1 //===-LTO.h - LLVM Link Time Optimizer ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares functions and classes used to support LTO. It is intended 10 // to be used both by LTO classes as well as by clients (gold-plugin) that 11 // don't utilize the LTO code generator interfaces. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_LTO_LTO_H 16 #define LLVM_LTO_LTO_H 17 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/Bitcode/BitcodeReader.h" 21 #include "llvm/IR/ModuleSummaryIndex.h" 22 #include "llvm/LTO/Config.h" 23 #include "llvm/Object/IRSymtab.h" 24 #include "llvm/Support/Error.h" 25 #include "llvm/Support/thread.h" 26 #include "llvm/Transforms/IPO/FunctionImport.h" 27 28 namespace llvm { 29 30 class Error; 31 class IRMover; 32 class LLVMContext; 33 class MemoryBufferRef; 34 class Module; 35 class raw_pwrite_stream; 36 class Target; 37 class ToolOutputFile; 38 39 /// Resolve linkage for prevailing symbols in the \p Index. Linkage changes 40 /// recorded in the index and the ThinLTO backends must apply the changes to 41 /// the module via thinLTOResolvePrevailingInModule. 42 /// 43 /// This is done for correctness (if value exported, ensure we always 44 /// emit a copy), and compile-time optimization (allow drop of duplicates). 45 void thinLTOResolvePrevailingInIndex( 46 ModuleSummaryIndex &Index, 47 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 48 isPrevailing, 49 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 50 recordNewLinkage, 51 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols); 52 53 /// Update the linkages in the given \p Index to mark exported values 54 /// as external and non-exported values as internal. The ThinLTO backends 55 /// must apply the changes to the Module via thinLTOInternalizeModule. 56 void thinLTOInternalizeAndPromoteInIndex( 57 ModuleSummaryIndex &Index, 58 function_ref<bool(StringRef, ValueInfo)> isExported, 59 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 60 isPrevailing); 61 62 /// Computes a unique hash for the Module considering the current list of 63 /// export/import and other global analysis results. 64 /// The hash is produced in \p Key. 65 void computeLTOCacheKey( 66 SmallString<40> &Key, const lto::Config &Conf, 67 const ModuleSummaryIndex &Index, StringRef ModuleID, 68 const FunctionImporter::ImportMapTy &ImportList, 69 const FunctionImporter::ExportSetTy &ExportList, 70 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 71 const GVSummaryMapTy &DefinedGlobals, 72 const std::set<GlobalValue::GUID> &CfiFunctionDefs = {}, 73 const std::set<GlobalValue::GUID> &CfiFunctionDecls = {}); 74 75 namespace lto { 76 77 /// Given the original \p Path to an output file, replace any path 78 /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the 79 /// resulting directory if it does not yet exist. 80 std::string getThinLTOOutputFile(const std::string &Path, 81 const std::string &OldPrefix, 82 const std::string &NewPrefix); 83 84 /// Setup optimization remarks. 85 Expected<std::unique_ptr<ToolOutputFile>> 86 setupLLVMOptimizationRemarks(LLVMContext &Context, StringRef RemarksFilename, 87 StringRef RemarksPasses, StringRef RemarksFormat, 88 bool RemarksWithHotness, int Count = -1); 89 90 /// Setups the output file for saving statistics. 91 Expected<std::unique_ptr<ToolOutputFile>> 92 setupStatsFile(StringRef StatsFilename); 93 94 class LTO; 95 struct SymbolResolution; 96 class ThinBackendProc; 97 98 /// An input file. This is a symbol table wrapper that only exposes the 99 /// information that an LTO client should need in order to do symbol resolution. 100 class InputFile { 101 public: 102 class Symbol; 103 104 private: 105 // FIXME: Remove LTO class friendship once we have bitcode symbol tables. 106 friend LTO; 107 InputFile() = default; 108 109 std::vector<BitcodeModule> Mods; 110 SmallVector<char, 0> Strtab; 111 std::vector<Symbol> Symbols; 112 113 // [begin, end) for each module 114 std::vector<std::pair<size_t, size_t>> ModuleSymIndices; 115 116 StringRef TargetTriple, SourceFileName, COFFLinkerOpts; 117 std::vector<StringRef> DependentLibraries; 118 std::vector<StringRef> ComdatTable; 119 120 public: 121 ~InputFile(); 122 123 /// Create an InputFile. 124 static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object); 125 126 /// The purpose of this class is to only expose the symbol information that an 127 /// LTO client should need in order to do symbol resolution. 128 class Symbol : irsymtab::Symbol { 129 friend LTO; 130 131 public: 132 Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {} 133 134 using irsymtab::Symbol::isUndefined; 135 using irsymtab::Symbol::isCommon; 136 using irsymtab::Symbol::isWeak; 137 using irsymtab::Symbol::isIndirect; 138 using irsymtab::Symbol::getName; 139 using irsymtab::Symbol::getIRName; 140 using irsymtab::Symbol::getVisibility; 141 using irsymtab::Symbol::canBeOmittedFromSymbolTable; 142 using irsymtab::Symbol::isTLS; 143 using irsymtab::Symbol::getComdatIndex; 144 using irsymtab::Symbol::getCommonSize; 145 using irsymtab::Symbol::getCommonAlignment; 146 using irsymtab::Symbol::getCOFFWeakExternalFallback; 147 using irsymtab::Symbol::getSectionName; 148 using irsymtab::Symbol::isExecutable; 149 using irsymtab::Symbol::isUsed; 150 }; 151 152 /// A range over the symbols in this InputFile. 153 ArrayRef<Symbol> symbols() const { return Symbols; } 154 155 /// Returns linker options specified in the input file. 156 StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; } 157 158 /// Returns dependent library specifiers from the input file. 159 ArrayRef<StringRef> getDependentLibraries() const { return DependentLibraries; } 160 161 /// Returns the path to the InputFile. 162 StringRef getName() const; 163 164 /// Returns the input file's target triple. 165 StringRef getTargetTriple() const { return TargetTriple; } 166 167 /// Returns the source file path specified at compile time. 168 StringRef getSourceFileName() const { return SourceFileName; } 169 170 // Returns a table with all the comdats used by this file. 171 ArrayRef<StringRef> getComdatTable() const { return ComdatTable; } 172 173 // Returns the only BitcodeModule from InputFile. 174 BitcodeModule &getSingleBitcodeModule(); 175 176 private: 177 ArrayRef<Symbol> module_symbols(unsigned I) const { 178 const auto &Indices = ModuleSymIndices[I]; 179 return {Symbols.data() + Indices.first, Symbols.data() + Indices.second}; 180 } 181 }; 182 183 /// This class wraps an output stream for a native object. Most clients should 184 /// just be able to return an instance of this base class from the stream 185 /// callback, but if a client needs to perform some action after the stream is 186 /// written to, that can be done by deriving from this class and overriding the 187 /// destructor. 188 class NativeObjectStream { 189 public: 190 NativeObjectStream(std::unique_ptr<raw_pwrite_stream> OS) : OS(std::move(OS)) {} 191 std::unique_ptr<raw_pwrite_stream> OS; 192 virtual ~NativeObjectStream() = default; 193 }; 194 195 /// This type defines the callback to add a native object that is generated on 196 /// the fly. 197 /// 198 /// Stream callbacks must be thread safe. 199 using AddStreamFn = 200 std::function<std::unique_ptr<NativeObjectStream>(unsigned Task)>; 201 202 /// This is the type of a native object cache. To request an item from the 203 /// cache, pass a unique string as the Key. For hits, the cached file will be 204 /// added to the link and this function will return AddStreamFn(). For misses, 205 /// the cache will return a stream callback which must be called at most once to 206 /// produce content for the stream. The native object stream produced by the 207 /// stream callback will add the file to the link after the stream is written 208 /// to. 209 /// 210 /// Clients generally look like this: 211 /// 212 /// if (AddStreamFn AddStream = Cache(Task, Key)) 213 /// ProduceContent(AddStream); 214 using NativeObjectCache = 215 std::function<AddStreamFn(unsigned Task, StringRef Key)>; 216 217 /// A ThinBackend defines what happens after the thin-link phase during ThinLTO. 218 /// The details of this type definition aren't important; clients can only 219 /// create a ThinBackend using one of the create*ThinBackend() functions below. 220 using ThinBackend = std::function<std::unique_ptr<ThinBackendProc>( 221 const Config &C, ModuleSummaryIndex &CombinedIndex, 222 StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 223 AddStreamFn AddStream, NativeObjectCache Cache)>; 224 225 /// This ThinBackend runs the individual backend jobs in-process. 226 /// The default value means to use one job per hardware core (not hyper-thread). 227 ThinBackend createInProcessThinBackend(ThreadPoolStrategy Parallelism); 228 229 /// This ThinBackend writes individual module indexes to files, instead of 230 /// running the individual backend jobs. This backend is for distributed builds 231 /// where separate processes will invoke the real backends. 232 /// 233 /// To find the path to write the index to, the backend checks if the path has a 234 /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then 235 /// appends ".thinlto.bc" and writes the index to that path. If 236 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a 237 /// similar path with ".imports" appended instead. 238 /// LinkedObjectsFile is an output stream to write the list of object files for 239 /// the final ThinLTO linking. Can be nullptr. 240 /// OnWrite is callback which receives module identifier and notifies LTO user 241 /// that index file for the module (and optionally imports file) was created. 242 using IndexWriteCallback = std::function<void(const std::string &)>; 243 ThinBackend createWriteIndexesThinBackend(std::string OldPrefix, 244 std::string NewPrefix, 245 bool ShouldEmitImportsFiles, 246 raw_fd_ostream *LinkedObjectsFile, 247 IndexWriteCallback OnWrite); 248 249 /// This class implements a resolution-based interface to LLVM's LTO 250 /// functionality. It supports regular LTO, parallel LTO code generation and 251 /// ThinLTO. You can use it from a linker in the following way: 252 /// - Set hooks and code generation options (see lto::Config struct defined in 253 /// Config.h), and use the lto::Config object to create an lto::LTO object. 254 /// - Create lto::InputFile objects using lto::InputFile::create(), then use 255 /// the symbols() function to enumerate its symbols and compute a resolution 256 /// for each symbol (see SymbolResolution below). 257 /// - After the linker has visited each input file (and each regular object 258 /// file) and computed a resolution for each symbol, take each lto::InputFile 259 /// and pass it and an array of symbol resolutions to the add() function. 260 /// - Call the getMaxTasks() function to get an upper bound on the number of 261 /// native object files that LTO may add to the link. 262 /// - Call the run() function. This function will use the supplied AddStream 263 /// and Cache functions to add up to getMaxTasks() native object files to 264 /// the link. 265 class LTO { 266 friend InputFile; 267 268 public: 269 /// Create an LTO object. A default constructed LTO object has a reasonable 270 /// production configuration, but you can customize it by passing arguments to 271 /// this constructor. 272 /// FIXME: We do currently require the DiagHandler field to be set in Conf. 273 /// Until that is fixed, a Config argument is required. 274 LTO(Config Conf, ThinBackend Backend = nullptr, 275 unsigned ParallelCodeGenParallelismLevel = 1); 276 ~LTO(); 277 278 /// Add an input file to the LTO link, using the provided symbol resolutions. 279 /// The symbol resolutions must appear in the enumeration order given by 280 /// InputFile::symbols(). 281 Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res); 282 283 /// Returns an upper bound on the number of tasks that the client may expect. 284 /// This may only be called after all IR object files have been added. For a 285 /// full description of tasks see LTOBackend.h. 286 unsigned getMaxTasks() const; 287 288 /// Runs the LTO pipeline. This function calls the supplied AddStream 289 /// function to add native object files to the link. 290 /// 291 /// The Cache parameter is optional. If supplied, it will be used to cache 292 /// native object files and add them to the link. 293 /// 294 /// The client will receive at most one callback (via either AddStream or 295 /// Cache) for each task identifier. 296 Error run(AddStreamFn AddStream, NativeObjectCache Cache = nullptr); 297 298 /// Static method that returns a list of libcall symbols that can be generated 299 /// by LTO but might not be visible from bitcode symbol table. 300 static ArrayRef<const char*> getRuntimeLibcallSymbols(); 301 302 private: 303 Config Conf; 304 305 struct RegularLTOState { 306 RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 307 const Config &Conf); 308 struct CommonResolution { 309 uint64_t Size = 0; 310 MaybeAlign Align; 311 /// Record if at least one instance of the common was marked as prevailing 312 bool Prevailing = false; 313 }; 314 std::map<std::string, CommonResolution> Commons; 315 316 unsigned ParallelCodeGenParallelismLevel; 317 LTOLLVMContext Ctx; 318 std::unique_ptr<Module> CombinedModule; 319 std::unique_ptr<IRMover> Mover; 320 321 // This stores the information about a regular LTO module that we have added 322 // to the link. It will either be linked immediately (for modules without 323 // summaries) or after summary-based dead stripping (for modules with 324 // summaries). 325 struct AddedModule { 326 std::unique_ptr<Module> M; 327 std::vector<GlobalValue *> Keep; 328 }; 329 std::vector<AddedModule> ModsWithSummaries; 330 bool EmptyCombinedModule = true; 331 } RegularLTO; 332 333 using ModuleMapType = MapVector<StringRef, BitcodeModule>; 334 335 struct ThinLTOState { 336 ThinLTOState(ThinBackend Backend); 337 338 ThinBackend Backend; 339 ModuleSummaryIndex CombinedIndex; 340 // The full set of bitcode modules in input order. 341 ModuleMapType ModuleMap; 342 // The bitcode modules to compile, if specified by the LTO Config. 343 Optional<ModuleMapType> ModulesToCompile; 344 DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID; 345 } ThinLTO; 346 347 // The global resolution for a particular (mangled) symbol name. This is in 348 // particular necessary to track whether each symbol can be internalized. 349 // Because any input file may introduce a new cross-partition reference, we 350 // cannot make any final internalization decisions until all input files have 351 // been added and the client has called run(). During run() we apply 352 // internalization decisions either directly to the module (for regular LTO) 353 // or to the combined index (for ThinLTO). 354 struct GlobalResolution { 355 /// The unmangled name of the global. 356 std::string IRName; 357 358 /// Keep track if the symbol is visible outside of a module with a summary 359 /// (i.e. in either a regular object or a regular LTO module without a 360 /// summary). 361 bool VisibleOutsideSummary = false; 362 363 bool UnnamedAddr = true; 364 365 /// True if module contains the prevailing definition. 366 bool Prevailing = false; 367 368 /// Returns true if module contains the prevailing definition and symbol is 369 /// an IR symbol. For example when module-level inline asm block is used, 370 /// symbol can be prevailing in module but have no IR name. 371 bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); } 372 373 /// This field keeps track of the partition number of this global. The 374 /// regular LTO object is partition 0, while each ThinLTO object has its own 375 /// partition number from 1 onwards. 376 /// 377 /// Any global that is defined or used by more than one partition, or that 378 /// is referenced externally, may not be internalized. 379 /// 380 /// Partitions generally have a one-to-one correspondence with tasks, except 381 /// that we use partition 0 for all parallel LTO code generation partitions. 382 /// Any partitioning of the combined LTO object is done internally by the 383 /// LTO backend. 384 unsigned Partition = Unknown; 385 386 /// Special partition numbers. 387 enum : unsigned { 388 /// A partition number has not yet been assigned to this global. 389 Unknown = -1u, 390 391 /// This global is either used by more than one partition or has an 392 /// external reference, and therefore cannot be internalized. 393 External = -2u, 394 395 /// The RegularLTO partition 396 RegularLTO = 0, 397 }; 398 }; 399 400 // Global mapping from mangled symbol names to resolutions. 401 StringMap<GlobalResolution> GlobalResolutions; 402 403 void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 404 ArrayRef<SymbolResolution> Res, unsigned Partition, 405 bool InSummary); 406 407 // These functions take a range of symbol resolutions [ResI, ResE) and consume 408 // the resolutions used by a single input module by incrementing ResI. After 409 // these functions return, [ResI, ResE) will refer to the resolution range for 410 // the remaining modules in the InputFile. 411 Error addModule(InputFile &Input, unsigned ModI, 412 const SymbolResolution *&ResI, const SymbolResolution *ResE); 413 414 Expected<RegularLTOState::AddedModule> 415 addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 416 const SymbolResolution *&ResI, const SymbolResolution *ResE); 417 Error linkRegularLTO(RegularLTOState::AddedModule Mod, 418 bool LivenessFromIndex); 419 420 Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 421 const SymbolResolution *&ResI, const SymbolResolution *ResE); 422 423 Error runRegularLTO(AddStreamFn AddStream); 424 Error runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache, 425 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols); 426 427 Error checkPartiallySplit(); 428 429 mutable bool CalledGetMaxTasks = false; 430 431 // Use Optional to distinguish false from not yet initialized. 432 Optional<bool> EnableSplitLTOUnit; 433 }; 434 435 /// The resolution for a symbol. The linker must provide a SymbolResolution for 436 /// each global symbol based on its internal resolution of that symbol. 437 struct SymbolResolution { 438 SymbolResolution() 439 : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0), 440 LinkerRedefined(0) {} 441 442 /// The linker has chosen this definition of the symbol. 443 unsigned Prevailing : 1; 444 445 /// The definition of this symbol is unpreemptable at runtime and is known to 446 /// be in this linkage unit. 447 unsigned FinalDefinitionInLinkageUnit : 1; 448 449 /// The definition of this symbol is visible outside of the LTO unit. 450 unsigned VisibleToRegularObj : 1; 451 452 /// Linker redefined version of the symbol which appeared in -wrap or -defsym 453 /// linker option. 454 unsigned LinkerRedefined : 1; 455 }; 456 457 } // namespace lto 458 } // namespace llvm 459 460 #endif 461