xref: /freebsd/contrib/llvm-project/llvm/include/llvm/LTO/LTO.h (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1 //===-LTO.h - LLVM Link Time Optimizer ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares functions and classes used to support LTO. It is intended
10 // to be used both by LTO classes as well as by clients (gold-plugin) that
11 // don't utilize the LTO code generator interfaces.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LTO_LTO_H
16 #define LLVM_LTO_LTO_H
17 
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/Bitcode/BitcodeReader.h"
21 #include "llvm/IR/ModuleSummaryIndex.h"
22 #include "llvm/LTO/Config.h"
23 #include "llvm/Object/IRSymtab.h"
24 #include "llvm/Support/Caching.h"
25 #include "llvm/Support/Error.h"
26 #include "llvm/Support/thread.h"
27 #include "llvm/Transforms/IPO/FunctionAttrs.h"
28 #include "llvm/Transforms/IPO/FunctionImport.h"
29 
30 namespace llvm {
31 
32 class Error;
33 class IRMover;
34 class LLVMContext;
35 class MemoryBufferRef;
36 class Module;
37 class raw_pwrite_stream;
38 class ToolOutputFile;
39 
40 /// Resolve linkage for prevailing symbols in the \p Index. Linkage changes
41 /// recorded in the index and the ThinLTO backends must apply the changes to
42 /// the module via thinLTOFinalizeInModule.
43 ///
44 /// This is done for correctness (if value exported, ensure we always
45 /// emit a copy), and compile-time optimization (allow drop of duplicates).
46 void thinLTOResolvePrevailingInIndex(
47     const lto::Config &C, ModuleSummaryIndex &Index,
48     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
49         isPrevailing,
50     function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
51         recordNewLinkage,
52     const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols);
53 
54 /// Update the linkages in the given \p Index to mark exported values
55 /// as external and non-exported values as internal. The ThinLTO backends
56 /// must apply the changes to the Module via thinLTOInternalizeModule.
57 void thinLTOInternalizeAndPromoteInIndex(
58     ModuleSummaryIndex &Index,
59     function_ref<bool(StringRef, ValueInfo)> isExported,
60     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
61         isPrevailing);
62 
63 /// Computes a unique hash for the Module considering the current list of
64 /// export/import and other global analysis results.
65 /// The hash is produced in \p Key.
66 void computeLTOCacheKey(
67     SmallString<40> &Key, const lto::Config &Conf,
68     const ModuleSummaryIndex &Index, StringRef ModuleID,
69     const FunctionImporter::ImportMapTy &ImportList,
70     const FunctionImporter::ExportSetTy &ExportList,
71     const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
72     const GVSummaryMapTy &DefinedGlobals,
73     const std::set<GlobalValue::GUID> &CfiFunctionDefs = {},
74     const std::set<GlobalValue::GUID> &CfiFunctionDecls = {});
75 
76 namespace lto {
77 
78 /// Given the original \p Path to an output file, replace any path
79 /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the
80 /// resulting directory if it does not yet exist.
81 std::string getThinLTOOutputFile(StringRef Path, StringRef OldPrefix,
82                                  StringRef NewPrefix);
83 
84 /// Setup optimization remarks.
85 Expected<std::unique_ptr<ToolOutputFile>> setupLLVMOptimizationRemarks(
86     LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses,
87     StringRef RemarksFormat, bool RemarksWithHotness,
88     std::optional<uint64_t> RemarksHotnessThreshold = 0, int Count = -1);
89 
90 /// Setups the output file for saving statistics.
91 Expected<std::unique_ptr<ToolOutputFile>>
92 setupStatsFile(StringRef StatsFilename);
93 
94 /// Produces a container ordering for optimal multi-threaded processing. Returns
95 /// ordered indices to elements in the input array.
96 std::vector<int> generateModulesOrdering(ArrayRef<BitcodeModule *> R);
97 
98 /// Updates MemProf attributes (and metadata) based on whether the index
99 /// has recorded that we are linking with allocation libraries containing
100 /// the necessary APIs for downstream transformations.
101 void updateMemProfAttributes(Module &Mod, const ModuleSummaryIndex &Index);
102 
103 class LTO;
104 struct SymbolResolution;
105 class ThinBackendProc;
106 
107 /// An input file. This is a symbol table wrapper that only exposes the
108 /// information that an LTO client should need in order to do symbol resolution.
109 class InputFile {
110 public:
111   class Symbol;
112 
113 private:
114   // FIXME: Remove LTO class friendship once we have bitcode symbol tables.
115   friend LTO;
116   InputFile() = default;
117 
118   std::vector<BitcodeModule> Mods;
119   SmallVector<char, 0> Strtab;
120   std::vector<Symbol> Symbols;
121 
122   // [begin, end) for each module
123   std::vector<std::pair<size_t, size_t>> ModuleSymIndices;
124 
125   StringRef TargetTriple, SourceFileName, COFFLinkerOpts;
126   std::vector<StringRef> DependentLibraries;
127   std::vector<std::pair<StringRef, Comdat::SelectionKind>> ComdatTable;
128 
129 public:
130   ~InputFile();
131 
132   /// Create an InputFile.
133   static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object);
134 
135   /// The purpose of this class is to only expose the symbol information that an
136   /// LTO client should need in order to do symbol resolution.
137   class Symbol : irsymtab::Symbol {
138     friend LTO;
139 
140   public:
141     Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {}
142 
143     using irsymtab::Symbol::isUndefined;
144     using irsymtab::Symbol::isCommon;
145     using irsymtab::Symbol::isWeak;
146     using irsymtab::Symbol::isIndirect;
147     using irsymtab::Symbol::getName;
148     using irsymtab::Symbol::getIRName;
149     using irsymtab::Symbol::getVisibility;
150     using irsymtab::Symbol::canBeOmittedFromSymbolTable;
151     using irsymtab::Symbol::isTLS;
152     using irsymtab::Symbol::getComdatIndex;
153     using irsymtab::Symbol::getCommonSize;
154     using irsymtab::Symbol::getCommonAlignment;
155     using irsymtab::Symbol::getCOFFWeakExternalFallback;
156     using irsymtab::Symbol::getSectionName;
157     using irsymtab::Symbol::isExecutable;
158     using irsymtab::Symbol::isUsed;
159   };
160 
161   /// A range over the symbols in this InputFile.
162   ArrayRef<Symbol> symbols() const { return Symbols; }
163 
164   /// Returns linker options specified in the input file.
165   StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; }
166 
167   /// Returns dependent library specifiers from the input file.
168   ArrayRef<StringRef> getDependentLibraries() const { return DependentLibraries; }
169 
170   /// Returns the path to the InputFile.
171   StringRef getName() const;
172 
173   /// Returns the input file's target triple.
174   StringRef getTargetTriple() const { return TargetTriple; }
175 
176   /// Returns the source file path specified at compile time.
177   StringRef getSourceFileName() const { return SourceFileName; }
178 
179   // Returns a table with all the comdats used by this file.
180   ArrayRef<std::pair<StringRef, Comdat::SelectionKind>> getComdatTable() const {
181     return ComdatTable;
182   }
183 
184   // Returns the only BitcodeModule from InputFile.
185   BitcodeModule &getSingleBitcodeModule();
186 
187 private:
188   ArrayRef<Symbol> module_symbols(unsigned I) const {
189     const auto &Indices = ModuleSymIndices[I];
190     return {Symbols.data() + Indices.first, Symbols.data() + Indices.second};
191   }
192 };
193 
194 /// A ThinBackend defines what happens after the thin-link phase during ThinLTO.
195 /// The details of this type definition aren't important; clients can only
196 /// create a ThinBackend using one of the create*ThinBackend() functions below.
197 using ThinBackend = std::function<std::unique_ptr<ThinBackendProc>(
198     const Config &C, ModuleSummaryIndex &CombinedIndex,
199     StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
200     AddStreamFn AddStream, FileCache Cache)>;
201 
202 /// This ThinBackend runs the individual backend jobs in-process.
203 /// The default value means to use one job per hardware core (not hyper-thread).
204 /// OnWrite is callback which receives module identifier and notifies LTO user
205 /// that index file for the module (and optionally imports file) was created.
206 /// ShouldEmitIndexFiles being true will write sharded ThinLTO index files
207 /// to the same path as the input module, with suffix ".thinlto.bc"
208 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a
209 /// similar path with ".imports" appended instead.
210 using IndexWriteCallback = std::function<void(const std::string &)>;
211 ThinBackend createInProcessThinBackend(ThreadPoolStrategy Parallelism,
212                                        IndexWriteCallback OnWrite = nullptr,
213                                        bool ShouldEmitIndexFiles = false,
214                                        bool ShouldEmitImportsFiles = false);
215 
216 /// This ThinBackend writes individual module indexes to files, instead of
217 /// running the individual backend jobs. This backend is for distributed builds
218 /// where separate processes will invoke the real backends.
219 ///
220 /// To find the path to write the index to, the backend checks if the path has a
221 /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then
222 /// appends ".thinlto.bc" and writes the index to that path. If
223 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a
224 /// similar path with ".imports" appended instead.
225 /// LinkedObjectsFile is an output stream to write the list of object files for
226 /// the final ThinLTO linking. Can be nullptr.  If LinkedObjectsFile is not
227 /// nullptr and NativeObjectPrefix is not empty then it replaces the prefix of
228 /// the objects with NativeObjectPrefix instead of NewPrefix. OnWrite is
229 /// callback which receives module identifier and notifies LTO user that index
230 /// file for the module (and optionally imports file) was created.
231 ThinBackend createWriteIndexesThinBackend(std::string OldPrefix,
232                                           std::string NewPrefix,
233                                           std::string NativeObjectPrefix,
234                                           bool ShouldEmitImportsFiles,
235                                           raw_fd_ostream *LinkedObjectsFile,
236                                           IndexWriteCallback OnWrite);
237 
238 /// This class implements a resolution-based interface to LLVM's LTO
239 /// functionality. It supports regular LTO, parallel LTO code generation and
240 /// ThinLTO. You can use it from a linker in the following way:
241 /// - Set hooks and code generation options (see lto::Config struct defined in
242 ///   Config.h), and use the lto::Config object to create an lto::LTO object.
243 /// - Create lto::InputFile objects using lto::InputFile::create(), then use
244 ///   the symbols() function to enumerate its symbols and compute a resolution
245 ///   for each symbol (see SymbolResolution below).
246 /// - After the linker has visited each input file (and each regular object
247 ///   file) and computed a resolution for each symbol, take each lto::InputFile
248 ///   and pass it and an array of symbol resolutions to the add() function.
249 /// - Call the getMaxTasks() function to get an upper bound on the number of
250 ///   native object files that LTO may add to the link.
251 /// - Call the run() function. This function will use the supplied AddStream
252 ///   and Cache functions to add up to getMaxTasks() native object files to
253 ///   the link.
254 class LTO {
255   friend InputFile;
256 
257 public:
258   /// Unified LTO modes
259   enum LTOKind {
260     /// Any LTO mode without Unified LTO. The default mode.
261     LTOK_Default,
262 
263     /// Regular LTO, with Unified LTO enabled.
264     LTOK_UnifiedRegular,
265 
266     /// ThinLTO, with Unified LTO enabled.
267     LTOK_UnifiedThin,
268   };
269 
270   /// Create an LTO object. A default constructed LTO object has a reasonable
271   /// production configuration, but you can customize it by passing arguments to
272   /// this constructor.
273   /// FIXME: We do currently require the DiagHandler field to be set in Conf.
274   /// Until that is fixed, a Config argument is required.
275   LTO(Config Conf, ThinBackend Backend = nullptr,
276       unsigned ParallelCodeGenParallelismLevel = 1,
277       LTOKind LTOMode = LTOK_Default);
278   ~LTO();
279 
280   /// Add an input file to the LTO link, using the provided symbol resolutions.
281   /// The symbol resolutions must appear in the enumeration order given by
282   /// InputFile::symbols().
283   Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res);
284 
285   /// Returns an upper bound on the number of tasks that the client may expect.
286   /// This may only be called after all IR object files have been added. For a
287   /// full description of tasks see LTOBackend.h.
288   unsigned getMaxTasks() const;
289 
290   /// Runs the LTO pipeline. This function calls the supplied AddStream
291   /// function to add native object files to the link.
292   ///
293   /// The Cache parameter is optional. If supplied, it will be used to cache
294   /// native object files and add them to the link.
295   ///
296   /// The client will receive at most one callback (via either AddStream or
297   /// Cache) for each task identifier.
298   Error run(AddStreamFn AddStream, FileCache Cache = nullptr);
299 
300   /// Static method that returns a list of libcall symbols that can be generated
301   /// by LTO but might not be visible from bitcode symbol table.
302   static ArrayRef<const char*> getRuntimeLibcallSymbols();
303 
304 private:
305   Config Conf;
306 
307   struct RegularLTOState {
308     RegularLTOState(unsigned ParallelCodeGenParallelismLevel,
309                     const Config &Conf);
310     struct CommonResolution {
311       uint64_t Size = 0;
312       Align Alignment;
313       /// Record if at least one instance of the common was marked as prevailing
314       bool Prevailing = false;
315     };
316     std::map<std::string, CommonResolution> Commons;
317 
318     unsigned ParallelCodeGenParallelismLevel;
319     LTOLLVMContext Ctx;
320     std::unique_ptr<Module> CombinedModule;
321     std::unique_ptr<IRMover> Mover;
322 
323     // This stores the information about a regular LTO module that we have added
324     // to the link. It will either be linked immediately (for modules without
325     // summaries) or after summary-based dead stripping (for modules with
326     // summaries).
327     struct AddedModule {
328       std::unique_ptr<Module> M;
329       std::vector<GlobalValue *> Keep;
330     };
331     std::vector<AddedModule> ModsWithSummaries;
332     bool EmptyCombinedModule = true;
333   } RegularLTO;
334 
335   using ModuleMapType = MapVector<StringRef, BitcodeModule>;
336 
337   struct ThinLTOState {
338     ThinLTOState(ThinBackend Backend);
339 
340     ThinBackend Backend;
341     ModuleSummaryIndex CombinedIndex;
342     // The full set of bitcode modules in input order.
343     ModuleMapType ModuleMap;
344     // The bitcode modules to compile, if specified by the LTO Config.
345     std::optional<ModuleMapType> ModulesToCompile;
346     DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID;
347   } ThinLTO;
348 
349   // The global resolution for a particular (mangled) symbol name. This is in
350   // particular necessary to track whether each symbol can be internalized.
351   // Because any input file may introduce a new cross-partition reference, we
352   // cannot make any final internalization decisions until all input files have
353   // been added and the client has called run(). During run() we apply
354   // internalization decisions either directly to the module (for regular LTO)
355   // or to the combined index (for ThinLTO).
356   struct GlobalResolution {
357     /// The unmangled name of the global.
358     std::string IRName;
359 
360     /// Keep track if the symbol is visible outside of a module with a summary
361     /// (i.e. in either a regular object or a regular LTO module without a
362     /// summary).
363     bool VisibleOutsideSummary = false;
364 
365     /// The symbol was exported dynamically, and therefore could be referenced
366     /// by a shared library not visible to the linker.
367     bool ExportDynamic = false;
368 
369     bool UnnamedAddr = true;
370 
371     /// True if module contains the prevailing definition.
372     bool Prevailing = false;
373 
374     /// Returns true if module contains the prevailing definition and symbol is
375     /// an IR symbol. For example when module-level inline asm block is used,
376     /// symbol can be prevailing in module but have no IR name.
377     bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); }
378 
379     /// This field keeps track of the partition number of this global. The
380     /// regular LTO object is partition 0, while each ThinLTO object has its own
381     /// partition number from 1 onwards.
382     ///
383     /// Any global that is defined or used by more than one partition, or that
384     /// is referenced externally, may not be internalized.
385     ///
386     /// Partitions generally have a one-to-one correspondence with tasks, except
387     /// that we use partition 0 for all parallel LTO code generation partitions.
388     /// Any partitioning of the combined LTO object is done internally by the
389     /// LTO backend.
390     unsigned Partition = Unknown;
391 
392     /// Special partition numbers.
393     enum : unsigned {
394       /// A partition number has not yet been assigned to this global.
395       Unknown = -1u,
396 
397       /// This global is either used by more than one partition or has an
398       /// external reference, and therefore cannot be internalized.
399       External = -2u,
400 
401       /// The RegularLTO partition
402       RegularLTO = 0,
403     };
404   };
405 
406   // Global mapping from mangled symbol names to resolutions.
407   StringMap<GlobalResolution> GlobalResolutions;
408 
409   void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
410                             ArrayRef<SymbolResolution> Res, unsigned Partition,
411                             bool InSummary);
412 
413   // These functions take a range of symbol resolutions [ResI, ResE) and consume
414   // the resolutions used by a single input module by incrementing ResI. After
415   // these functions return, [ResI, ResE) will refer to the resolution range for
416   // the remaining modules in the InputFile.
417   Error addModule(InputFile &Input, unsigned ModI,
418                   const SymbolResolution *&ResI, const SymbolResolution *ResE);
419 
420   Expected<RegularLTOState::AddedModule>
421   addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
422                 const SymbolResolution *&ResI, const SymbolResolution *ResE);
423   Error linkRegularLTO(RegularLTOState::AddedModule Mod,
424                        bool LivenessFromIndex);
425 
426   Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
427                    const SymbolResolution *&ResI, const SymbolResolution *ResE);
428 
429   Error runRegularLTO(AddStreamFn AddStream);
430   Error runThinLTO(AddStreamFn AddStream, FileCache Cache,
431                    const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols);
432 
433   Error checkPartiallySplit();
434 
435   mutable bool CalledGetMaxTasks = false;
436 
437   // LTO mode when using Unified LTO.
438   LTOKind LTOMode;
439 
440   // Use Optional to distinguish false from not yet initialized.
441   std::optional<bool> EnableSplitLTOUnit;
442 
443   // Identify symbols exported dynamically, and that therefore could be
444   // referenced by a shared library not visible to the linker.
445   DenseSet<GlobalValue::GUID> DynamicExportSymbols;
446 
447   // Diagnostic optimization remarks file
448   std::unique_ptr<ToolOutputFile> DiagnosticOutputFile;
449 };
450 
451 /// The resolution for a symbol. The linker must provide a SymbolResolution for
452 /// each global symbol based on its internal resolution of that symbol.
453 struct SymbolResolution {
454   SymbolResolution()
455       : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0),
456         ExportDynamic(0), LinkerRedefined(0) {}
457 
458   /// The linker has chosen this definition of the symbol.
459   unsigned Prevailing : 1;
460 
461   /// The definition of this symbol is unpreemptable at runtime and is known to
462   /// be in this linkage unit.
463   unsigned FinalDefinitionInLinkageUnit : 1;
464 
465   /// The definition of this symbol is visible outside of the LTO unit.
466   unsigned VisibleToRegularObj : 1;
467 
468   /// The symbol was exported dynamically, and therefore could be referenced
469   /// by a shared library not visible to the linker.
470   unsigned ExportDynamic : 1;
471 
472   /// Linker redefined version of the symbol which appeared in -wrap or -defsym
473   /// linker option.
474   unsigned LinkerRedefined : 1;
475 };
476 
477 } // namespace lto
478 } // namespace llvm
479 
480 #endif
481