xref: /freebsd/contrib/llvm-project/llvm/include/llvm/LTO/LTO.h (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-LTO.h - LLVM Link Time Optimizer ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares functions and classes used to support LTO. It is intended
10 // to be used both by LTO classes as well as by clients (gold-plugin) that
11 // don't utilize the LTO code generator interfaces.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LTO_LTO_H
16 #define LLVM_LTO_LTO_H
17 
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/Bitcode/BitcodeReader.h"
21 #include "llvm/IR/ModuleSummaryIndex.h"
22 #include "llvm/LTO/Config.h"
23 #include "llvm/Object/IRSymtab.h"
24 #include "llvm/Support/Caching.h"
25 #include "llvm/Support/Error.h"
26 #include "llvm/Support/thread.h"
27 #include "llvm/Transforms/IPO/FunctionAttrs.h"
28 #include "llvm/Transforms/IPO/FunctionImport.h"
29 
30 namespace llvm {
31 
32 class Error;
33 class IRMover;
34 class LLVMContext;
35 class MemoryBufferRef;
36 class Module;
37 class raw_pwrite_stream;
38 class Target;
39 class ToolOutputFile;
40 
41 /// Resolve linkage for prevailing symbols in the \p Index. Linkage changes
42 /// recorded in the index and the ThinLTO backends must apply the changes to
43 /// the module via thinLTOFinalizeInModule.
44 ///
45 /// This is done for correctness (if value exported, ensure we always
46 /// emit a copy), and compile-time optimization (allow drop of duplicates).
47 void thinLTOResolvePrevailingInIndex(
48     const lto::Config &C, ModuleSummaryIndex &Index,
49     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
50         isPrevailing,
51     function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
52         recordNewLinkage,
53     const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols);
54 
55 /// Update the linkages in the given \p Index to mark exported values
56 /// as external and non-exported values as internal. The ThinLTO backends
57 /// must apply the changes to the Module via thinLTOInternalizeModule.
58 void thinLTOInternalizeAndPromoteInIndex(
59     ModuleSummaryIndex &Index,
60     function_ref<bool(StringRef, ValueInfo)> isExported,
61     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
62         isPrevailing);
63 
64 /// Computes a unique hash for the Module considering the current list of
65 /// export/import and other global analysis results.
66 /// The hash is produced in \p Key.
67 void computeLTOCacheKey(
68     SmallString<40> &Key, const lto::Config &Conf,
69     const ModuleSummaryIndex &Index, StringRef ModuleID,
70     const FunctionImporter::ImportMapTy &ImportList,
71     const FunctionImporter::ExportSetTy &ExportList,
72     const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
73     const GVSummaryMapTy &DefinedGlobals,
74     const std::set<GlobalValue::GUID> &CfiFunctionDefs = {},
75     const std::set<GlobalValue::GUID> &CfiFunctionDecls = {});
76 
77 namespace lto {
78 
79 /// Given the original \p Path to an output file, replace any path
80 /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the
81 /// resulting directory if it does not yet exist.
82 std::string getThinLTOOutputFile(const std::string &Path,
83                                  const std::string &OldPrefix,
84                                  const std::string &NewPrefix);
85 
86 /// Setup optimization remarks.
87 Expected<std::unique_ptr<ToolOutputFile>> setupLLVMOptimizationRemarks(
88     LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses,
89     StringRef RemarksFormat, bool RemarksWithHotness,
90     Optional<uint64_t> RemarksHotnessThreshold = 0, int Count = -1);
91 
92 /// Setups the output file for saving statistics.
93 Expected<std::unique_ptr<ToolOutputFile>>
94 setupStatsFile(StringRef StatsFilename);
95 
96 /// Produces a container ordering for optimal multi-threaded processing. Returns
97 /// ordered indices to elements in the input array.
98 std::vector<int> generateModulesOrdering(ArrayRef<BitcodeModule *> R);
99 
100 class LTO;
101 struct SymbolResolution;
102 class ThinBackendProc;
103 
104 /// An input file. This is a symbol table wrapper that only exposes the
105 /// information that an LTO client should need in order to do symbol resolution.
106 class InputFile {
107 public:
108   class Symbol;
109 
110 private:
111   // FIXME: Remove LTO class friendship once we have bitcode symbol tables.
112   friend LTO;
113   InputFile() = default;
114 
115   std::vector<BitcodeModule> Mods;
116   SmallVector<char, 0> Strtab;
117   std::vector<Symbol> Symbols;
118 
119   // [begin, end) for each module
120   std::vector<std::pair<size_t, size_t>> ModuleSymIndices;
121 
122   StringRef TargetTriple, SourceFileName, COFFLinkerOpts;
123   std::vector<StringRef> DependentLibraries;
124   std::vector<std::pair<StringRef, Comdat::SelectionKind>> ComdatTable;
125 
126 public:
127   ~InputFile();
128 
129   /// Create an InputFile.
130   static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object);
131 
132   /// The purpose of this class is to only expose the symbol information that an
133   /// LTO client should need in order to do symbol resolution.
134   class Symbol : irsymtab::Symbol {
135     friend LTO;
136 
137   public:
138     Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {}
139 
140     using irsymtab::Symbol::isUndefined;
141     using irsymtab::Symbol::isCommon;
142     using irsymtab::Symbol::isWeak;
143     using irsymtab::Symbol::isIndirect;
144     using irsymtab::Symbol::getName;
145     using irsymtab::Symbol::getIRName;
146     using irsymtab::Symbol::getVisibility;
147     using irsymtab::Symbol::canBeOmittedFromSymbolTable;
148     using irsymtab::Symbol::isTLS;
149     using irsymtab::Symbol::getComdatIndex;
150     using irsymtab::Symbol::getCommonSize;
151     using irsymtab::Symbol::getCommonAlignment;
152     using irsymtab::Symbol::getCOFFWeakExternalFallback;
153     using irsymtab::Symbol::getSectionName;
154     using irsymtab::Symbol::isExecutable;
155     using irsymtab::Symbol::isUsed;
156   };
157 
158   /// A range over the symbols in this InputFile.
159   ArrayRef<Symbol> symbols() const { return Symbols; }
160 
161   /// Returns linker options specified in the input file.
162   StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; }
163 
164   /// Returns dependent library specifiers from the input file.
165   ArrayRef<StringRef> getDependentLibraries() const { return DependentLibraries; }
166 
167   /// Returns the path to the InputFile.
168   StringRef getName() const;
169 
170   /// Returns the input file's target triple.
171   StringRef getTargetTriple() const { return TargetTriple; }
172 
173   /// Returns the source file path specified at compile time.
174   StringRef getSourceFileName() const { return SourceFileName; }
175 
176   // Returns a table with all the comdats used by this file.
177   ArrayRef<std::pair<StringRef, Comdat::SelectionKind>> getComdatTable() const {
178     return ComdatTable;
179   }
180 
181   // Returns the only BitcodeModule from InputFile.
182   BitcodeModule &getSingleBitcodeModule();
183 
184 private:
185   ArrayRef<Symbol> module_symbols(unsigned I) const {
186     const auto &Indices = ModuleSymIndices[I];
187     return {Symbols.data() + Indices.first, Symbols.data() + Indices.second};
188   }
189 };
190 
191 /// A ThinBackend defines what happens after the thin-link phase during ThinLTO.
192 /// The details of this type definition aren't important; clients can only
193 /// create a ThinBackend using one of the create*ThinBackend() functions below.
194 using ThinBackend = std::function<std::unique_ptr<ThinBackendProc>(
195     const Config &C, ModuleSummaryIndex &CombinedIndex,
196     StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
197     AddStreamFn AddStream, FileCache Cache)>;
198 
199 /// This ThinBackend runs the individual backend jobs in-process.
200 /// The default value means to use one job per hardware core (not hyper-thread).
201 ThinBackend createInProcessThinBackend(ThreadPoolStrategy Parallelism);
202 
203 /// This ThinBackend writes individual module indexes to files, instead of
204 /// running the individual backend jobs. This backend is for distributed builds
205 /// where separate processes will invoke the real backends.
206 ///
207 /// To find the path to write the index to, the backend checks if the path has a
208 /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then
209 /// appends ".thinlto.bc" and writes the index to that path. If
210 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a
211 /// similar path with ".imports" appended instead.
212 /// LinkedObjectsFile is an output stream to write the list of object files for
213 /// the final ThinLTO linking. Can be nullptr.
214 /// OnWrite is callback which receives module identifier and notifies LTO user
215 /// that index file for the module (and optionally imports file) was created.
216 using IndexWriteCallback = std::function<void(const std::string &)>;
217 ThinBackend createWriteIndexesThinBackend(std::string OldPrefix,
218                                           std::string NewPrefix,
219                                           bool ShouldEmitImportsFiles,
220                                           raw_fd_ostream *LinkedObjectsFile,
221                                           IndexWriteCallback OnWrite);
222 
223 /// This class implements a resolution-based interface to LLVM's LTO
224 /// functionality. It supports regular LTO, parallel LTO code generation and
225 /// ThinLTO. You can use it from a linker in the following way:
226 /// - Set hooks and code generation options (see lto::Config struct defined in
227 ///   Config.h), and use the lto::Config object to create an lto::LTO object.
228 /// - Create lto::InputFile objects using lto::InputFile::create(), then use
229 ///   the symbols() function to enumerate its symbols and compute a resolution
230 ///   for each symbol (see SymbolResolution below).
231 /// - After the linker has visited each input file (and each regular object
232 ///   file) and computed a resolution for each symbol, take each lto::InputFile
233 ///   and pass it and an array of symbol resolutions to the add() function.
234 /// - Call the getMaxTasks() function to get an upper bound on the number of
235 ///   native object files that LTO may add to the link.
236 /// - Call the run() function. This function will use the supplied AddStream
237 ///   and Cache functions to add up to getMaxTasks() native object files to
238 ///   the link.
239 class LTO {
240   friend InputFile;
241 
242 public:
243   /// Create an LTO object. A default constructed LTO object has a reasonable
244   /// production configuration, but you can customize it by passing arguments to
245   /// this constructor.
246   /// FIXME: We do currently require the DiagHandler field to be set in Conf.
247   /// Until that is fixed, a Config argument is required.
248   LTO(Config Conf, ThinBackend Backend = nullptr,
249       unsigned ParallelCodeGenParallelismLevel = 1);
250   ~LTO();
251 
252   /// Add an input file to the LTO link, using the provided symbol resolutions.
253   /// The symbol resolutions must appear in the enumeration order given by
254   /// InputFile::symbols().
255   Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res);
256 
257   /// Returns an upper bound on the number of tasks that the client may expect.
258   /// This may only be called after all IR object files have been added. For a
259   /// full description of tasks see LTOBackend.h.
260   unsigned getMaxTasks() const;
261 
262   /// Runs the LTO pipeline. This function calls the supplied AddStream
263   /// function to add native object files to the link.
264   ///
265   /// The Cache parameter is optional. If supplied, it will be used to cache
266   /// native object files and add them to the link.
267   ///
268   /// The client will receive at most one callback (via either AddStream or
269   /// Cache) for each task identifier.
270   Error run(AddStreamFn AddStream, FileCache Cache = nullptr);
271 
272   /// Static method that returns a list of libcall symbols that can be generated
273   /// by LTO but might not be visible from bitcode symbol table.
274   static ArrayRef<const char*> getRuntimeLibcallSymbols();
275 
276 private:
277   Config Conf;
278 
279   struct RegularLTOState {
280     RegularLTOState(unsigned ParallelCodeGenParallelismLevel,
281                     const Config &Conf);
282     struct CommonResolution {
283       uint64_t Size = 0;
284       MaybeAlign Align;
285       /// Record if at least one instance of the common was marked as prevailing
286       bool Prevailing = false;
287     };
288     std::map<std::string, CommonResolution> Commons;
289 
290     unsigned ParallelCodeGenParallelismLevel;
291     LTOLLVMContext Ctx;
292     std::unique_ptr<Module> CombinedModule;
293     std::unique_ptr<IRMover> Mover;
294 
295     // This stores the information about a regular LTO module that we have added
296     // to the link. It will either be linked immediately (for modules without
297     // summaries) or after summary-based dead stripping (for modules with
298     // summaries).
299     struct AddedModule {
300       std::unique_ptr<Module> M;
301       std::vector<GlobalValue *> Keep;
302     };
303     std::vector<AddedModule> ModsWithSummaries;
304     bool EmptyCombinedModule = true;
305   } RegularLTO;
306 
307   using ModuleMapType = MapVector<StringRef, BitcodeModule>;
308 
309   struct ThinLTOState {
310     ThinLTOState(ThinBackend Backend);
311 
312     ThinBackend Backend;
313     ModuleSummaryIndex CombinedIndex;
314     // The full set of bitcode modules in input order.
315     ModuleMapType ModuleMap;
316     // The bitcode modules to compile, if specified by the LTO Config.
317     Optional<ModuleMapType> ModulesToCompile;
318     DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID;
319   } ThinLTO;
320 
321   // The global resolution for a particular (mangled) symbol name. This is in
322   // particular necessary to track whether each symbol can be internalized.
323   // Because any input file may introduce a new cross-partition reference, we
324   // cannot make any final internalization decisions until all input files have
325   // been added and the client has called run(). During run() we apply
326   // internalization decisions either directly to the module (for regular LTO)
327   // or to the combined index (for ThinLTO).
328   struct GlobalResolution {
329     /// The unmangled name of the global.
330     std::string IRName;
331 
332     /// Keep track if the symbol is visible outside of a module with a summary
333     /// (i.e. in either a regular object or a regular LTO module without a
334     /// summary).
335     bool VisibleOutsideSummary = false;
336 
337     /// The symbol was exported dynamically, and therefore could be referenced
338     /// by a shared library not visible to the linker.
339     bool ExportDynamic = false;
340 
341     bool UnnamedAddr = true;
342 
343     /// True if module contains the prevailing definition.
344     bool Prevailing = false;
345 
346     /// Returns true if module contains the prevailing definition and symbol is
347     /// an IR symbol. For example when module-level inline asm block is used,
348     /// symbol can be prevailing in module but have no IR name.
349     bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); }
350 
351     /// This field keeps track of the partition number of this global. The
352     /// regular LTO object is partition 0, while each ThinLTO object has its own
353     /// partition number from 1 onwards.
354     ///
355     /// Any global that is defined or used by more than one partition, or that
356     /// is referenced externally, may not be internalized.
357     ///
358     /// Partitions generally have a one-to-one correspondence with tasks, except
359     /// that we use partition 0 for all parallel LTO code generation partitions.
360     /// Any partitioning of the combined LTO object is done internally by the
361     /// LTO backend.
362     unsigned Partition = Unknown;
363 
364     /// Special partition numbers.
365     enum : unsigned {
366       /// A partition number has not yet been assigned to this global.
367       Unknown = -1u,
368 
369       /// This global is either used by more than one partition or has an
370       /// external reference, and therefore cannot be internalized.
371       External = -2u,
372 
373       /// The RegularLTO partition
374       RegularLTO = 0,
375     };
376   };
377 
378   // Global mapping from mangled symbol names to resolutions.
379   StringMap<GlobalResolution> GlobalResolutions;
380 
381   void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
382                             ArrayRef<SymbolResolution> Res, unsigned Partition,
383                             bool InSummary);
384 
385   // These functions take a range of symbol resolutions [ResI, ResE) and consume
386   // the resolutions used by a single input module by incrementing ResI. After
387   // these functions return, [ResI, ResE) will refer to the resolution range for
388   // the remaining modules in the InputFile.
389   Error addModule(InputFile &Input, unsigned ModI,
390                   const SymbolResolution *&ResI, const SymbolResolution *ResE);
391 
392   Expected<RegularLTOState::AddedModule>
393   addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
394                 const SymbolResolution *&ResI, const SymbolResolution *ResE);
395   Error linkRegularLTO(RegularLTOState::AddedModule Mod,
396                        bool LivenessFromIndex);
397 
398   Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
399                    const SymbolResolution *&ResI, const SymbolResolution *ResE);
400 
401   Error runRegularLTO(AddStreamFn AddStream);
402   Error runThinLTO(AddStreamFn AddStream, FileCache Cache,
403                    const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols);
404 
405   Error checkPartiallySplit();
406 
407   mutable bool CalledGetMaxTasks = false;
408 
409   // Use Optional to distinguish false from not yet initialized.
410   Optional<bool> EnableSplitLTOUnit;
411 
412   // Identify symbols exported dynamically, and that therefore could be
413   // referenced by a shared library not visible to the linker.
414   DenseSet<GlobalValue::GUID> DynamicExportSymbols;
415 
416   // Diagnostic optimization remarks file
417   std::unique_ptr<ToolOutputFile> DiagnosticOutputFile;
418 };
419 
420 /// The resolution for a symbol. The linker must provide a SymbolResolution for
421 /// each global symbol based on its internal resolution of that symbol.
422 struct SymbolResolution {
423   SymbolResolution()
424       : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0),
425         ExportDynamic(0), LinkerRedefined(0) {}
426 
427   /// The linker has chosen this definition of the symbol.
428   unsigned Prevailing : 1;
429 
430   /// The definition of this symbol is unpreemptable at runtime and is known to
431   /// be in this linkage unit.
432   unsigned FinalDefinitionInLinkageUnit : 1;
433 
434   /// The definition of this symbol is visible outside of the LTO unit.
435   unsigned VisibleToRegularObj : 1;
436 
437   /// The symbol was exported dynamically, and therefore could be referenced
438   /// by a shared library not visible to the linker.
439   unsigned ExportDynamic : 1;
440 
441   /// Linker redefined version of the symbol which appeared in -wrap or -defsym
442   /// linker option.
443   unsigned LinkerRedefined : 1;
444 };
445 
446 } // namespace lto
447 } // namespace llvm
448 
449 #endif
450