1 //===-LTO.h - LLVM Link Time Optimizer ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares functions and classes used to support LTO. It is intended 10 // to be used both by LTO classes as well as by clients (gold-plugin) that 11 // don't utilize the LTO code generator interfaces. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_LTO_LTO_H 16 #define LLVM_LTO_LTO_H 17 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/Bitcode/BitcodeReader.h" 21 #include "llvm/IR/ModuleSummaryIndex.h" 22 #include "llvm/LTO/Config.h" 23 #include "llvm/Object/IRSymtab.h" 24 #include "llvm/Support/Caching.h" 25 #include "llvm/Support/Error.h" 26 #include "llvm/Support/thread.h" 27 #include "llvm/Transforms/IPO/FunctionAttrs.h" 28 #include "llvm/Transforms/IPO/FunctionImport.h" 29 30 namespace llvm { 31 32 class Error; 33 class IRMover; 34 class LLVMContext; 35 class MemoryBufferRef; 36 class Module; 37 class raw_pwrite_stream; 38 class ToolOutputFile; 39 40 /// Resolve linkage for prevailing symbols in the \p Index. Linkage changes 41 /// recorded in the index and the ThinLTO backends must apply the changes to 42 /// the module via thinLTOFinalizeInModule. 43 /// 44 /// This is done for correctness (if value exported, ensure we always 45 /// emit a copy), and compile-time optimization (allow drop of duplicates). 46 void thinLTOResolvePrevailingInIndex( 47 const lto::Config &C, ModuleSummaryIndex &Index, 48 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 49 isPrevailing, 50 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 51 recordNewLinkage, 52 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols); 53 54 /// Update the linkages in the given \p Index to mark exported values 55 /// as external and non-exported values as internal. The ThinLTO backends 56 /// must apply the changes to the Module via thinLTOInternalizeModule. 57 void thinLTOInternalizeAndPromoteInIndex( 58 ModuleSummaryIndex &Index, 59 function_ref<bool(StringRef, ValueInfo)> isExported, 60 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 61 isPrevailing); 62 63 /// Computes a unique hash for the Module considering the current list of 64 /// export/import and other global analysis results. 65 /// The hash is produced in \p Key. 66 void computeLTOCacheKey( 67 SmallString<40> &Key, const lto::Config &Conf, 68 const ModuleSummaryIndex &Index, StringRef ModuleID, 69 const FunctionImporter::ImportMapTy &ImportList, 70 const FunctionImporter::ExportSetTy &ExportList, 71 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 72 const GVSummaryMapTy &DefinedGlobals, 73 const std::set<GlobalValue::GUID> &CfiFunctionDefs = {}, 74 const std::set<GlobalValue::GUID> &CfiFunctionDecls = {}); 75 76 namespace lto { 77 78 /// Given the original \p Path to an output file, replace any path 79 /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the 80 /// resulting directory if it does not yet exist. 81 std::string getThinLTOOutputFile(StringRef Path, StringRef OldPrefix, 82 StringRef NewPrefix); 83 84 /// Setup optimization remarks. 85 Expected<std::unique_ptr<ToolOutputFile>> setupLLVMOptimizationRemarks( 86 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 87 StringRef RemarksFormat, bool RemarksWithHotness, 88 std::optional<uint64_t> RemarksHotnessThreshold = 0, int Count = -1); 89 90 /// Setups the output file for saving statistics. 91 Expected<std::unique_ptr<ToolOutputFile>> 92 setupStatsFile(StringRef StatsFilename); 93 94 /// Produces a container ordering for optimal multi-threaded processing. Returns 95 /// ordered indices to elements in the input array. 96 std::vector<int> generateModulesOrdering(ArrayRef<BitcodeModule *> R); 97 98 /// Updates MemProf attributes (and metadata) based on whether the index 99 /// has recorded that we are linking with allocation libraries containing 100 /// the necessary APIs for downstream transformations. 101 void updateMemProfAttributes(Module &Mod, const ModuleSummaryIndex &Index); 102 103 class LTO; 104 struct SymbolResolution; 105 class ThinBackendProc; 106 107 /// An input file. This is a symbol table wrapper that only exposes the 108 /// information that an LTO client should need in order to do symbol resolution. 109 class InputFile { 110 public: 111 class Symbol; 112 113 private: 114 // FIXME: Remove LTO class friendship once we have bitcode symbol tables. 115 friend LTO; 116 InputFile() = default; 117 118 std::vector<BitcodeModule> Mods; 119 SmallVector<char, 0> Strtab; 120 std::vector<Symbol> Symbols; 121 122 // [begin, end) for each module 123 std::vector<std::pair<size_t, size_t>> ModuleSymIndices; 124 125 StringRef TargetTriple, SourceFileName, COFFLinkerOpts; 126 std::vector<StringRef> DependentLibraries; 127 std::vector<std::pair<StringRef, Comdat::SelectionKind>> ComdatTable; 128 129 public: 130 ~InputFile(); 131 132 /// Create an InputFile. 133 static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object); 134 135 /// The purpose of this class is to only expose the symbol information that an 136 /// LTO client should need in order to do symbol resolution. 137 class Symbol : irsymtab::Symbol { 138 friend LTO; 139 140 public: 141 Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {} 142 143 using irsymtab::Symbol::isUndefined; 144 using irsymtab::Symbol::isCommon; 145 using irsymtab::Symbol::isWeak; 146 using irsymtab::Symbol::isIndirect; 147 using irsymtab::Symbol::getName; 148 using irsymtab::Symbol::getIRName; 149 using irsymtab::Symbol::getVisibility; 150 using irsymtab::Symbol::canBeOmittedFromSymbolTable; 151 using irsymtab::Symbol::isTLS; 152 using irsymtab::Symbol::getComdatIndex; 153 using irsymtab::Symbol::getCommonSize; 154 using irsymtab::Symbol::getCommonAlignment; 155 using irsymtab::Symbol::getCOFFWeakExternalFallback; 156 using irsymtab::Symbol::getSectionName; 157 using irsymtab::Symbol::isExecutable; 158 using irsymtab::Symbol::isUsed; 159 }; 160 161 /// A range over the symbols in this InputFile. 162 ArrayRef<Symbol> symbols() const { return Symbols; } 163 164 /// Returns linker options specified in the input file. 165 StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; } 166 167 /// Returns dependent library specifiers from the input file. 168 ArrayRef<StringRef> getDependentLibraries() const { return DependentLibraries; } 169 170 /// Returns the path to the InputFile. 171 StringRef getName() const; 172 173 /// Returns the input file's target triple. 174 StringRef getTargetTriple() const { return TargetTriple; } 175 176 /// Returns the source file path specified at compile time. 177 StringRef getSourceFileName() const { return SourceFileName; } 178 179 // Returns a table with all the comdats used by this file. 180 ArrayRef<std::pair<StringRef, Comdat::SelectionKind>> getComdatTable() const { 181 return ComdatTable; 182 } 183 184 // Returns the only BitcodeModule from InputFile. 185 BitcodeModule &getSingleBitcodeModule(); 186 187 private: 188 ArrayRef<Symbol> module_symbols(unsigned I) const { 189 const auto &Indices = ModuleSymIndices[I]; 190 return {Symbols.data() + Indices.first, Symbols.data() + Indices.second}; 191 } 192 }; 193 194 /// A ThinBackend defines what happens after the thin-link phase during ThinLTO. 195 /// The details of this type definition aren't important; clients can only 196 /// create a ThinBackend using one of the create*ThinBackend() functions below. 197 using ThinBackend = std::function<std::unique_ptr<ThinBackendProc>( 198 const Config &C, ModuleSummaryIndex &CombinedIndex, 199 StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 200 AddStreamFn AddStream, FileCache Cache)>; 201 202 /// This ThinBackend runs the individual backend jobs in-process. 203 /// The default value means to use one job per hardware core (not hyper-thread). 204 /// OnWrite is callback which receives module identifier and notifies LTO user 205 /// that index file for the module (and optionally imports file) was created. 206 /// ShouldEmitIndexFiles being true will write sharded ThinLTO index files 207 /// to the same path as the input module, with suffix ".thinlto.bc" 208 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a 209 /// similar path with ".imports" appended instead. 210 using IndexWriteCallback = std::function<void(const std::string &)>; 211 ThinBackend createInProcessThinBackend(ThreadPoolStrategy Parallelism, 212 IndexWriteCallback OnWrite = nullptr, 213 bool ShouldEmitIndexFiles = false, 214 bool ShouldEmitImportsFiles = false); 215 216 /// This ThinBackend writes individual module indexes to files, instead of 217 /// running the individual backend jobs. This backend is for distributed builds 218 /// where separate processes will invoke the real backends. 219 /// 220 /// To find the path to write the index to, the backend checks if the path has a 221 /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then 222 /// appends ".thinlto.bc" and writes the index to that path. If 223 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a 224 /// similar path with ".imports" appended instead. 225 /// LinkedObjectsFile is an output stream to write the list of object files for 226 /// the final ThinLTO linking. Can be nullptr. If LinkedObjectsFile is not 227 /// nullptr and NativeObjectPrefix is not empty then it replaces the prefix of 228 /// the objects with NativeObjectPrefix instead of NewPrefix. OnWrite is 229 /// callback which receives module identifier and notifies LTO user that index 230 /// file for the module (and optionally imports file) was created. 231 ThinBackend createWriteIndexesThinBackend(std::string OldPrefix, 232 std::string NewPrefix, 233 std::string NativeObjectPrefix, 234 bool ShouldEmitImportsFiles, 235 raw_fd_ostream *LinkedObjectsFile, 236 IndexWriteCallback OnWrite); 237 238 /// This class implements a resolution-based interface to LLVM's LTO 239 /// functionality. It supports regular LTO, parallel LTO code generation and 240 /// ThinLTO. You can use it from a linker in the following way: 241 /// - Set hooks and code generation options (see lto::Config struct defined in 242 /// Config.h), and use the lto::Config object to create an lto::LTO object. 243 /// - Create lto::InputFile objects using lto::InputFile::create(), then use 244 /// the symbols() function to enumerate its symbols and compute a resolution 245 /// for each symbol (see SymbolResolution below). 246 /// - After the linker has visited each input file (and each regular object 247 /// file) and computed a resolution for each symbol, take each lto::InputFile 248 /// and pass it and an array of symbol resolutions to the add() function. 249 /// - Call the getMaxTasks() function to get an upper bound on the number of 250 /// native object files that LTO may add to the link. 251 /// - Call the run() function. This function will use the supplied AddStream 252 /// and Cache functions to add up to getMaxTasks() native object files to 253 /// the link. 254 class LTO { 255 friend InputFile; 256 257 public: 258 /// Unified LTO modes 259 enum LTOKind { 260 /// Any LTO mode without Unified LTO. The default mode. 261 LTOK_Default, 262 263 /// Regular LTO, with Unified LTO enabled. 264 LTOK_UnifiedRegular, 265 266 /// ThinLTO, with Unified LTO enabled. 267 LTOK_UnifiedThin, 268 }; 269 270 /// Create an LTO object. A default constructed LTO object has a reasonable 271 /// production configuration, but you can customize it by passing arguments to 272 /// this constructor. 273 /// FIXME: We do currently require the DiagHandler field to be set in Conf. 274 /// Until that is fixed, a Config argument is required. 275 LTO(Config Conf, ThinBackend Backend = nullptr, 276 unsigned ParallelCodeGenParallelismLevel = 1, 277 LTOKind LTOMode = LTOK_Default); 278 ~LTO(); 279 280 /// Add an input file to the LTO link, using the provided symbol resolutions. 281 /// The symbol resolutions must appear in the enumeration order given by 282 /// InputFile::symbols(). 283 Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res); 284 285 /// Returns an upper bound on the number of tasks that the client may expect. 286 /// This may only be called after all IR object files have been added. For a 287 /// full description of tasks see LTOBackend.h. 288 unsigned getMaxTasks() const; 289 290 /// Runs the LTO pipeline. This function calls the supplied AddStream 291 /// function to add native object files to the link. 292 /// 293 /// The Cache parameter is optional. If supplied, it will be used to cache 294 /// native object files and add them to the link. 295 /// 296 /// The client will receive at most one callback (via either AddStream or 297 /// Cache) for each task identifier. 298 Error run(AddStreamFn AddStream, FileCache Cache = nullptr); 299 300 /// Static method that returns a list of libcall symbols that can be generated 301 /// by LTO but might not be visible from bitcode symbol table. 302 static ArrayRef<const char*> getRuntimeLibcallSymbols(); 303 304 private: 305 Config Conf; 306 307 struct RegularLTOState { 308 RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 309 const Config &Conf); 310 struct CommonResolution { 311 uint64_t Size = 0; 312 Align Alignment; 313 /// Record if at least one instance of the common was marked as prevailing 314 bool Prevailing = false; 315 }; 316 std::map<std::string, CommonResolution> Commons; 317 318 unsigned ParallelCodeGenParallelismLevel; 319 LTOLLVMContext Ctx; 320 std::unique_ptr<Module> CombinedModule; 321 std::unique_ptr<IRMover> Mover; 322 323 // This stores the information about a regular LTO module that we have added 324 // to the link. It will either be linked immediately (for modules without 325 // summaries) or after summary-based dead stripping (for modules with 326 // summaries). 327 struct AddedModule { 328 std::unique_ptr<Module> M; 329 std::vector<GlobalValue *> Keep; 330 }; 331 std::vector<AddedModule> ModsWithSummaries; 332 bool EmptyCombinedModule = true; 333 } RegularLTO; 334 335 using ModuleMapType = MapVector<StringRef, BitcodeModule>; 336 337 struct ThinLTOState { 338 ThinLTOState(ThinBackend Backend); 339 340 ThinBackend Backend; 341 ModuleSummaryIndex CombinedIndex; 342 // The full set of bitcode modules in input order. 343 ModuleMapType ModuleMap; 344 // The bitcode modules to compile, if specified by the LTO Config. 345 std::optional<ModuleMapType> ModulesToCompile; 346 DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID; 347 } ThinLTO; 348 349 // The global resolution for a particular (mangled) symbol name. This is in 350 // particular necessary to track whether each symbol can be internalized. 351 // Because any input file may introduce a new cross-partition reference, we 352 // cannot make any final internalization decisions until all input files have 353 // been added and the client has called run(). During run() we apply 354 // internalization decisions either directly to the module (for regular LTO) 355 // or to the combined index (for ThinLTO). 356 struct GlobalResolution { 357 /// The unmangled name of the global. 358 std::string IRName; 359 360 /// Keep track if the symbol is visible outside of a module with a summary 361 /// (i.e. in either a regular object or a regular LTO module without a 362 /// summary). 363 bool VisibleOutsideSummary = false; 364 365 /// The symbol was exported dynamically, and therefore could be referenced 366 /// by a shared library not visible to the linker. 367 bool ExportDynamic = false; 368 369 bool UnnamedAddr = true; 370 371 /// True if module contains the prevailing definition. 372 bool Prevailing = false; 373 374 /// Returns true if module contains the prevailing definition and symbol is 375 /// an IR symbol. For example when module-level inline asm block is used, 376 /// symbol can be prevailing in module but have no IR name. 377 bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); } 378 379 /// This field keeps track of the partition number of this global. The 380 /// regular LTO object is partition 0, while each ThinLTO object has its own 381 /// partition number from 1 onwards. 382 /// 383 /// Any global that is defined or used by more than one partition, or that 384 /// is referenced externally, may not be internalized. 385 /// 386 /// Partitions generally have a one-to-one correspondence with tasks, except 387 /// that we use partition 0 for all parallel LTO code generation partitions. 388 /// Any partitioning of the combined LTO object is done internally by the 389 /// LTO backend. 390 unsigned Partition = Unknown; 391 392 /// Special partition numbers. 393 enum : unsigned { 394 /// A partition number has not yet been assigned to this global. 395 Unknown = -1u, 396 397 /// This global is either used by more than one partition or has an 398 /// external reference, and therefore cannot be internalized. 399 External = -2u, 400 401 /// The RegularLTO partition 402 RegularLTO = 0, 403 }; 404 }; 405 406 // Global mapping from mangled symbol names to resolutions. 407 StringMap<GlobalResolution> GlobalResolutions; 408 409 void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 410 ArrayRef<SymbolResolution> Res, unsigned Partition, 411 bool InSummary); 412 413 // These functions take a range of symbol resolutions [ResI, ResE) and consume 414 // the resolutions used by a single input module by incrementing ResI. After 415 // these functions return, [ResI, ResE) will refer to the resolution range for 416 // the remaining modules in the InputFile. 417 Error addModule(InputFile &Input, unsigned ModI, 418 const SymbolResolution *&ResI, const SymbolResolution *ResE); 419 420 Expected<RegularLTOState::AddedModule> 421 addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 422 const SymbolResolution *&ResI, const SymbolResolution *ResE); 423 Error linkRegularLTO(RegularLTOState::AddedModule Mod, 424 bool LivenessFromIndex); 425 426 Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 427 const SymbolResolution *&ResI, const SymbolResolution *ResE); 428 429 Error runRegularLTO(AddStreamFn AddStream); 430 Error runThinLTO(AddStreamFn AddStream, FileCache Cache, 431 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols); 432 433 Error checkPartiallySplit(); 434 435 mutable bool CalledGetMaxTasks = false; 436 437 // LTO mode when using Unified LTO. 438 LTOKind LTOMode; 439 440 // Use Optional to distinguish false from not yet initialized. 441 std::optional<bool> EnableSplitLTOUnit; 442 443 // Identify symbols exported dynamically, and that therefore could be 444 // referenced by a shared library not visible to the linker. 445 DenseSet<GlobalValue::GUID> DynamicExportSymbols; 446 447 // Diagnostic optimization remarks file 448 std::unique_ptr<ToolOutputFile> DiagnosticOutputFile; 449 }; 450 451 /// The resolution for a symbol. The linker must provide a SymbolResolution for 452 /// each global symbol based on its internal resolution of that symbol. 453 struct SymbolResolution { 454 SymbolResolution() 455 : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0), 456 ExportDynamic(0), LinkerRedefined(0) {} 457 458 /// The linker has chosen this definition of the symbol. 459 unsigned Prevailing : 1; 460 461 /// The definition of this symbol is unpreemptable at runtime and is known to 462 /// be in this linkage unit. 463 unsigned FinalDefinitionInLinkageUnit : 1; 464 465 /// The definition of this symbol is visible outside of the LTO unit. 466 unsigned VisibleToRegularObj : 1; 467 468 /// The symbol was exported dynamically, and therefore could be referenced 469 /// by a shared library not visible to the linker. 470 unsigned ExportDynamic : 1; 471 472 /// Linker redefined version of the symbol which appeared in -wrap or -defsym 473 /// linker option. 474 unsigned LinkerRedefined : 1; 475 }; 476 477 } // namespace lto 478 } // namespace llvm 479 480 #endif 481