1 //===-LTO.h - LLVM Link Time Optimizer ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares functions and classes used to support LTO. It is intended 10 // to be used both by LTO classes as well as by clients (gold-plugin) that 11 // don't utilize the LTO code generator interfaces. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_LTO_LTO_H 16 #define LLVM_LTO_LTO_H 17 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/Bitcode/BitcodeReader.h" 21 #include "llvm/IR/ModuleSummaryIndex.h" 22 #include "llvm/LTO/Config.h" 23 #include "llvm/Object/IRSymtab.h" 24 #include "llvm/Support/Error.h" 25 #include "llvm/Support/thread.h" 26 #include "llvm/Transforms/IPO/FunctionImport.h" 27 28 namespace llvm { 29 30 class Error; 31 class IRMover; 32 class LLVMContext; 33 class MemoryBufferRef; 34 class Module; 35 class raw_pwrite_stream; 36 class Target; 37 class ToolOutputFile; 38 39 /// Resolve linkage for prevailing symbols in the \p Index. Linkage changes 40 /// recorded in the index and the ThinLTO backends must apply the changes to 41 /// the module via thinLTOResolvePrevailingInModule. 42 /// 43 /// This is done for correctness (if value exported, ensure we always 44 /// emit a copy), and compile-time optimization (allow drop of duplicates). 45 void thinLTOResolvePrevailingInIndex( 46 const lto::Config &C, ModuleSummaryIndex &Index, 47 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 48 isPrevailing, 49 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 50 recordNewLinkage, 51 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols); 52 53 /// Update the linkages in the given \p Index to mark exported values 54 /// as external and non-exported values as internal. The ThinLTO backends 55 /// must apply the changes to the Module via thinLTOInternalizeModule. 56 void thinLTOInternalizeAndPromoteInIndex( 57 ModuleSummaryIndex &Index, 58 function_ref<bool(StringRef, ValueInfo)> isExported, 59 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 60 isPrevailing); 61 62 /// Computes a unique hash for the Module considering the current list of 63 /// export/import and other global analysis results. 64 /// The hash is produced in \p Key. 65 void computeLTOCacheKey( 66 SmallString<40> &Key, const lto::Config &Conf, 67 const ModuleSummaryIndex &Index, StringRef ModuleID, 68 const FunctionImporter::ImportMapTy &ImportList, 69 const FunctionImporter::ExportSetTy &ExportList, 70 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 71 const GVSummaryMapTy &DefinedGlobals, 72 const std::set<GlobalValue::GUID> &CfiFunctionDefs = {}, 73 const std::set<GlobalValue::GUID> &CfiFunctionDecls = {}); 74 75 namespace lto { 76 77 /// Given the original \p Path to an output file, replace any path 78 /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the 79 /// resulting directory if it does not yet exist. 80 std::string getThinLTOOutputFile(const std::string &Path, 81 const std::string &OldPrefix, 82 const std::string &NewPrefix); 83 84 /// Setup optimization remarks. 85 Expected<std::unique_ptr<ToolOutputFile>> setupLLVMOptimizationRemarks( 86 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 87 StringRef RemarksFormat, bool RemarksWithHotness, 88 Optional<uint64_t> RemarksHotnessThreshold = 0, int Count = -1); 89 90 /// Setups the output file for saving statistics. 91 Expected<std::unique_ptr<ToolOutputFile>> 92 setupStatsFile(StringRef StatsFilename); 93 94 /// Produces a container ordering for optimal multi-threaded processing. Returns 95 /// ordered indices to elements in the input array. 96 std::vector<int> generateModulesOrdering(ArrayRef<BitcodeModule *> R); 97 98 class LTO; 99 struct SymbolResolution; 100 class ThinBackendProc; 101 102 /// An input file. This is a symbol table wrapper that only exposes the 103 /// information that an LTO client should need in order to do symbol resolution. 104 class InputFile { 105 public: 106 class Symbol; 107 108 private: 109 // FIXME: Remove LTO class friendship once we have bitcode symbol tables. 110 friend LTO; 111 InputFile() = default; 112 113 std::vector<BitcodeModule> Mods; 114 SmallVector<char, 0> Strtab; 115 std::vector<Symbol> Symbols; 116 117 // [begin, end) for each module 118 std::vector<std::pair<size_t, size_t>> ModuleSymIndices; 119 120 StringRef TargetTriple, SourceFileName, COFFLinkerOpts; 121 std::vector<StringRef> DependentLibraries; 122 std::vector<std::pair<StringRef, Comdat::SelectionKind>> ComdatTable; 123 124 public: 125 ~InputFile(); 126 127 /// Create an InputFile. 128 static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object); 129 130 /// The purpose of this class is to only expose the symbol information that an 131 /// LTO client should need in order to do symbol resolution. 132 class Symbol : irsymtab::Symbol { 133 friend LTO; 134 135 public: 136 Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {} 137 138 using irsymtab::Symbol::isUndefined; 139 using irsymtab::Symbol::isCommon; 140 using irsymtab::Symbol::isWeak; 141 using irsymtab::Symbol::isIndirect; 142 using irsymtab::Symbol::getName; 143 using irsymtab::Symbol::getIRName; 144 using irsymtab::Symbol::getVisibility; 145 using irsymtab::Symbol::canBeOmittedFromSymbolTable; 146 using irsymtab::Symbol::isTLS; 147 using irsymtab::Symbol::getComdatIndex; 148 using irsymtab::Symbol::getCommonSize; 149 using irsymtab::Symbol::getCommonAlignment; 150 using irsymtab::Symbol::getCOFFWeakExternalFallback; 151 using irsymtab::Symbol::getSectionName; 152 using irsymtab::Symbol::isExecutable; 153 using irsymtab::Symbol::isUsed; 154 }; 155 156 /// A range over the symbols in this InputFile. 157 ArrayRef<Symbol> symbols() const { return Symbols; } 158 159 /// Returns linker options specified in the input file. 160 StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; } 161 162 /// Returns dependent library specifiers from the input file. 163 ArrayRef<StringRef> getDependentLibraries() const { return DependentLibraries; } 164 165 /// Returns the path to the InputFile. 166 StringRef getName() const; 167 168 /// Returns the input file's target triple. 169 StringRef getTargetTriple() const { return TargetTriple; } 170 171 /// Returns the source file path specified at compile time. 172 StringRef getSourceFileName() const { return SourceFileName; } 173 174 // Returns a table with all the comdats used by this file. 175 ArrayRef<std::pair<StringRef, Comdat::SelectionKind>> getComdatTable() const { 176 return ComdatTable; 177 } 178 179 // Returns the only BitcodeModule from InputFile. 180 BitcodeModule &getSingleBitcodeModule(); 181 182 private: 183 ArrayRef<Symbol> module_symbols(unsigned I) const { 184 const auto &Indices = ModuleSymIndices[I]; 185 return {Symbols.data() + Indices.first, Symbols.data() + Indices.second}; 186 } 187 }; 188 189 /// This class wraps an output stream for a native object. Most clients should 190 /// just be able to return an instance of this base class from the stream 191 /// callback, but if a client needs to perform some action after the stream is 192 /// written to, that can be done by deriving from this class and overriding the 193 /// destructor. 194 class NativeObjectStream { 195 public: 196 NativeObjectStream(std::unique_ptr<raw_pwrite_stream> OS) : OS(std::move(OS)) {} 197 std::unique_ptr<raw_pwrite_stream> OS; 198 virtual ~NativeObjectStream() = default; 199 }; 200 201 /// This type defines the callback to add a native object that is generated on 202 /// the fly. 203 /// 204 /// Stream callbacks must be thread safe. 205 using AddStreamFn = 206 std::function<std::unique_ptr<NativeObjectStream>(unsigned Task)>; 207 208 /// This is the type of a native object cache. To request an item from the 209 /// cache, pass a unique string as the Key. For hits, the cached file will be 210 /// added to the link and this function will return AddStreamFn(). For misses, 211 /// the cache will return a stream callback which must be called at most once to 212 /// produce content for the stream. The native object stream produced by the 213 /// stream callback will add the file to the link after the stream is written 214 /// to. 215 /// 216 /// Clients generally look like this: 217 /// 218 /// if (AddStreamFn AddStream = Cache(Task, Key)) 219 /// ProduceContent(AddStream); 220 using NativeObjectCache = 221 std::function<AddStreamFn(unsigned Task, StringRef Key)>; 222 223 /// A ThinBackend defines what happens after the thin-link phase during ThinLTO. 224 /// The details of this type definition aren't important; clients can only 225 /// create a ThinBackend using one of the create*ThinBackend() functions below. 226 using ThinBackend = std::function<std::unique_ptr<ThinBackendProc>( 227 const Config &C, ModuleSummaryIndex &CombinedIndex, 228 StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 229 AddStreamFn AddStream, NativeObjectCache Cache)>; 230 231 /// This ThinBackend runs the individual backend jobs in-process. 232 /// The default value means to use one job per hardware core (not hyper-thread). 233 ThinBackend createInProcessThinBackend(ThreadPoolStrategy Parallelism); 234 235 /// This ThinBackend writes individual module indexes to files, instead of 236 /// running the individual backend jobs. This backend is for distributed builds 237 /// where separate processes will invoke the real backends. 238 /// 239 /// To find the path to write the index to, the backend checks if the path has a 240 /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then 241 /// appends ".thinlto.bc" and writes the index to that path. If 242 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a 243 /// similar path with ".imports" appended instead. 244 /// LinkedObjectsFile is an output stream to write the list of object files for 245 /// the final ThinLTO linking. Can be nullptr. 246 /// OnWrite is callback which receives module identifier and notifies LTO user 247 /// that index file for the module (and optionally imports file) was created. 248 using IndexWriteCallback = std::function<void(const std::string &)>; 249 ThinBackend createWriteIndexesThinBackend(std::string OldPrefix, 250 std::string NewPrefix, 251 bool ShouldEmitImportsFiles, 252 raw_fd_ostream *LinkedObjectsFile, 253 IndexWriteCallback OnWrite); 254 255 /// This class implements a resolution-based interface to LLVM's LTO 256 /// functionality. It supports regular LTO, parallel LTO code generation and 257 /// ThinLTO. You can use it from a linker in the following way: 258 /// - Set hooks and code generation options (see lto::Config struct defined in 259 /// Config.h), and use the lto::Config object to create an lto::LTO object. 260 /// - Create lto::InputFile objects using lto::InputFile::create(), then use 261 /// the symbols() function to enumerate its symbols and compute a resolution 262 /// for each symbol (see SymbolResolution below). 263 /// - After the linker has visited each input file (and each regular object 264 /// file) and computed a resolution for each symbol, take each lto::InputFile 265 /// and pass it and an array of symbol resolutions to the add() function. 266 /// - Call the getMaxTasks() function to get an upper bound on the number of 267 /// native object files that LTO may add to the link. 268 /// - Call the run() function. This function will use the supplied AddStream 269 /// and Cache functions to add up to getMaxTasks() native object files to 270 /// the link. 271 class LTO { 272 friend InputFile; 273 274 public: 275 /// Create an LTO object. A default constructed LTO object has a reasonable 276 /// production configuration, but you can customize it by passing arguments to 277 /// this constructor. 278 /// FIXME: We do currently require the DiagHandler field to be set in Conf. 279 /// Until that is fixed, a Config argument is required. 280 LTO(Config Conf, ThinBackend Backend = nullptr, 281 unsigned ParallelCodeGenParallelismLevel = 1); 282 ~LTO(); 283 284 /// Add an input file to the LTO link, using the provided symbol resolutions. 285 /// The symbol resolutions must appear in the enumeration order given by 286 /// InputFile::symbols(). 287 Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res); 288 289 /// Returns an upper bound on the number of tasks that the client may expect. 290 /// This may only be called after all IR object files have been added. For a 291 /// full description of tasks see LTOBackend.h. 292 unsigned getMaxTasks() const; 293 294 /// Runs the LTO pipeline. This function calls the supplied AddStream 295 /// function to add native object files to the link. 296 /// 297 /// The Cache parameter is optional. If supplied, it will be used to cache 298 /// native object files and add them to the link. 299 /// 300 /// The client will receive at most one callback (via either AddStream or 301 /// Cache) for each task identifier. 302 Error run(AddStreamFn AddStream, NativeObjectCache Cache = nullptr); 303 304 /// Static method that returns a list of libcall symbols that can be generated 305 /// by LTO but might not be visible from bitcode symbol table. 306 static ArrayRef<const char*> getRuntimeLibcallSymbols(); 307 308 private: 309 Config Conf; 310 311 struct RegularLTOState { 312 RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 313 const Config &Conf); 314 struct CommonResolution { 315 uint64_t Size = 0; 316 MaybeAlign Align; 317 /// Record if at least one instance of the common was marked as prevailing 318 bool Prevailing = false; 319 }; 320 std::map<std::string, CommonResolution> Commons; 321 322 unsigned ParallelCodeGenParallelismLevel; 323 LTOLLVMContext Ctx; 324 std::unique_ptr<Module> CombinedModule; 325 std::unique_ptr<IRMover> Mover; 326 327 // This stores the information about a regular LTO module that we have added 328 // to the link. It will either be linked immediately (for modules without 329 // summaries) or after summary-based dead stripping (for modules with 330 // summaries). 331 struct AddedModule { 332 std::unique_ptr<Module> M; 333 std::vector<GlobalValue *> Keep; 334 }; 335 std::vector<AddedModule> ModsWithSummaries; 336 bool EmptyCombinedModule = true; 337 } RegularLTO; 338 339 using ModuleMapType = MapVector<StringRef, BitcodeModule>; 340 341 struct ThinLTOState { 342 ThinLTOState(ThinBackend Backend); 343 344 ThinBackend Backend; 345 ModuleSummaryIndex CombinedIndex; 346 // The full set of bitcode modules in input order. 347 ModuleMapType ModuleMap; 348 // The bitcode modules to compile, if specified by the LTO Config. 349 Optional<ModuleMapType> ModulesToCompile; 350 DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID; 351 } ThinLTO; 352 353 // The global resolution for a particular (mangled) symbol name. This is in 354 // particular necessary to track whether each symbol can be internalized. 355 // Because any input file may introduce a new cross-partition reference, we 356 // cannot make any final internalization decisions until all input files have 357 // been added and the client has called run(). During run() we apply 358 // internalization decisions either directly to the module (for regular LTO) 359 // or to the combined index (for ThinLTO). 360 struct GlobalResolution { 361 /// The unmangled name of the global. 362 std::string IRName; 363 364 /// Keep track if the symbol is visible outside of a module with a summary 365 /// (i.e. in either a regular object or a regular LTO module without a 366 /// summary). 367 bool VisibleOutsideSummary = false; 368 369 /// The symbol was exported dynamically, and therefore could be referenced 370 /// by a shared library not visible to the linker. 371 bool ExportDynamic = false; 372 373 bool UnnamedAddr = true; 374 375 /// True if module contains the prevailing definition. 376 bool Prevailing = false; 377 378 /// Returns true if module contains the prevailing definition and symbol is 379 /// an IR symbol. For example when module-level inline asm block is used, 380 /// symbol can be prevailing in module but have no IR name. 381 bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); } 382 383 /// This field keeps track of the partition number of this global. The 384 /// regular LTO object is partition 0, while each ThinLTO object has its own 385 /// partition number from 1 onwards. 386 /// 387 /// Any global that is defined or used by more than one partition, or that 388 /// is referenced externally, may not be internalized. 389 /// 390 /// Partitions generally have a one-to-one correspondence with tasks, except 391 /// that we use partition 0 for all parallel LTO code generation partitions. 392 /// Any partitioning of the combined LTO object is done internally by the 393 /// LTO backend. 394 unsigned Partition = Unknown; 395 396 /// Special partition numbers. 397 enum : unsigned { 398 /// A partition number has not yet been assigned to this global. 399 Unknown = -1u, 400 401 /// This global is either used by more than one partition or has an 402 /// external reference, and therefore cannot be internalized. 403 External = -2u, 404 405 /// The RegularLTO partition 406 RegularLTO = 0, 407 }; 408 }; 409 410 // Global mapping from mangled symbol names to resolutions. 411 StringMap<GlobalResolution> GlobalResolutions; 412 413 void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 414 ArrayRef<SymbolResolution> Res, unsigned Partition, 415 bool InSummary); 416 417 // These functions take a range of symbol resolutions [ResI, ResE) and consume 418 // the resolutions used by a single input module by incrementing ResI. After 419 // these functions return, [ResI, ResE) will refer to the resolution range for 420 // the remaining modules in the InputFile. 421 Error addModule(InputFile &Input, unsigned ModI, 422 const SymbolResolution *&ResI, const SymbolResolution *ResE); 423 424 Expected<RegularLTOState::AddedModule> 425 addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 426 const SymbolResolution *&ResI, const SymbolResolution *ResE); 427 Error linkRegularLTO(RegularLTOState::AddedModule Mod, 428 bool LivenessFromIndex); 429 430 Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 431 const SymbolResolution *&ResI, const SymbolResolution *ResE); 432 433 Error runRegularLTO(AddStreamFn AddStream); 434 Error runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache, 435 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols); 436 437 Error checkPartiallySplit(); 438 439 mutable bool CalledGetMaxTasks = false; 440 441 // Use Optional to distinguish false from not yet initialized. 442 Optional<bool> EnableSplitLTOUnit; 443 444 // Identify symbols exported dynamically, and that therefore could be 445 // referenced by a shared library not visible to the linker. 446 DenseSet<GlobalValue::GUID> DynamicExportSymbols; 447 }; 448 449 /// The resolution for a symbol. The linker must provide a SymbolResolution for 450 /// each global symbol based on its internal resolution of that symbol. 451 struct SymbolResolution { 452 SymbolResolution() 453 : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0), 454 ExportDynamic(0), LinkerRedefined(0) {} 455 456 /// The linker has chosen this definition of the symbol. 457 unsigned Prevailing : 1; 458 459 /// The definition of this symbol is unpreemptable at runtime and is known to 460 /// be in this linkage unit. 461 unsigned FinalDefinitionInLinkageUnit : 1; 462 463 /// The definition of this symbol is visible outside of the LTO unit. 464 unsigned VisibleToRegularObj : 1; 465 466 /// The symbol was exported dynamically, and therefore could be referenced 467 /// by a shared library not visible to the linker. 468 unsigned ExportDynamic : 1; 469 470 /// Linker redefined version of the symbol which appeared in -wrap or -defsym 471 /// linker option. 472 unsigned LinkerRedefined : 1; 473 }; 474 475 } // namespace lto 476 } // namespace llvm 477 478 #endif 479