitcodeModule> Mods; 114 SmallVector<char, 0> Strtab; 115 std::vector<Symbol> Symbols; 116 117 // [begin, end) for each module 118 std::vector<std::pair<size_t, size_t>> ModuleSymIndices; 119 120 StringRef TargetTriple, SourceFileName, COFFLinkerOpts; 121 std::vector<StringRef> DependentLibraries; 122 std::vector<StringRef> ComdatTable; 123 124 public: 125 ~InputFile(); 126 127 /// Create an InputFile. 128 static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object); 129 130 /// The purpose of this class is to only expose the symbol information that an 131 /// LTO client should need in order to do symbol resolution. 132 class Symbol : irsymtab::Symbol { 133 friend LTO; 134 135 public: 136 Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {} 137 138 using irsymtab::Symbol::isUndefined; 139 using irsymtab::Symbol::isCommon; 140 using irsymtab::Symbol::isWeak; 141 using irsymtab::Symbol::isIndirect; 142 using irsymtab::Symbol::getName; 143 using irsymtab::Symbol::getIRName; 144 using irsymtab::Symbol::getVisibility; 145 using irsymtab::Symbol::canBeOmittedFromSymbolTable; 146 using irsymtab::Symbol::isTLS; 147 using irsymtab::Symbol::getComdatIndex; 148 using irsymtab::Symbol::getCommonSize; 149 using irsymtab::Symbol::getCommonAlignment; 150 using irsymtab::Symbol::getCOFFWeakExternalFallback; 151 using irsymtab::Symbol::getSectionName; 152 using irsymtab::Symbol::isExecutable; 153 using irsymtab::Symbol::isUsed; 154 }; 155 156 /// A range over the symbols in this InputFile. 157 ArrayRef<Symbol> symbols() const { return Symbols; } 158 159 /// Returns linker options specified in the input file. 160 StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; } 161 162 /// Returns dependent library specifiers from the input file. 163 ArrayRef<StringRef> getDependentLibraries() const { return DependentLibraries; } 164 165 /// Returns the path to the InputFile. 166 StringRef getName() const; 167 168 /// Returns the input file's target triple. 169 StringRef getTargetTriple() const { return TargetTriple; } 170 171 /// Returns the source file path specified at compile time. 172 StringRef getSourceFileName() const { return SourceFileName; } 173 174 // Returns a table with all the comdats used by this file. 175 ArrayRef<StringRef> getComdatTable() const { return ComdatTable; } 176 177 // Returns the only BitcodeModule from InputFile. 178 BitcodeModule &getSingleBitcodeModule(); 179 180 private: 181 ArrayRef<Symbol> module_symbols(unsigned I) const { 182 const auto &Indices = ModuleSymIndices[I]; 183 return {Symbols.data() + Indices.first, Symbols.data() + Indices.second}; 184 } 185 }; 186 187 /// This class wraps an output stream for a native object. Most clients should 188 /// just be able to return an instance of this base class from the stream 189 /// callback, but if a client needs to perform some action after the stream is 190 /// written to, that can be done by deriving from this class and overriding the 191 /// destructor. 192 class NativeObjectStream { 193 public: 194 NativeObjectStream(std::unique_ptr<raw_pwrite_stream> OS) : OS(std::move(OS)) {} 195 std::unique_ptr<raw_pwrite_stream> OS; 196 virtual ~NativeObjectStream() = default; 197 }; 198 199 /// This type defines the callback to add a native object that is generated on 200 /// the fly. 201 /// 202 /// Stream callbacks must be thread safe. 203 using AddStreamFn = 204 std::function<std::unique_ptr<NativeObjectStream>(unsigned Task)>; 205 206 /// This is the type of a native object cache. To request an item from the 207 /// cache, pass a unique string as the Key. For hits, the cached file will be 208 /// added to the link and this function will return AddStreamFn(). For misses, 209 /// the cache will return a stream callback which must be called at most once to 210 /// produce content for the stream. The native object stream produced by the 211 /// stream callback will add the file to the link after the stream is written 212 /// to. 213 /// 214 /// Clients generally look like this: 215 /// 216 /// if (AddStreamFn AddStream = Cache(Task, Key)) 217 /// ProduceContent(AddStream); 218 using NativeObjectCache = 219 std::function<AddStreamFn(unsigned Task, StringRef Key)>; 220 221 /// A ThinBackend defines what happens after the thin-link phase during ThinLTO. 222 /// The details of this type definition aren't important; clients can only 223 /// create a ThinBackend using one of the create*ThinBackend() functions below. 224 using ThinBackend = std::function<std::unique_ptr<ThinBackendProc>( 225 const Config &C, ModuleSummaryIndex &CombinedIndex, 226 StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 227 AddStreamFn AddStream, NativeObjectCache Cache)>; 228 229 /// This ThinBackend runs the individual backend jobs in-process. 230 ThinBackend createInProcessThinBackend(unsigned ParallelismLevel); 231 232 /// This ThinBackend writes individual module indexes to files, instead of 233 /// running the individual backend jobs. This backend is for distributed builds 234 /// where separate processes will invoke the real backends. 235 /// 236 /// To find the path to write the index to, the backend checks if the path has a 237 /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then 238 /// appends ".thinlto.bc" and writes the index to that path. If 239 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a 240 /// similar path with ".imports" appended instead. 241 /// LinkedObjectsFile is an output stream to write the list of object files for 242 /// the final ThinLTO linking. Can be nullptr. 243 /// OnWrite is callback which receives module identifier and notifies LTO user 244 /// that index file for the module (and optionally imports file) was created. 245 using IndexWriteCallback = std::function<void(const std::string &)>; 246 ThinBackend createWriteIndexesThinBackend(std::string OldPrefix, 247 std::string NewPrefix, 248 bool ShouldEmitImportsFiles, 249 raw_fd_ostream *LinkedObjectsFile, 250 IndexWriteCallback OnWrite); 251 252 /// This class implements a resolution-based interface to LLVM's LTO 253 /// functionality. It supports regular LTO, parallel LTO code generation and 254 /// ThinLTO. You can use it from a linker in the following way: 255 /// - Set hooks and code generation options (see lto::Config struct defined in 256 /// Config.h), and use the lto::Config object to create an lto::LTO object. 257 /// - Create lto::InputFile objects using lto::InputFile::create(), then use 258 /// the symbols() function to enumerate its symbols and compute a resolution 259 /// for each symbol (see SymbolResolution below). 260 /// - After the linker has visited each input file (and each regular object 261 /// file) and computed a resolution for each symbol, take each lto::InputFile 262 /// and pass it and an array of symbol resolutions to the add() function. 263 /// - Call the getMaxTasks() function to get an upper bound on the number of 264 /// native object files that LTO may add to the link. 265 /// - Call the run() function. This function will use the supplied AddStream 266 /// and Cache functions to add up to getMaxTasks() native object files to 267 /// the link. 268 class LTO { 269 friend InputFile; 270 271 public: 272 /// Create an LTO object. A default constructed LTO object has a reasonable 273 /// production configuration, but you can customize it by passing arguments to 274 /// this constructor. 275 /// FIXME: We do currently require the DiagHandler field to be set in Conf. 276 /// Until that is fixed, a Config argument is required. 277 LTO(Config Conf, ThinBackend Backend = nullptr, 278 unsigned ParallelCodeGenParallelismLevel = 1); 279 ~LTO(); 280 281 /// Add an input file to the LTO link, using the provided symbol resolutions. 282 /// The symbol resolutions must appear in the enumeration order given by 283 /// InputFile::symbols(). 284 Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res); 285 286 /// Returns an upper bound on the number of tasks that the client may expect. 287 /// This may only be called after all IR object files have been added. For a 288 /// full description of tasks see LTOBackend.h. 289 unsigned getMaxTasks() const; 290 291 /// Runs the LTO pipeline. This function calls the supplied AddStream 292 /// function to add native object files to the link. 293 /// 294 /// The Cache parameter is optional. If supplied, it will be used to cache 295 /// native object files and add them to the link. 296 /// 297 /// The client will receive at most one callback (via either AddStream or 298 /// Cache) for each task identifier. 299 Error run(AddStreamFn AddStream, NativeObjectCache Cache = nullptr); 300 301 /// Static method that returns a list of libcall symbols that can be generated 302 /// by LTO but might not be visible from bitcode symbol table. 303 static ArrayRef<const char*> getRuntimeLibcallSymbols(); 304 305 private: 306 Config Conf; 307 308 struct RegularLTOState { 309 RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 310 const Config &Conf); 311 struct CommonResolution { 312 uint64_t Size = 0; 313 MaybeAlign Align; 314 /// Record if at least one instance of the common was marked as prevailing 315 bool Prevailing = false; 316 }; 317 std::map<std::string, CommonResolution> Commons; 318 319 unsigned ParallelCodeGenParallelismLevel; 320 LTOLLVMContext Ctx; 321 std::unique_ptr<Module> CombinedModule; 322 std::unique_ptr<IRMover> Mover; 323 324 // This stores the information about a regular LTO module that we have added 325 // to the link. It will either be linked immediately (for modules without 326 // summaries) or after summary-based dead stripping (for modules with 327 // summaries). 328 struct AddedModule { 329 std::unique_ptr<Module> M; 330 std::vector<GlobalValue *> Keep; 331 }; 332 std::vector<AddedModule> ModsWithSummaries; 333 } RegularLTO; 334 335 struct ThinLTOState { 336 ThinLTOState(ThinBackend Backend); 337 338 ThinBackend Backend; 339 ModuleSummaryIndex CombinedIndex; 340 MapVector<StringRef, BitcodeModule> ModuleMap; 341 DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID; 342 } ThinLTO; 343 344 // The global resolution for a particular (mangled) symbol name. This is in 345 // particular necessary to track whether each symbol can be internalized. 346 // Because any input file may introduce a new cross-partition reference, we 347 // cannot make any final internalization decisions until all input files have 348 // been added and the client has called run(). During run() we apply 349 // internalization decisions either directly to the module (for regular LTO) 350 // or to the combined index (for ThinLTO). 351 struct GlobalResolution { 352 /// The unmangled name of the global. 353 std::string IRName; 354 355 /// Keep track if the symbol is visible outside of a module with a summary 356 /// (i.e. in either a regular object or a regular LTO module without a 357 /// summary). 358 bool VisibleOutsideSummary = false; 359 360 bool UnnamedAddr = true; 361 362 /// True if module contains the prevailing definition. 363 bool Prevailing = false; 364 365 /// Returns true if module contains the prevailing definition and symbol is 366 /// an IR symbol. For example when module-level inline asm block is used, 367 /// symbol can be prevailing in module but have no IR name. 368 bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); } 369 370 /// This field keeps track of the partition number of this global. The 371 /// regular LTO object is partition 0, while each ThinLTO object has its own 372 /// partition number from 1 onwards. 373 /// 374 /// Any global that is defined or used by more than one partition, or that 375 /// is referenced externally, may not be internalized. 376 /// 377 /// Partitions generally have a one-to-one correspondence with tasks, except 378 /// that we use partition 0 for all parallel LTO code generation partitions. 379 /// Any partitioning of the combined LTO object is done internally by the 380 /// LTO backend. 381 unsigned Partition = Unknown; 382 383 /// Special partition numbers. 384 enum : unsigned { 385 /// A partition number has not yet been assigned to this global. 386 Unknown = -1u, 387 388 /// This global is either used by more than one partition or has an 389 /// external reference, and therefore cannot be internalized. 390 External = -2u, 391 392 /// The RegularLTO partition 393 RegularLTO = 0, 394 }; 395 }; 396 397 // Global mapping from mangled symbol names to resolutions. 398 StringMap<GlobalResolution> GlobalResolutions; 399 400 void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 401 ArrayRef<SymbolResolution> Res, unsigned Partition, 402 bool InSummary); 403 404 // These functions take a range of symbol resolutions [ResI, ResE) and consume 405 // the resolutions used by a single input module by incrementing ResI. After 406 // these functions return, [ResI, ResE) will refer to the resolution range for 407 // the remaining modules in the InputFile. 408 Error addModule(InputFile &Input, unsigned ModI, 409 const SymbolResolution *&ResI, const SymbolResolution *ResE); 410 411 Expected<RegularLTOState::AddedModule> 412 addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 413 const SymbolResolution *&ResI, const SymbolResolution *ResE); 414 Error linkRegularLTO(RegularLTOState::AddedModule Mod, 415 bool LivenessFromIndex); 416 417 Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 418 const SymbolResolution *&ResI, const SymbolResolution *ResE); 419 420 Error runRegularLTO(AddStreamFn AddStream); 421 Error runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache, 422 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols); 423 424 Error checkPartiallySplit(); 425 426 mutable bool CalledGetMaxTasks = false; 427 428 // Use Optional to distinguish false from not yet initialized. 429 Optional<bool> EnableSplitLTOUnit; 430 }; 431 432 /// The resolution for a symbol. The linker must provide a SymbolResolution for 433 /// each global symbol based on its internal resolution of that symbol. 434 struct SymbolResolution { 435 SymbolResolution() 436 : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0), 437 LinkerRedefined(0) {} 438 439 /// The linker has chosen this definition of the symbol. 440 unsigned Prevailing : 1; 441 442 /// The definition of this symbol is unpreemptable at runtime and is known to 443 /// be in this linkage unit. 444 unsigned FinalDefinitionInLinkageUnit : 1; 445 446 /// The definition of this symbol is visible outside of the LTO unit. 447 unsigned VisibleToRegularObj : 1; 448 449 /// Linker redefined version of the symbol which appeared in -wrap or -defsym 450 /// linker option. 451 unsigned LinkerRedefined : 1; 452 }; 453 454 } // namespace lto 455 } // namespace llvm 456 457 #endif 458