1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides a simple and efficient mechanism for performing general 10 // tree-based pattern matches on the LLVM IR. The power of these routines is 11 // that it allows you to write concise patterns that are expressive and easy to 12 // understand. The other major advantage of this is that it allows you to 13 // trivially capture/bind elements in the pattern to variables. For example, 14 // you can do something like this: 15 // 16 // Value *Exp = ... 17 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) 18 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), 19 // m_And(m_Value(Y), m_ConstantInt(C2))))) { 20 // ... Pattern is matched and variables are bound ... 21 // } 22 // 23 // This is primarily useful to things like the instruction combiner, but can 24 // also be useful for static analysis tools or code generators. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #ifndef LLVM_IR_PATTERNMATCH_H 29 #define LLVM_IR_PATTERNMATCH_H 30 31 #include "llvm/ADT/APFloat.h" 32 #include "llvm/ADT/APInt.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/Support/Casting.h" 44 #include <cstdint> 45 46 namespace llvm { 47 namespace PatternMatch { 48 49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { 50 return const_cast<Pattern &>(P).match(V); 51 } 52 53 template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) { 54 return const_cast<Pattern &>(P).match(Mask); 55 } 56 57 template <typename SubPattern_t> struct OneUse_match { 58 SubPattern_t SubPattern; 59 60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} 61 62 template <typename OpTy> bool match(OpTy *V) { 63 return V->hasOneUse() && SubPattern.match(V); 64 } 65 }; 66 67 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { 68 return SubPattern; 69 } 70 71 template <typename Class> struct class_match { 72 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); } 73 }; 74 75 /// Match an arbitrary value and ignore it. 76 inline class_match<Value> m_Value() { return class_match<Value>(); } 77 78 /// Match an arbitrary unary operation and ignore it. 79 inline class_match<UnaryOperator> m_UnOp() { 80 return class_match<UnaryOperator>(); 81 } 82 83 /// Match an arbitrary binary operation and ignore it. 84 inline class_match<BinaryOperator> m_BinOp() { 85 return class_match<BinaryOperator>(); 86 } 87 88 /// Matches any compare instruction and ignore it. 89 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); } 90 91 struct undef_match { 92 static bool check(const Value *V) { 93 if (isa<UndefValue>(V)) 94 return true; 95 96 const auto *CA = dyn_cast<ConstantAggregate>(V); 97 if (!CA) 98 return false; 99 100 SmallPtrSet<const ConstantAggregate *, 8> Seen; 101 SmallVector<const ConstantAggregate *, 8> Worklist; 102 103 // Either UndefValue, PoisonValue, or an aggregate that only contains 104 // these is accepted by matcher. 105 // CheckValue returns false if CA cannot satisfy this constraint. 106 auto CheckValue = [&](const ConstantAggregate *CA) { 107 for (const Value *Op : CA->operand_values()) { 108 if (isa<UndefValue>(Op)) 109 continue; 110 111 const auto *CA = dyn_cast<ConstantAggregate>(Op); 112 if (!CA) 113 return false; 114 if (Seen.insert(CA).second) 115 Worklist.emplace_back(CA); 116 } 117 118 return true; 119 }; 120 121 if (!CheckValue(CA)) 122 return false; 123 124 while (!Worklist.empty()) { 125 if (!CheckValue(Worklist.pop_back_val())) 126 return false; 127 } 128 return true; 129 } 130 template <typename ITy> bool match(ITy *V) { return check(V); } 131 }; 132 133 /// Match an arbitrary undef constant. This matches poison as well. 134 /// If this is an aggregate and contains a non-aggregate element that is 135 /// neither undef nor poison, the aggregate is not matched. 136 inline auto m_Undef() { return undef_match(); } 137 138 /// Match an arbitrary poison constant. 139 inline class_match<PoisonValue> m_Poison() { 140 return class_match<PoisonValue>(); 141 } 142 143 /// Match an arbitrary Constant and ignore it. 144 inline class_match<Constant> m_Constant() { return class_match<Constant>(); } 145 146 /// Match an arbitrary ConstantInt and ignore it. 147 inline class_match<ConstantInt> m_ConstantInt() { 148 return class_match<ConstantInt>(); 149 } 150 151 /// Match an arbitrary ConstantFP and ignore it. 152 inline class_match<ConstantFP> m_ConstantFP() { 153 return class_match<ConstantFP>(); 154 } 155 156 struct constantexpr_match { 157 template <typename ITy> bool match(ITy *V) { 158 auto *C = dyn_cast<Constant>(V); 159 return C && (isa<ConstantExpr>(C) || C->containsConstantExpression()); 160 } 161 }; 162 163 /// Match a constant expression or a constant that contains a constant 164 /// expression. 165 inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); } 166 167 /// Match an arbitrary basic block value and ignore it. 168 inline class_match<BasicBlock> m_BasicBlock() { 169 return class_match<BasicBlock>(); 170 } 171 172 /// Inverting matcher 173 template <typename Ty> struct match_unless { 174 Ty M; 175 176 match_unless(const Ty &Matcher) : M(Matcher) {} 177 178 template <typename ITy> bool match(ITy *V) { return !M.match(V); } 179 }; 180 181 /// Match if the inner matcher does *NOT* match. 182 template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) { 183 return match_unless<Ty>(M); 184 } 185 186 /// Matching combinators 187 template <typename LTy, typename RTy> struct match_combine_or { 188 LTy L; 189 RTy R; 190 191 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} 192 193 template <typename ITy> bool match(ITy *V) { 194 if (L.match(V)) 195 return true; 196 if (R.match(V)) 197 return true; 198 return false; 199 } 200 }; 201 202 template <typename LTy, typename RTy> struct match_combine_and { 203 LTy L; 204 RTy R; 205 206 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} 207 208 template <typename ITy> bool match(ITy *V) { 209 if (L.match(V)) 210 if (R.match(V)) 211 return true; 212 return false; 213 } 214 }; 215 216 /// Combine two pattern matchers matching L || R 217 template <typename LTy, typename RTy> 218 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { 219 return match_combine_or<LTy, RTy>(L, R); 220 } 221 222 /// Combine two pattern matchers matching L && R 223 template <typename LTy, typename RTy> 224 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { 225 return match_combine_and<LTy, RTy>(L, R); 226 } 227 228 struct apint_match { 229 const APInt *&Res; 230 bool AllowUndef; 231 232 apint_match(const APInt *&Res, bool AllowUndef) 233 : Res(Res), AllowUndef(AllowUndef) {} 234 235 template <typename ITy> bool match(ITy *V) { 236 if (auto *CI = dyn_cast<ConstantInt>(V)) { 237 Res = &CI->getValue(); 238 return true; 239 } 240 if (V->getType()->isVectorTy()) 241 if (const auto *C = dyn_cast<Constant>(V)) 242 if (auto *CI = 243 dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndef))) { 244 Res = &CI->getValue(); 245 return true; 246 } 247 return false; 248 } 249 }; 250 // Either constexpr if or renaming ConstantFP::getValueAPF to 251 // ConstantFP::getValue is needed to do it via single template 252 // function for both apint/apfloat. 253 struct apfloat_match { 254 const APFloat *&Res; 255 bool AllowUndef; 256 257 apfloat_match(const APFloat *&Res, bool AllowUndef) 258 : Res(Res), AllowUndef(AllowUndef) {} 259 260 template <typename ITy> bool match(ITy *V) { 261 if (auto *CI = dyn_cast<ConstantFP>(V)) { 262 Res = &CI->getValueAPF(); 263 return true; 264 } 265 if (V->getType()->isVectorTy()) 266 if (const auto *C = dyn_cast<Constant>(V)) 267 if (auto *CI = 268 dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowUndef))) { 269 Res = &CI->getValueAPF(); 270 return true; 271 } 272 return false; 273 } 274 }; 275 276 /// Match a ConstantInt or splatted ConstantVector, binding the 277 /// specified pointer to the contained APInt. 278 inline apint_match m_APInt(const APInt *&Res) { 279 // Forbid undefs by default to maintain previous behavior. 280 return apint_match(Res, /* AllowUndef */ false); 281 } 282 283 /// Match APInt while allowing undefs in splat vector constants. 284 inline apint_match m_APIntAllowUndef(const APInt *&Res) { 285 return apint_match(Res, /* AllowUndef */ true); 286 } 287 288 /// Match APInt while forbidding undefs in splat vector constants. 289 inline apint_match m_APIntForbidUndef(const APInt *&Res) { 290 return apint_match(Res, /* AllowUndef */ false); 291 } 292 293 /// Match a ConstantFP or splatted ConstantVector, binding the 294 /// specified pointer to the contained APFloat. 295 inline apfloat_match m_APFloat(const APFloat *&Res) { 296 // Forbid undefs by default to maintain previous behavior. 297 return apfloat_match(Res, /* AllowUndef */ false); 298 } 299 300 /// Match APFloat while allowing undefs in splat vector constants. 301 inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) { 302 return apfloat_match(Res, /* AllowUndef */ true); 303 } 304 305 /// Match APFloat while forbidding undefs in splat vector constants. 306 inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) { 307 return apfloat_match(Res, /* AllowUndef */ false); 308 } 309 310 template <int64_t Val> struct constantint_match { 311 template <typename ITy> bool match(ITy *V) { 312 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 313 const APInt &CIV = CI->getValue(); 314 if (Val >= 0) 315 return CIV == static_cast<uint64_t>(Val); 316 // If Val is negative, and CI is shorter than it, truncate to the right 317 // number of bits. If it is larger, then we have to sign extend. Just 318 // compare their negated values. 319 return -CIV == -Val; 320 } 321 return false; 322 } 323 }; 324 325 /// Match a ConstantInt with a specific value. 326 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() { 327 return constantint_match<Val>(); 328 } 329 330 /// This helper class is used to match constant scalars, vector splats, 331 /// and fixed width vectors that satisfy a specified predicate. 332 /// For fixed width vector constants, undefined elements are ignored. 333 template <typename Predicate, typename ConstantVal> 334 struct cstval_pred_ty : public Predicate { 335 template <typename ITy> bool match(ITy *V) { 336 if (const auto *CV = dyn_cast<ConstantVal>(V)) 337 return this->isValue(CV->getValue()); 338 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) { 339 if (const auto *C = dyn_cast<Constant>(V)) { 340 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue())) 341 return this->isValue(CV->getValue()); 342 343 // Number of elements of a scalable vector unknown at compile time 344 auto *FVTy = dyn_cast<FixedVectorType>(VTy); 345 if (!FVTy) 346 return false; 347 348 // Non-splat vector constant: check each element for a match. 349 unsigned NumElts = FVTy->getNumElements(); 350 assert(NumElts != 0 && "Constant vector with no elements?"); 351 bool HasNonUndefElements = false; 352 for (unsigned i = 0; i != NumElts; ++i) { 353 Constant *Elt = C->getAggregateElement(i); 354 if (!Elt) 355 return false; 356 if (isa<UndefValue>(Elt)) 357 continue; 358 auto *CV = dyn_cast<ConstantVal>(Elt); 359 if (!CV || !this->isValue(CV->getValue())) 360 return false; 361 HasNonUndefElements = true; 362 } 363 return HasNonUndefElements; 364 } 365 } 366 return false; 367 } 368 }; 369 370 /// specialization of cstval_pred_ty for ConstantInt 371 template <typename Predicate> 372 using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>; 373 374 /// specialization of cstval_pred_ty for ConstantFP 375 template <typename Predicate> 376 using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>; 377 378 /// This helper class is used to match scalar and vector constants that 379 /// satisfy a specified predicate, and bind them to an APInt. 380 template <typename Predicate> struct api_pred_ty : public Predicate { 381 const APInt *&Res; 382 383 api_pred_ty(const APInt *&R) : Res(R) {} 384 385 template <typename ITy> bool match(ITy *V) { 386 if (const auto *CI = dyn_cast<ConstantInt>(V)) 387 if (this->isValue(CI->getValue())) { 388 Res = &CI->getValue(); 389 return true; 390 } 391 if (V->getType()->isVectorTy()) 392 if (const auto *C = dyn_cast<Constant>(V)) 393 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) 394 if (this->isValue(CI->getValue())) { 395 Res = &CI->getValue(); 396 return true; 397 } 398 399 return false; 400 } 401 }; 402 403 /// This helper class is used to match scalar and vector constants that 404 /// satisfy a specified predicate, and bind them to an APFloat. 405 /// Undefs are allowed in splat vector constants. 406 template <typename Predicate> struct apf_pred_ty : public Predicate { 407 const APFloat *&Res; 408 409 apf_pred_ty(const APFloat *&R) : Res(R) {} 410 411 template <typename ITy> bool match(ITy *V) { 412 if (const auto *CI = dyn_cast<ConstantFP>(V)) 413 if (this->isValue(CI->getValue())) { 414 Res = &CI->getValue(); 415 return true; 416 } 417 if (V->getType()->isVectorTy()) 418 if (const auto *C = dyn_cast<Constant>(V)) 419 if (auto *CI = dyn_cast_or_null<ConstantFP>( 420 C->getSplatValue(/* AllowUndef */ true))) 421 if (this->isValue(CI->getValue())) { 422 Res = &CI->getValue(); 423 return true; 424 } 425 426 return false; 427 } 428 }; 429 430 /////////////////////////////////////////////////////////////////////////////// 431 // 432 // Encapsulate constant value queries for use in templated predicate matchers. 433 // This allows checking if constants match using compound predicates and works 434 // with vector constants, possibly with relaxed constraints. For example, ignore 435 // undef values. 436 // 437 /////////////////////////////////////////////////////////////////////////////// 438 439 struct is_any_apint { 440 bool isValue(const APInt &C) { return true; } 441 }; 442 /// Match an integer or vector with any integral constant. 443 /// For vectors, this includes constants with undefined elements. 444 inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() { 445 return cst_pred_ty<is_any_apint>(); 446 } 447 448 struct is_shifted_mask { 449 bool isValue(const APInt &C) { return C.isShiftedMask(); } 450 }; 451 452 inline cst_pred_ty<is_shifted_mask> m_ShiftedMask() { 453 return cst_pred_ty<is_shifted_mask>(); 454 } 455 456 struct is_all_ones { 457 bool isValue(const APInt &C) { return C.isAllOnes(); } 458 }; 459 /// Match an integer or vector with all bits set. 460 /// For vectors, this includes constants with undefined elements. 461 inline cst_pred_ty<is_all_ones> m_AllOnes() { 462 return cst_pred_ty<is_all_ones>(); 463 } 464 465 struct is_maxsignedvalue { 466 bool isValue(const APInt &C) { return C.isMaxSignedValue(); } 467 }; 468 /// Match an integer or vector with values having all bits except for the high 469 /// bit set (0x7f...). 470 /// For vectors, this includes constants with undefined elements. 471 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { 472 return cst_pred_ty<is_maxsignedvalue>(); 473 } 474 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { 475 return V; 476 } 477 478 struct is_negative { 479 bool isValue(const APInt &C) { return C.isNegative(); } 480 }; 481 /// Match an integer or vector of negative values. 482 /// For vectors, this includes constants with undefined elements. 483 inline cst_pred_ty<is_negative> m_Negative() { 484 return cst_pred_ty<is_negative>(); 485 } 486 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; } 487 488 struct is_nonnegative { 489 bool isValue(const APInt &C) { return C.isNonNegative(); } 490 }; 491 /// Match an integer or vector of non-negative values. 492 /// For vectors, this includes constants with undefined elements. 493 inline cst_pred_ty<is_nonnegative> m_NonNegative() { 494 return cst_pred_ty<is_nonnegative>(); 495 } 496 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; } 497 498 struct is_strictlypositive { 499 bool isValue(const APInt &C) { return C.isStrictlyPositive(); } 500 }; 501 /// Match an integer or vector of strictly positive values. 502 /// For vectors, this includes constants with undefined elements. 503 inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() { 504 return cst_pred_ty<is_strictlypositive>(); 505 } 506 inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) { 507 return V; 508 } 509 510 struct is_nonpositive { 511 bool isValue(const APInt &C) { return C.isNonPositive(); } 512 }; 513 /// Match an integer or vector of non-positive values. 514 /// For vectors, this includes constants with undefined elements. 515 inline cst_pred_ty<is_nonpositive> m_NonPositive() { 516 return cst_pred_ty<is_nonpositive>(); 517 } 518 inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; } 519 520 struct is_one { 521 bool isValue(const APInt &C) { return C.isOne(); } 522 }; 523 /// Match an integer 1 or a vector with all elements equal to 1. 524 /// For vectors, this includes constants with undefined elements. 525 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); } 526 527 struct is_zero_int { 528 bool isValue(const APInt &C) { return C.isZero(); } 529 }; 530 /// Match an integer 0 or a vector with all elements equal to 0. 531 /// For vectors, this includes constants with undefined elements. 532 inline cst_pred_ty<is_zero_int> m_ZeroInt() { 533 return cst_pred_ty<is_zero_int>(); 534 } 535 536 struct is_zero { 537 template <typename ITy> bool match(ITy *V) { 538 auto *C = dyn_cast<Constant>(V); 539 // FIXME: this should be able to do something for scalable vectors 540 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C)); 541 } 542 }; 543 /// Match any null constant or a vector with all elements equal to 0. 544 /// For vectors, this includes constants with undefined elements. 545 inline is_zero m_Zero() { return is_zero(); } 546 547 struct is_power2 { 548 bool isValue(const APInt &C) { return C.isPowerOf2(); } 549 }; 550 /// Match an integer or vector power-of-2. 551 /// For vectors, this includes constants with undefined elements. 552 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); } 553 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; } 554 555 struct is_negated_power2 { 556 bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); } 557 }; 558 /// Match a integer or vector negated power-of-2. 559 /// For vectors, this includes constants with undefined elements. 560 inline cst_pred_ty<is_negated_power2> m_NegatedPower2() { 561 return cst_pred_ty<is_negated_power2>(); 562 } 563 inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) { 564 return V; 565 } 566 567 struct is_power2_or_zero { 568 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); } 569 }; 570 /// Match an integer or vector of 0 or power-of-2 values. 571 /// For vectors, this includes constants with undefined elements. 572 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() { 573 return cst_pred_ty<is_power2_or_zero>(); 574 } 575 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) { 576 return V; 577 } 578 579 struct is_sign_mask { 580 bool isValue(const APInt &C) { return C.isSignMask(); } 581 }; 582 /// Match an integer or vector with only the sign bit(s) set. 583 /// For vectors, this includes constants with undefined elements. 584 inline cst_pred_ty<is_sign_mask> m_SignMask() { 585 return cst_pred_ty<is_sign_mask>(); 586 } 587 588 struct is_lowbit_mask { 589 bool isValue(const APInt &C) { return C.isMask(); } 590 }; 591 /// Match an integer or vector with only the low bit(s) set. 592 /// For vectors, this includes constants with undefined elements. 593 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() { 594 return cst_pred_ty<is_lowbit_mask>(); 595 } 596 inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; } 597 598 struct icmp_pred_with_threshold { 599 ICmpInst::Predicate Pred; 600 const APInt *Thr; 601 bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); } 602 }; 603 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...) 604 /// to Threshold. For vectors, this includes constants with undefined elements. 605 inline cst_pred_ty<icmp_pred_with_threshold> 606 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) { 607 cst_pred_ty<icmp_pred_with_threshold> P; 608 P.Pred = Predicate; 609 P.Thr = &Threshold; 610 return P; 611 } 612 613 struct is_nan { 614 bool isValue(const APFloat &C) { return C.isNaN(); } 615 }; 616 /// Match an arbitrary NaN constant. This includes quiet and signalling nans. 617 /// For vectors, this includes constants with undefined elements. 618 inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); } 619 620 struct is_nonnan { 621 bool isValue(const APFloat &C) { return !C.isNaN(); } 622 }; 623 /// Match a non-NaN FP constant. 624 /// For vectors, this includes constants with undefined elements. 625 inline cstfp_pred_ty<is_nonnan> m_NonNaN() { 626 return cstfp_pred_ty<is_nonnan>(); 627 } 628 629 struct is_inf { 630 bool isValue(const APFloat &C) { return C.isInfinity(); } 631 }; 632 /// Match a positive or negative infinity FP constant. 633 /// For vectors, this includes constants with undefined elements. 634 inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); } 635 636 struct is_noninf { 637 bool isValue(const APFloat &C) { return !C.isInfinity(); } 638 }; 639 /// Match a non-infinity FP constant, i.e. finite or NaN. 640 /// For vectors, this includes constants with undefined elements. 641 inline cstfp_pred_ty<is_noninf> m_NonInf() { 642 return cstfp_pred_ty<is_noninf>(); 643 } 644 645 struct is_finite { 646 bool isValue(const APFloat &C) { return C.isFinite(); } 647 }; 648 /// Match a finite FP constant, i.e. not infinity or NaN. 649 /// For vectors, this includes constants with undefined elements. 650 inline cstfp_pred_ty<is_finite> m_Finite() { 651 return cstfp_pred_ty<is_finite>(); 652 } 653 inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; } 654 655 struct is_finitenonzero { 656 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); } 657 }; 658 /// Match a finite non-zero FP constant. 659 /// For vectors, this includes constants with undefined elements. 660 inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() { 661 return cstfp_pred_ty<is_finitenonzero>(); 662 } 663 inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) { 664 return V; 665 } 666 667 struct is_any_zero_fp { 668 bool isValue(const APFloat &C) { return C.isZero(); } 669 }; 670 /// Match a floating-point negative zero or positive zero. 671 /// For vectors, this includes constants with undefined elements. 672 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() { 673 return cstfp_pred_ty<is_any_zero_fp>(); 674 } 675 676 struct is_pos_zero_fp { 677 bool isValue(const APFloat &C) { return C.isPosZero(); } 678 }; 679 /// Match a floating-point positive zero. 680 /// For vectors, this includes constants with undefined elements. 681 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() { 682 return cstfp_pred_ty<is_pos_zero_fp>(); 683 } 684 685 struct is_neg_zero_fp { 686 bool isValue(const APFloat &C) { return C.isNegZero(); } 687 }; 688 /// Match a floating-point negative zero. 689 /// For vectors, this includes constants with undefined elements. 690 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() { 691 return cstfp_pred_ty<is_neg_zero_fp>(); 692 } 693 694 struct is_non_zero_fp { 695 bool isValue(const APFloat &C) { return C.isNonZero(); } 696 }; 697 /// Match a floating-point non-zero. 698 /// For vectors, this includes constants with undefined elements. 699 inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() { 700 return cstfp_pred_ty<is_non_zero_fp>(); 701 } 702 703 /////////////////////////////////////////////////////////////////////////////// 704 705 template <typename Class> struct bind_ty { 706 Class *&VR; 707 708 bind_ty(Class *&V) : VR(V) {} 709 710 template <typename ITy> bool match(ITy *V) { 711 if (auto *CV = dyn_cast<Class>(V)) { 712 VR = CV; 713 return true; 714 } 715 return false; 716 } 717 }; 718 719 /// Match a value, capturing it if we match. 720 inline bind_ty<Value> m_Value(Value *&V) { return V; } 721 inline bind_ty<const Value> m_Value(const Value *&V) { return V; } 722 723 /// Match an instruction, capturing it if we match. 724 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; } 725 /// Match a unary operator, capturing it if we match. 726 inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; } 727 /// Match a binary operator, capturing it if we match. 728 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; } 729 /// Match a with overflow intrinsic, capturing it if we match. 730 inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { 731 return I; 732 } 733 inline bind_ty<const WithOverflowInst> 734 m_WithOverflowInst(const WithOverflowInst *&I) { 735 return I; 736 } 737 738 /// Match a Constant, capturing the value if we match. 739 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } 740 741 /// Match a ConstantInt, capturing the value if we match. 742 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } 743 744 /// Match a ConstantFP, capturing the value if we match. 745 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } 746 747 /// Match a ConstantExpr, capturing the value if we match. 748 inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; } 749 750 /// Match a basic block value, capturing it if we match. 751 inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; } 752 inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) { 753 return V; 754 } 755 756 /// Match an arbitrary immediate Constant and ignore it. 757 inline match_combine_and<class_match<Constant>, 758 match_unless<constantexpr_match>> 759 m_ImmConstant() { 760 return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr())); 761 } 762 763 /// Match an immediate Constant, capturing the value if we match. 764 inline match_combine_and<bind_ty<Constant>, 765 match_unless<constantexpr_match>> 766 m_ImmConstant(Constant *&C) { 767 return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr())); 768 } 769 770 /// Match a specified Value*. 771 struct specificval_ty { 772 const Value *Val; 773 774 specificval_ty(const Value *V) : Val(V) {} 775 776 template <typename ITy> bool match(ITy *V) { return V == Val; } 777 }; 778 779 /// Match if we have a specific specified value. 780 inline specificval_ty m_Specific(const Value *V) { return V; } 781 782 /// Stores a reference to the Value *, not the Value * itself, 783 /// thus can be used in commutative matchers. 784 template <typename Class> struct deferredval_ty { 785 Class *const &Val; 786 787 deferredval_ty(Class *const &V) : Val(V) {} 788 789 template <typename ITy> bool match(ITy *const V) { return V == Val; } 790 }; 791 792 /// Like m_Specific(), but works if the specific value to match is determined 793 /// as part of the same match() expression. For example: 794 /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will 795 /// bind X before the pattern match starts. 796 /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against 797 /// whichever value m_Value(X) populated. 798 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; } 799 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) { 800 return V; 801 } 802 803 /// Match a specified floating point value or vector of all elements of 804 /// that value. 805 struct specific_fpval { 806 double Val; 807 808 specific_fpval(double V) : Val(V) {} 809 810 template <typename ITy> bool match(ITy *V) { 811 if (const auto *CFP = dyn_cast<ConstantFP>(V)) 812 return CFP->isExactlyValue(Val); 813 if (V->getType()->isVectorTy()) 814 if (const auto *C = dyn_cast<Constant>(V)) 815 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) 816 return CFP->isExactlyValue(Val); 817 return false; 818 } 819 }; 820 821 /// Match a specific floating point value or vector with all elements 822 /// equal to the value. 823 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } 824 825 /// Match a float 1.0 or vector with all elements equal to 1.0. 826 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } 827 828 struct bind_const_intval_ty { 829 uint64_t &VR; 830 831 bind_const_intval_ty(uint64_t &V) : VR(V) {} 832 833 template <typename ITy> bool match(ITy *V) { 834 if (const auto *CV = dyn_cast<ConstantInt>(V)) 835 if (CV->getValue().ule(UINT64_MAX)) { 836 VR = CV->getZExtValue(); 837 return true; 838 } 839 return false; 840 } 841 }; 842 843 /// Match a specified integer value or vector of all elements of that 844 /// value. 845 template <bool AllowUndefs> struct specific_intval { 846 APInt Val; 847 848 specific_intval(APInt V) : Val(std::move(V)) {} 849 850 template <typename ITy> bool match(ITy *V) { 851 const auto *CI = dyn_cast<ConstantInt>(V); 852 if (!CI && V->getType()->isVectorTy()) 853 if (const auto *C = dyn_cast<Constant>(V)) 854 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs)); 855 856 return CI && APInt::isSameValue(CI->getValue(), Val); 857 } 858 }; 859 860 /// Match a specific integer value or vector with all elements equal to 861 /// the value. 862 inline specific_intval<false> m_SpecificInt(APInt V) { 863 return specific_intval<false>(std::move(V)); 864 } 865 866 inline specific_intval<false> m_SpecificInt(uint64_t V) { 867 return m_SpecificInt(APInt(64, V)); 868 } 869 870 inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) { 871 return specific_intval<true>(std::move(V)); 872 } 873 874 inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) { 875 return m_SpecificIntAllowUndef(APInt(64, V)); 876 } 877 878 /// Match a ConstantInt and bind to its value. This does not match 879 /// ConstantInts wider than 64-bits. 880 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } 881 882 /// Match a specified basic block value. 883 struct specific_bbval { 884 BasicBlock *Val; 885 886 specific_bbval(BasicBlock *Val) : Val(Val) {} 887 888 template <typename ITy> bool match(ITy *V) { 889 const auto *BB = dyn_cast<BasicBlock>(V); 890 return BB && BB == Val; 891 } 892 }; 893 894 /// Match a specific basic block value. 895 inline specific_bbval m_SpecificBB(BasicBlock *BB) { 896 return specific_bbval(BB); 897 } 898 899 /// A commutative-friendly version of m_Specific(). 900 inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) { 901 return BB; 902 } 903 inline deferredval_ty<const BasicBlock> 904 m_Deferred(const BasicBlock *const &BB) { 905 return BB; 906 } 907 908 //===----------------------------------------------------------------------===// 909 // Matcher for any binary operator. 910 // 911 template <typename LHS_t, typename RHS_t, bool Commutable = false> 912 struct AnyBinaryOp_match { 913 LHS_t L; 914 RHS_t R; 915 916 // The evaluation order is always stable, regardless of Commutability. 917 // The LHS is always matched first. 918 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 919 920 template <typename OpTy> bool match(OpTy *V) { 921 if (auto *I = dyn_cast<BinaryOperator>(V)) 922 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || 923 (Commutable && L.match(I->getOperand(1)) && 924 R.match(I->getOperand(0))); 925 return false; 926 } 927 }; 928 929 template <typename LHS, typename RHS> 930 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) { 931 return AnyBinaryOp_match<LHS, RHS>(L, R); 932 } 933 934 //===----------------------------------------------------------------------===// 935 // Matcher for any unary operator. 936 // TODO fuse unary, binary matcher into n-ary matcher 937 // 938 template <typename OP_t> struct AnyUnaryOp_match { 939 OP_t X; 940 941 AnyUnaryOp_match(const OP_t &X) : X(X) {} 942 943 template <typename OpTy> bool match(OpTy *V) { 944 if (auto *I = dyn_cast<UnaryOperator>(V)) 945 return X.match(I->getOperand(0)); 946 return false; 947 } 948 }; 949 950 template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) { 951 return AnyUnaryOp_match<OP_t>(X); 952 } 953 954 //===----------------------------------------------------------------------===// 955 // Matchers for specific binary operators. 956 // 957 958 template <typename LHS_t, typename RHS_t, unsigned Opcode, 959 bool Commutable = false> 960 struct BinaryOp_match { 961 LHS_t L; 962 RHS_t R; 963 964 // The evaluation order is always stable, regardless of Commutability. 965 // The LHS is always matched first. 966 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 967 968 template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) { 969 if (V->getValueID() == Value::InstructionVal + Opc) { 970 auto *I = cast<BinaryOperator>(V); 971 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || 972 (Commutable && L.match(I->getOperand(1)) && 973 R.match(I->getOperand(0))); 974 } 975 if (auto *CE = dyn_cast<ConstantExpr>(V)) 976 return CE->getOpcode() == Opc && 977 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) || 978 (Commutable && L.match(CE->getOperand(1)) && 979 R.match(CE->getOperand(0)))); 980 return false; 981 } 982 983 template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); } 984 }; 985 986 template <typename LHS, typename RHS> 987 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L, 988 const RHS &R) { 989 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); 990 } 991 992 template <typename LHS, typename RHS> 993 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L, 994 const RHS &R) { 995 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); 996 } 997 998 template <typename LHS, typename RHS> 999 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L, 1000 const RHS &R) { 1001 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); 1002 } 1003 1004 template <typename LHS, typename RHS> 1005 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L, 1006 const RHS &R) { 1007 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); 1008 } 1009 1010 template <typename Op_t> struct FNeg_match { 1011 Op_t X; 1012 1013 FNeg_match(const Op_t &Op) : X(Op) {} 1014 template <typename OpTy> bool match(OpTy *V) { 1015 auto *FPMO = dyn_cast<FPMathOperator>(V); 1016 if (!FPMO) 1017 return false; 1018 1019 if (FPMO->getOpcode() == Instruction::FNeg) 1020 return X.match(FPMO->getOperand(0)); 1021 1022 if (FPMO->getOpcode() == Instruction::FSub) { 1023 if (FPMO->hasNoSignedZeros()) { 1024 // With 'nsz', any zero goes. 1025 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0))) 1026 return false; 1027 } else { 1028 // Without 'nsz', we need fsub -0.0, X exactly. 1029 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0))) 1030 return false; 1031 } 1032 1033 return X.match(FPMO->getOperand(1)); 1034 } 1035 1036 return false; 1037 } 1038 }; 1039 1040 /// Match 'fneg X' as 'fsub -0.0, X'. 1041 template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) { 1042 return FNeg_match<OpTy>(X); 1043 } 1044 1045 /// Match 'fneg X' as 'fsub +-0.0, X'. 1046 template <typename RHS> 1047 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub> 1048 m_FNegNSZ(const RHS &X) { 1049 return m_FSub(m_AnyZeroFP(), X); 1050 } 1051 1052 template <typename LHS, typename RHS> 1053 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L, 1054 const RHS &R) { 1055 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); 1056 } 1057 1058 template <typename LHS, typename RHS> 1059 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L, 1060 const RHS &R) { 1061 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); 1062 } 1063 1064 template <typename LHS, typename RHS> 1065 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L, 1066 const RHS &R) { 1067 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); 1068 } 1069 1070 template <typename LHS, typename RHS> 1071 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L, 1072 const RHS &R) { 1073 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); 1074 } 1075 1076 template <typename LHS, typename RHS> 1077 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L, 1078 const RHS &R) { 1079 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); 1080 } 1081 1082 template <typename LHS, typename RHS> 1083 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L, 1084 const RHS &R) { 1085 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); 1086 } 1087 1088 template <typename LHS, typename RHS> 1089 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L, 1090 const RHS &R) { 1091 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); 1092 } 1093 1094 template <typename LHS, typename RHS> 1095 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L, 1096 const RHS &R) { 1097 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); 1098 } 1099 1100 template <typename LHS, typename RHS> 1101 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L, 1102 const RHS &R) { 1103 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); 1104 } 1105 1106 template <typename LHS, typename RHS> 1107 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L, 1108 const RHS &R) { 1109 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); 1110 } 1111 1112 template <typename LHS, typename RHS> 1113 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L, 1114 const RHS &R) { 1115 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); 1116 } 1117 1118 template <typename LHS, typename RHS> 1119 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L, 1120 const RHS &R) { 1121 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); 1122 } 1123 1124 template <typename LHS, typename RHS> 1125 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L, 1126 const RHS &R) { 1127 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); 1128 } 1129 1130 template <typename LHS, typename RHS> 1131 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L, 1132 const RHS &R) { 1133 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); 1134 } 1135 1136 template <typename LHS_t, typename RHS_t, unsigned Opcode, 1137 unsigned WrapFlags = 0> 1138 struct OverflowingBinaryOp_match { 1139 LHS_t L; 1140 RHS_t R; 1141 1142 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) 1143 : L(LHS), R(RHS) {} 1144 1145 template <typename OpTy> bool match(OpTy *V) { 1146 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) { 1147 if (Op->getOpcode() != Opcode) 1148 return false; 1149 if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) && 1150 !Op->hasNoUnsignedWrap()) 1151 return false; 1152 if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) && 1153 !Op->hasNoSignedWrap()) 1154 return false; 1155 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1)); 1156 } 1157 return false; 1158 } 1159 }; 1160 1161 template <typename LHS, typename RHS> 1162 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 1163 OverflowingBinaryOperator::NoSignedWrap> 1164 m_NSWAdd(const LHS &L, const RHS &R) { 1165 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 1166 OverflowingBinaryOperator::NoSignedWrap>(L, 1167 R); 1168 } 1169 template <typename LHS, typename RHS> 1170 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 1171 OverflowingBinaryOperator::NoSignedWrap> 1172 m_NSWSub(const LHS &L, const RHS &R) { 1173 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 1174 OverflowingBinaryOperator::NoSignedWrap>(L, 1175 R); 1176 } 1177 template <typename LHS, typename RHS> 1178 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 1179 OverflowingBinaryOperator::NoSignedWrap> 1180 m_NSWMul(const LHS &L, const RHS &R) { 1181 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 1182 OverflowingBinaryOperator::NoSignedWrap>(L, 1183 R); 1184 } 1185 template <typename LHS, typename RHS> 1186 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 1187 OverflowingBinaryOperator::NoSignedWrap> 1188 m_NSWShl(const LHS &L, const RHS &R) { 1189 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 1190 OverflowingBinaryOperator::NoSignedWrap>(L, 1191 R); 1192 } 1193 1194 template <typename LHS, typename RHS> 1195 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 1196 OverflowingBinaryOperator::NoUnsignedWrap> 1197 m_NUWAdd(const LHS &L, const RHS &R) { 1198 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 1199 OverflowingBinaryOperator::NoUnsignedWrap>( 1200 L, R); 1201 } 1202 template <typename LHS, typename RHS> 1203 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 1204 OverflowingBinaryOperator::NoUnsignedWrap> 1205 m_NUWSub(const LHS &L, const RHS &R) { 1206 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 1207 OverflowingBinaryOperator::NoUnsignedWrap>( 1208 L, R); 1209 } 1210 template <typename LHS, typename RHS> 1211 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 1212 OverflowingBinaryOperator::NoUnsignedWrap> 1213 m_NUWMul(const LHS &L, const RHS &R) { 1214 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 1215 OverflowingBinaryOperator::NoUnsignedWrap>( 1216 L, R); 1217 } 1218 template <typename LHS, typename RHS> 1219 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 1220 OverflowingBinaryOperator::NoUnsignedWrap> 1221 m_NUWShl(const LHS &L, const RHS &R) { 1222 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 1223 OverflowingBinaryOperator::NoUnsignedWrap>( 1224 L, R); 1225 } 1226 1227 template <typename LHS_t, typename RHS_t, bool Commutable = false> 1228 struct SpecificBinaryOp_match 1229 : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> { 1230 unsigned Opcode; 1231 1232 SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS) 1233 : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {} 1234 1235 template <typename OpTy> bool match(OpTy *V) { 1236 return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V); 1237 } 1238 }; 1239 1240 /// Matches a specific opcode. 1241 template <typename LHS, typename RHS> 1242 inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L, 1243 const RHS &R) { 1244 return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R); 1245 } 1246 1247 //===----------------------------------------------------------------------===// 1248 // Class that matches a group of binary opcodes. 1249 // 1250 template <typename LHS_t, typename RHS_t, typename Predicate> 1251 struct BinOpPred_match : Predicate { 1252 LHS_t L; 1253 RHS_t R; 1254 1255 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 1256 1257 template <typename OpTy> bool match(OpTy *V) { 1258 if (auto *I = dyn_cast<Instruction>(V)) 1259 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) && 1260 R.match(I->getOperand(1)); 1261 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1262 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) && 1263 R.match(CE->getOperand(1)); 1264 return false; 1265 } 1266 }; 1267 1268 struct is_shift_op { 1269 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); } 1270 }; 1271 1272 struct is_right_shift_op { 1273 bool isOpType(unsigned Opcode) { 1274 return Opcode == Instruction::LShr || Opcode == Instruction::AShr; 1275 } 1276 }; 1277 1278 struct is_logical_shift_op { 1279 bool isOpType(unsigned Opcode) { 1280 return Opcode == Instruction::LShr || Opcode == Instruction::Shl; 1281 } 1282 }; 1283 1284 struct is_bitwiselogic_op { 1285 bool isOpType(unsigned Opcode) { 1286 return Instruction::isBitwiseLogicOp(Opcode); 1287 } 1288 }; 1289 1290 struct is_idiv_op { 1291 bool isOpType(unsigned Opcode) { 1292 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; 1293 } 1294 }; 1295 1296 struct is_irem_op { 1297 bool isOpType(unsigned Opcode) { 1298 return Opcode == Instruction::SRem || Opcode == Instruction::URem; 1299 } 1300 }; 1301 1302 /// Matches shift operations. 1303 template <typename LHS, typename RHS> 1304 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L, 1305 const RHS &R) { 1306 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R); 1307 } 1308 1309 /// Matches logical shift operations. 1310 template <typename LHS, typename RHS> 1311 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L, 1312 const RHS &R) { 1313 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R); 1314 } 1315 1316 /// Matches logical shift operations. 1317 template <typename LHS, typename RHS> 1318 inline BinOpPred_match<LHS, RHS, is_logical_shift_op> 1319 m_LogicalShift(const LHS &L, const RHS &R) { 1320 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R); 1321 } 1322 1323 /// Matches bitwise logic operations. 1324 template <typename LHS, typename RHS> 1325 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op> 1326 m_BitwiseLogic(const LHS &L, const RHS &R) { 1327 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R); 1328 } 1329 1330 /// Matches integer division operations. 1331 template <typename LHS, typename RHS> 1332 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L, 1333 const RHS &R) { 1334 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R); 1335 } 1336 1337 /// Matches integer remainder operations. 1338 template <typename LHS, typename RHS> 1339 inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L, 1340 const RHS &R) { 1341 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R); 1342 } 1343 1344 //===----------------------------------------------------------------------===// 1345 // Class that matches exact binary ops. 1346 // 1347 template <typename SubPattern_t> struct Exact_match { 1348 SubPattern_t SubPattern; 1349 1350 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} 1351 1352 template <typename OpTy> bool match(OpTy *V) { 1353 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V)) 1354 return PEO->isExact() && SubPattern.match(V); 1355 return false; 1356 } 1357 }; 1358 1359 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) { 1360 return SubPattern; 1361 } 1362 1363 //===----------------------------------------------------------------------===// 1364 // Matchers for CmpInst classes 1365 // 1366 1367 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy, 1368 bool Commutable = false> 1369 struct CmpClass_match { 1370 PredicateTy &Predicate; 1371 LHS_t L; 1372 RHS_t R; 1373 1374 // The evaluation order is always stable, regardless of Commutability. 1375 // The LHS is always matched first. 1376 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) 1377 : Predicate(Pred), L(LHS), R(RHS) {} 1378 1379 template <typename OpTy> bool match(OpTy *V) { 1380 if (auto *I = dyn_cast<Class>(V)) { 1381 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { 1382 Predicate = I->getPredicate(); 1383 return true; 1384 } else if (Commutable && L.match(I->getOperand(1)) && 1385 R.match(I->getOperand(0))) { 1386 Predicate = I->getSwappedPredicate(); 1387 return true; 1388 } 1389 } 1390 return false; 1391 } 1392 }; 1393 1394 template <typename LHS, typename RHS> 1395 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> 1396 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 1397 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R); 1398 } 1399 1400 template <typename LHS, typename RHS> 1401 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> 1402 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 1403 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R); 1404 } 1405 1406 template <typename LHS, typename RHS> 1407 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> 1408 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 1409 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R); 1410 } 1411 1412 //===----------------------------------------------------------------------===// 1413 // Matchers for instructions with a given opcode and number of operands. 1414 // 1415 1416 /// Matches instructions with Opcode and three operands. 1417 template <typename T0, unsigned Opcode> struct OneOps_match { 1418 T0 Op1; 1419 1420 OneOps_match(const T0 &Op1) : Op1(Op1) {} 1421 1422 template <typename OpTy> bool match(OpTy *V) { 1423 if (V->getValueID() == Value::InstructionVal + Opcode) { 1424 auto *I = cast<Instruction>(V); 1425 return Op1.match(I->getOperand(0)); 1426 } 1427 return false; 1428 } 1429 }; 1430 1431 /// Matches instructions with Opcode and three operands. 1432 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match { 1433 T0 Op1; 1434 T1 Op2; 1435 1436 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {} 1437 1438 template <typename OpTy> bool match(OpTy *V) { 1439 if (V->getValueID() == Value::InstructionVal + Opcode) { 1440 auto *I = cast<Instruction>(V); 1441 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)); 1442 } 1443 return false; 1444 } 1445 }; 1446 1447 /// Matches instructions with Opcode and three operands. 1448 template <typename T0, typename T1, typename T2, unsigned Opcode> 1449 struct ThreeOps_match { 1450 T0 Op1; 1451 T1 Op2; 1452 T2 Op3; 1453 1454 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3) 1455 : Op1(Op1), Op2(Op2), Op3(Op3) {} 1456 1457 template <typename OpTy> bool match(OpTy *V) { 1458 if (V->getValueID() == Value::InstructionVal + Opcode) { 1459 auto *I = cast<Instruction>(V); 1460 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && 1461 Op3.match(I->getOperand(2)); 1462 } 1463 return false; 1464 } 1465 }; 1466 1467 /// Matches SelectInst. 1468 template <typename Cond, typename LHS, typename RHS> 1469 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select> 1470 m_Select(const Cond &C, const LHS &L, const RHS &R) { 1471 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R); 1472 } 1473 1474 /// This matches a select of two constants, e.g.: 1475 /// m_SelectCst<-1, 0>(m_Value(V)) 1476 template <int64_t L, int64_t R, typename Cond> 1477 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>, 1478 Instruction::Select> 1479 m_SelectCst(const Cond &C) { 1480 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); 1481 } 1482 1483 /// Matches FreezeInst. 1484 template <typename OpTy> 1485 inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) { 1486 return OneOps_match<OpTy, Instruction::Freeze>(Op); 1487 } 1488 1489 /// Matches InsertElementInst. 1490 template <typename Val_t, typename Elt_t, typename Idx_t> 1491 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement> 1492 m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { 1493 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>( 1494 Val, Elt, Idx); 1495 } 1496 1497 /// Matches ExtractElementInst. 1498 template <typename Val_t, typename Idx_t> 1499 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement> 1500 m_ExtractElt(const Val_t &Val, const Idx_t &Idx) { 1501 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx); 1502 } 1503 1504 /// Matches shuffle. 1505 template <typename T0, typename T1, typename T2> struct Shuffle_match { 1506 T0 Op1; 1507 T1 Op2; 1508 T2 Mask; 1509 1510 Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask) 1511 : Op1(Op1), Op2(Op2), Mask(Mask) {} 1512 1513 template <typename OpTy> bool match(OpTy *V) { 1514 if (auto *I = dyn_cast<ShuffleVectorInst>(V)) { 1515 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && 1516 Mask.match(I->getShuffleMask()); 1517 } 1518 return false; 1519 } 1520 }; 1521 1522 struct m_Mask { 1523 ArrayRef<int> &MaskRef; 1524 m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} 1525 bool match(ArrayRef<int> Mask) { 1526 MaskRef = Mask; 1527 return true; 1528 } 1529 }; 1530 1531 struct m_ZeroMask { 1532 bool match(ArrayRef<int> Mask) { 1533 return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; }); 1534 } 1535 }; 1536 1537 struct m_SpecificMask { 1538 ArrayRef<int> &MaskRef; 1539 m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} 1540 bool match(ArrayRef<int> Mask) { return MaskRef == Mask; } 1541 }; 1542 1543 struct m_SplatOrUndefMask { 1544 int &SplatIndex; 1545 m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {} 1546 bool match(ArrayRef<int> Mask) { 1547 const auto *First = find_if(Mask, [](int Elem) { return Elem != -1; }); 1548 if (First == Mask.end()) 1549 return false; 1550 SplatIndex = *First; 1551 return all_of(Mask, 1552 [First](int Elem) { return Elem == *First || Elem == -1; }); 1553 } 1554 }; 1555 1556 /// Matches ShuffleVectorInst independently of mask value. 1557 template <typename V1_t, typename V2_t> 1558 inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector> 1559 m_Shuffle(const V1_t &v1, const V2_t &v2) { 1560 return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2); 1561 } 1562 1563 template <typename V1_t, typename V2_t, typename Mask_t> 1564 inline Shuffle_match<V1_t, V2_t, Mask_t> 1565 m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) { 1566 return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask); 1567 } 1568 1569 /// Matches LoadInst. 1570 template <typename OpTy> 1571 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) { 1572 return OneOps_match<OpTy, Instruction::Load>(Op); 1573 } 1574 1575 /// Matches StoreInst. 1576 template <typename ValueOpTy, typename PointerOpTy> 1577 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store> 1578 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) { 1579 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp, 1580 PointerOp); 1581 } 1582 1583 //===----------------------------------------------------------------------===// 1584 // Matchers for CastInst classes 1585 // 1586 1587 template <typename Op_t, unsigned Opcode> struct CastClass_match { 1588 Op_t Op; 1589 1590 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} 1591 1592 template <typename OpTy> bool match(OpTy *V) { 1593 if (auto *O = dyn_cast<Operator>(V)) 1594 return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); 1595 return false; 1596 } 1597 }; 1598 1599 template <typename Op_t> struct PtrToIntSameSize_match { 1600 const DataLayout &DL; 1601 Op_t Op; 1602 1603 PtrToIntSameSize_match(const DataLayout &DL, const Op_t &OpMatch) 1604 : DL(DL), Op(OpMatch) {} 1605 1606 template <typename OpTy> bool match(OpTy *V) { 1607 if (auto *O = dyn_cast<Operator>(V)) 1608 return O->getOpcode() == Instruction::PtrToInt && 1609 DL.getTypeSizeInBits(O->getType()) == 1610 DL.getTypeSizeInBits(O->getOperand(0)->getType()) && 1611 Op.match(O->getOperand(0)); 1612 return false; 1613 } 1614 }; 1615 1616 /// Matches BitCast. 1617 template <typename OpTy> 1618 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) { 1619 return CastClass_match<OpTy, Instruction::BitCast>(Op); 1620 } 1621 1622 /// Matches PtrToInt. 1623 template <typename OpTy> 1624 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) { 1625 return CastClass_match<OpTy, Instruction::PtrToInt>(Op); 1626 } 1627 1628 template <typename OpTy> 1629 inline PtrToIntSameSize_match<OpTy> m_PtrToIntSameSize(const DataLayout &DL, 1630 const OpTy &Op) { 1631 return PtrToIntSameSize_match<OpTy>(DL, Op); 1632 } 1633 1634 /// Matches IntToPtr. 1635 template <typename OpTy> 1636 inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) { 1637 return CastClass_match<OpTy, Instruction::IntToPtr>(Op); 1638 } 1639 1640 /// Matches Trunc. 1641 template <typename OpTy> 1642 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) { 1643 return CastClass_match<OpTy, Instruction::Trunc>(Op); 1644 } 1645 1646 template <typename OpTy> 1647 inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy> 1648 m_TruncOrSelf(const OpTy &Op) { 1649 return m_CombineOr(m_Trunc(Op), Op); 1650 } 1651 1652 /// Matches SExt. 1653 template <typename OpTy> 1654 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) { 1655 return CastClass_match<OpTy, Instruction::SExt>(Op); 1656 } 1657 1658 /// Matches ZExt. 1659 template <typename OpTy> 1660 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) { 1661 return CastClass_match<OpTy, Instruction::ZExt>(Op); 1662 } 1663 1664 template <typename OpTy> 1665 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy> 1666 m_ZExtOrSelf(const OpTy &Op) { 1667 return m_CombineOr(m_ZExt(Op), Op); 1668 } 1669 1670 template <typename OpTy> 1671 inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy> 1672 m_SExtOrSelf(const OpTy &Op) { 1673 return m_CombineOr(m_SExt(Op), Op); 1674 } 1675 1676 template <typename OpTy> 1677 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, 1678 CastClass_match<OpTy, Instruction::SExt>> 1679 m_ZExtOrSExt(const OpTy &Op) { 1680 return m_CombineOr(m_ZExt(Op), m_SExt(Op)); 1681 } 1682 1683 template <typename OpTy> 1684 inline match_combine_or< 1685 match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, 1686 CastClass_match<OpTy, Instruction::SExt>>, 1687 OpTy> 1688 m_ZExtOrSExtOrSelf(const OpTy &Op) { 1689 return m_CombineOr(m_ZExtOrSExt(Op), Op); 1690 } 1691 1692 template <typename OpTy> 1693 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) { 1694 return CastClass_match<OpTy, Instruction::UIToFP>(Op); 1695 } 1696 1697 template <typename OpTy> 1698 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) { 1699 return CastClass_match<OpTy, Instruction::SIToFP>(Op); 1700 } 1701 1702 template <typename OpTy> 1703 inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) { 1704 return CastClass_match<OpTy, Instruction::FPToUI>(Op); 1705 } 1706 1707 template <typename OpTy> 1708 inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) { 1709 return CastClass_match<OpTy, Instruction::FPToSI>(Op); 1710 } 1711 1712 template <typename OpTy> 1713 inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) { 1714 return CastClass_match<OpTy, Instruction::FPTrunc>(Op); 1715 } 1716 1717 template <typename OpTy> 1718 inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) { 1719 return CastClass_match<OpTy, Instruction::FPExt>(Op); 1720 } 1721 1722 //===----------------------------------------------------------------------===// 1723 // Matchers for control flow. 1724 // 1725 1726 struct br_match { 1727 BasicBlock *&Succ; 1728 1729 br_match(BasicBlock *&Succ) : Succ(Succ) {} 1730 1731 template <typename OpTy> bool match(OpTy *V) { 1732 if (auto *BI = dyn_cast<BranchInst>(V)) 1733 if (BI->isUnconditional()) { 1734 Succ = BI->getSuccessor(0); 1735 return true; 1736 } 1737 return false; 1738 } 1739 }; 1740 1741 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } 1742 1743 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> 1744 struct brc_match { 1745 Cond_t Cond; 1746 TrueBlock_t T; 1747 FalseBlock_t F; 1748 1749 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f) 1750 : Cond(C), T(t), F(f) {} 1751 1752 template <typename OpTy> bool match(OpTy *V) { 1753 if (auto *BI = dyn_cast<BranchInst>(V)) 1754 if (BI->isConditional() && Cond.match(BI->getCondition())) 1755 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1)); 1756 return false; 1757 } 1758 }; 1759 1760 template <typename Cond_t> 1761 inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>> 1762 m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { 1763 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>( 1764 C, m_BasicBlock(T), m_BasicBlock(F)); 1765 } 1766 1767 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> 1768 inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t> 1769 m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) { 1770 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F); 1771 } 1772 1773 //===----------------------------------------------------------------------===// 1774 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). 1775 // 1776 1777 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t, 1778 bool Commutable = false> 1779 struct MaxMin_match { 1780 using PredType = Pred_t; 1781 LHS_t L; 1782 RHS_t R; 1783 1784 // The evaluation order is always stable, regardless of Commutability. 1785 // The LHS is always matched first. 1786 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 1787 1788 template <typename OpTy> bool match(OpTy *V) { 1789 if (auto *II = dyn_cast<IntrinsicInst>(V)) { 1790 Intrinsic::ID IID = II->getIntrinsicID(); 1791 if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) || 1792 (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) || 1793 (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) || 1794 (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) { 1795 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1); 1796 return (L.match(LHS) && R.match(RHS)) || 1797 (Commutable && L.match(RHS) && R.match(LHS)); 1798 } 1799 } 1800 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". 1801 auto *SI = dyn_cast<SelectInst>(V); 1802 if (!SI) 1803 return false; 1804 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); 1805 if (!Cmp) 1806 return false; 1807 // At this point we have a select conditioned on a comparison. Check that 1808 // it is the values returned by the select that are being compared. 1809 auto *TrueVal = SI->getTrueValue(); 1810 auto *FalseVal = SI->getFalseValue(); 1811 auto *LHS = Cmp->getOperand(0); 1812 auto *RHS = Cmp->getOperand(1); 1813 if ((TrueVal != LHS || FalseVal != RHS) && 1814 (TrueVal != RHS || FalseVal != LHS)) 1815 return false; 1816 typename CmpInst_t::Predicate Pred = 1817 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); 1818 // Does "(x pred y) ? x : y" represent the desired max/min operation? 1819 if (!Pred_t::match(Pred)) 1820 return false; 1821 // It does! Bind the operands. 1822 return (L.match(LHS) && R.match(RHS)) || 1823 (Commutable && L.match(RHS) && R.match(LHS)); 1824 } 1825 }; 1826 1827 /// Helper class for identifying signed max predicates. 1828 struct smax_pred_ty { 1829 static bool match(ICmpInst::Predicate Pred) { 1830 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; 1831 } 1832 }; 1833 1834 /// Helper class for identifying signed min predicates. 1835 struct smin_pred_ty { 1836 static bool match(ICmpInst::Predicate Pred) { 1837 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; 1838 } 1839 }; 1840 1841 /// Helper class for identifying unsigned max predicates. 1842 struct umax_pred_ty { 1843 static bool match(ICmpInst::Predicate Pred) { 1844 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; 1845 } 1846 }; 1847 1848 /// Helper class for identifying unsigned min predicates. 1849 struct umin_pred_ty { 1850 static bool match(ICmpInst::Predicate Pred) { 1851 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; 1852 } 1853 }; 1854 1855 /// Helper class for identifying ordered max predicates. 1856 struct ofmax_pred_ty { 1857 static bool match(FCmpInst::Predicate Pred) { 1858 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; 1859 } 1860 }; 1861 1862 /// Helper class for identifying ordered min predicates. 1863 struct ofmin_pred_ty { 1864 static bool match(FCmpInst::Predicate Pred) { 1865 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; 1866 } 1867 }; 1868 1869 /// Helper class for identifying unordered max predicates. 1870 struct ufmax_pred_ty { 1871 static bool match(FCmpInst::Predicate Pred) { 1872 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; 1873 } 1874 }; 1875 1876 /// Helper class for identifying unordered min predicates. 1877 struct ufmin_pred_ty { 1878 static bool match(FCmpInst::Predicate Pred) { 1879 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; 1880 } 1881 }; 1882 1883 template <typename LHS, typename RHS> 1884 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L, 1885 const RHS &R) { 1886 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); 1887 } 1888 1889 template <typename LHS, typename RHS> 1890 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L, 1891 const RHS &R) { 1892 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); 1893 } 1894 1895 template <typename LHS, typename RHS> 1896 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L, 1897 const RHS &R) { 1898 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); 1899 } 1900 1901 template <typename LHS, typename RHS> 1902 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L, 1903 const RHS &R) { 1904 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); 1905 } 1906 1907 template <typename LHS, typename RHS> 1908 inline match_combine_or< 1909 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>, 1910 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>, 1911 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>, 1912 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>> 1913 m_MaxOrMin(const LHS &L, const RHS &R) { 1914 return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)), 1915 m_CombineOr(m_UMax(L, R), m_UMin(L, R))); 1916 } 1917 1918 /// Match an 'ordered' floating point maximum function. 1919 /// Floating point has one special value 'NaN'. Therefore, there is no total 1920 /// order. However, if we can ignore the 'NaN' value (for example, because of a 1921 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' 1922 /// semantics. In the presence of 'NaN' we have to preserve the original 1923 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. 1924 /// 1925 /// max(L, R) iff L and R are not NaN 1926 /// m_OrdFMax(L, R) = R iff L or R are NaN 1927 template <typename LHS, typename RHS> 1928 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L, 1929 const RHS &R) { 1930 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); 1931 } 1932 1933 /// Match an 'ordered' floating point minimum function. 1934 /// Floating point has one special value 'NaN'. Therefore, there is no total 1935 /// order. However, if we can ignore the 'NaN' value (for example, because of a 1936 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' 1937 /// semantics. In the presence of 'NaN' we have to preserve the original 1938 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. 1939 /// 1940 /// min(L, R) iff L and R are not NaN 1941 /// m_OrdFMin(L, R) = R iff L or R are NaN 1942 template <typename LHS, typename RHS> 1943 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L, 1944 const RHS &R) { 1945 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); 1946 } 1947 1948 /// Match an 'unordered' floating point maximum function. 1949 /// Floating point has one special value 'NaN'. Therefore, there is no total 1950 /// order. However, if we can ignore the 'NaN' value (for example, because of a 1951 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' 1952 /// semantics. In the presence of 'NaN' we have to preserve the original 1953 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. 1954 /// 1955 /// max(L, R) iff L and R are not NaN 1956 /// m_UnordFMax(L, R) = L iff L or R are NaN 1957 template <typename LHS, typename RHS> 1958 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> 1959 m_UnordFMax(const LHS &L, const RHS &R) { 1960 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); 1961 } 1962 1963 /// Match an 'unordered' floating point minimum function. 1964 /// Floating point has one special value 'NaN'. Therefore, there is no total 1965 /// order. However, if we can ignore the 'NaN' value (for example, because of a 1966 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' 1967 /// semantics. In the presence of 'NaN' we have to preserve the original 1968 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. 1969 /// 1970 /// min(L, R) iff L and R are not NaN 1971 /// m_UnordFMin(L, R) = L iff L or R are NaN 1972 template <typename LHS, typename RHS> 1973 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> 1974 m_UnordFMin(const LHS &L, const RHS &R) { 1975 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); 1976 } 1977 1978 //===----------------------------------------------------------------------===// 1979 // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b 1980 // Note that S might be matched to other instructions than AddInst. 1981 // 1982 1983 template <typename LHS_t, typename RHS_t, typename Sum_t> 1984 struct UAddWithOverflow_match { 1985 LHS_t L; 1986 RHS_t R; 1987 Sum_t S; 1988 1989 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) 1990 : L(L), R(R), S(S) {} 1991 1992 template <typename OpTy> bool match(OpTy *V) { 1993 Value *ICmpLHS, *ICmpRHS; 1994 ICmpInst::Predicate Pred; 1995 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V)) 1996 return false; 1997 1998 Value *AddLHS, *AddRHS; 1999 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS)); 2000 2001 // (a + b) u< a, (a + b) u< b 2002 if (Pred == ICmpInst::ICMP_ULT) 2003 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) 2004 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); 2005 2006 // a >u (a + b), b >u (a + b) 2007 if (Pred == ICmpInst::ICMP_UGT) 2008 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) 2009 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); 2010 2011 Value *Op1; 2012 auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes())); 2013 // (a ^ -1) <u b 2014 if (Pred == ICmpInst::ICMP_ULT) { 2015 if (XorExpr.match(ICmpLHS)) 2016 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS); 2017 } 2018 // b > u (a ^ -1) 2019 if (Pred == ICmpInst::ICMP_UGT) { 2020 if (XorExpr.match(ICmpRHS)) 2021 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS); 2022 } 2023 2024 // Match special-case for increment-by-1. 2025 if (Pred == ICmpInst::ICMP_EQ) { 2026 // (a + 1) == 0 2027 // (1 + a) == 0 2028 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) && 2029 (m_One().match(AddLHS) || m_One().match(AddRHS))) 2030 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); 2031 // 0 == (a + 1) 2032 // 0 == (1 + a) 2033 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) && 2034 (m_One().match(AddLHS) || m_One().match(AddRHS))) 2035 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); 2036 } 2037 2038 return false; 2039 } 2040 }; 2041 2042 /// Match an icmp instruction checking for unsigned overflow on addition. 2043 /// 2044 /// S is matched to the addition whose result is being checked for overflow, and 2045 /// L and R are matched to the LHS and RHS of S. 2046 template <typename LHS_t, typename RHS_t, typename Sum_t> 2047 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t> 2048 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { 2049 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S); 2050 } 2051 2052 template <typename Opnd_t> struct Argument_match { 2053 unsigned OpI; 2054 Opnd_t Val; 2055 2056 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} 2057 2058 template <typename OpTy> bool match(OpTy *V) { 2059 // FIXME: Should likely be switched to use `CallBase`. 2060 if (const auto *CI = dyn_cast<CallInst>(V)) 2061 return Val.match(CI->getArgOperand(OpI)); 2062 return false; 2063 } 2064 }; 2065 2066 /// Match an argument. 2067 template <unsigned OpI, typename Opnd_t> 2068 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { 2069 return Argument_match<Opnd_t>(OpI, Op); 2070 } 2071 2072 /// Intrinsic matchers. 2073 struct IntrinsicID_match { 2074 unsigned ID; 2075 2076 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} 2077 2078 template <typename OpTy> bool match(OpTy *V) { 2079 if (const auto *CI = dyn_cast<CallInst>(V)) 2080 if (const auto *F = CI->getCalledFunction()) 2081 return F->getIntrinsicID() == ID; 2082 return false; 2083 } 2084 }; 2085 2086 /// Intrinsic matches are combinations of ID matchers, and argument 2087 /// matchers. Higher arity matcher are defined recursively in terms of and-ing 2088 /// them with lower arity matchers. Here's some convenient typedefs for up to 2089 /// several arguments, and more can be added as needed 2090 template <typename T0 = void, typename T1 = void, typename T2 = void, 2091 typename T3 = void, typename T4 = void, typename T5 = void, 2092 typename T6 = void, typename T7 = void, typename T8 = void, 2093 typename T9 = void, typename T10 = void> 2094 struct m_Intrinsic_Ty; 2095 template <typename T0> struct m_Intrinsic_Ty<T0> { 2096 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; 2097 }; 2098 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { 2099 using Ty = 2100 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; 2101 }; 2102 template <typename T0, typename T1, typename T2> 2103 struct m_Intrinsic_Ty<T0, T1, T2> { 2104 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, 2105 Argument_match<T2>>; 2106 }; 2107 template <typename T0, typename T1, typename T2, typename T3> 2108 struct m_Intrinsic_Ty<T0, T1, T2, T3> { 2109 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, 2110 Argument_match<T3>>; 2111 }; 2112 2113 template <typename T0, typename T1, typename T2, typename T3, typename T4> 2114 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> { 2115 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty, 2116 Argument_match<T4>>; 2117 }; 2118 2119 template <typename T0, typename T1, typename T2, typename T3, typename T4, 2120 typename T5> 2121 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> { 2122 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty, 2123 Argument_match<T5>>; 2124 }; 2125 2126 /// Match intrinsic calls like this: 2127 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X)) 2128 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { 2129 return IntrinsicID_match(IntrID); 2130 } 2131 2132 /// Matches MaskedLoad Intrinsic. 2133 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> 2134 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty 2135 m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, 2136 const Opnd3 &Op3) { 2137 return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3); 2138 } 2139 2140 /// Matches MaskedGather Intrinsic. 2141 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> 2142 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty 2143 m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, 2144 const Opnd3 &Op3) { 2145 return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3); 2146 } 2147 2148 template <Intrinsic::ID IntrID, typename T0> 2149 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { 2150 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); 2151 } 2152 2153 template <Intrinsic::ID IntrID, typename T0, typename T1> 2154 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, 2155 const T1 &Op1) { 2156 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); 2157 } 2158 2159 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> 2160 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty 2161 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { 2162 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); 2163 } 2164 2165 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, 2166 typename T3> 2167 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty 2168 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { 2169 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); 2170 } 2171 2172 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, 2173 typename T3, typename T4> 2174 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty 2175 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, 2176 const T4 &Op4) { 2177 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3), 2178 m_Argument<4>(Op4)); 2179 } 2180 2181 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, 2182 typename T3, typename T4, typename T5> 2183 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty 2184 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, 2185 const T4 &Op4, const T5 &Op5) { 2186 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4), 2187 m_Argument<5>(Op5)); 2188 } 2189 2190 // Helper intrinsic matching specializations. 2191 template <typename Opnd0> 2192 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) { 2193 return m_Intrinsic<Intrinsic::bitreverse>(Op0); 2194 } 2195 2196 template <typename Opnd0> 2197 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) { 2198 return m_Intrinsic<Intrinsic::bswap>(Op0); 2199 } 2200 2201 template <typename Opnd0> 2202 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) { 2203 return m_Intrinsic<Intrinsic::fabs>(Op0); 2204 } 2205 2206 template <typename Opnd0> 2207 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) { 2208 return m_Intrinsic<Intrinsic::canonicalize>(Op0); 2209 } 2210 2211 template <typename Opnd0, typename Opnd1> 2212 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0, 2213 const Opnd1 &Op1) { 2214 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1); 2215 } 2216 2217 template <typename Opnd0, typename Opnd1> 2218 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0, 2219 const Opnd1 &Op1) { 2220 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1); 2221 } 2222 2223 template <typename Opnd0, typename Opnd1, typename Opnd2> 2224 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty 2225 m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { 2226 return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2); 2227 } 2228 2229 template <typename Opnd0, typename Opnd1, typename Opnd2> 2230 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty 2231 m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { 2232 return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2); 2233 } 2234 2235 template <typename Opnd0> 2236 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) { 2237 return m_Intrinsic<Intrinsic::sqrt>(Op0); 2238 } 2239 2240 template <typename Opnd0, typename Opnd1> 2241 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0, 2242 const Opnd1 &Op1) { 2243 return m_Intrinsic<Intrinsic::copysign>(Op0, Op1); 2244 } 2245 2246 template <typename Opnd0> 2247 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) { 2248 return m_Intrinsic<Intrinsic::experimental_vector_reverse>(Op0); 2249 } 2250 2251 //===----------------------------------------------------------------------===// 2252 // Matchers for two-operands operators with the operators in either order 2253 // 2254 2255 /// Matches a BinaryOperator with LHS and RHS in either order. 2256 template <typename LHS, typename RHS> 2257 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) { 2258 return AnyBinaryOp_match<LHS, RHS, true>(L, R); 2259 } 2260 2261 /// Matches an ICmp with a predicate over LHS and RHS in either order. 2262 /// Swaps the predicate if operands are commuted. 2263 template <typename LHS, typename RHS> 2264 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> 2265 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 2266 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L, 2267 R); 2268 } 2269 2270 /// Matches a specific opcode with LHS and RHS in either order. 2271 template <typename LHS, typename RHS> 2272 inline SpecificBinaryOp_match<LHS, RHS, true> 2273 m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) { 2274 return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R); 2275 } 2276 2277 /// Matches a Add with LHS and RHS in either order. 2278 template <typename LHS, typename RHS> 2279 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L, 2280 const RHS &R) { 2281 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R); 2282 } 2283 2284 /// Matches a Mul with LHS and RHS in either order. 2285 template <typename LHS, typename RHS> 2286 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L, 2287 const RHS &R) { 2288 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R); 2289 } 2290 2291 /// Matches an And with LHS and RHS in either order. 2292 template <typename LHS, typename RHS> 2293 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L, 2294 const RHS &R) { 2295 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R); 2296 } 2297 2298 /// Matches an Or with LHS and RHS in either order. 2299 template <typename LHS, typename RHS> 2300 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L, 2301 const RHS &R) { 2302 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R); 2303 } 2304 2305 /// Matches an Xor with LHS and RHS in either order. 2306 template <typename LHS, typename RHS> 2307 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L, 2308 const RHS &R) { 2309 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R); 2310 } 2311 2312 /// Matches a 'Neg' as 'sub 0, V'. 2313 template <typename ValTy> 2314 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub> 2315 m_Neg(const ValTy &V) { 2316 return m_Sub(m_ZeroInt(), V); 2317 } 2318 2319 /// Matches a 'Neg' as 'sub nsw 0, V'. 2320 template <typename ValTy> 2321 inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, 2322 Instruction::Sub, 2323 OverflowingBinaryOperator::NoSignedWrap> 2324 m_NSWNeg(const ValTy &V) { 2325 return m_NSWSub(m_ZeroInt(), V); 2326 } 2327 2328 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'. 2329 /// NOTE: we first match the 'Not' (by matching '-1'), 2330 /// and only then match the inner matcher! 2331 template <typename ValTy> 2332 inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true> 2333 m_Not(const ValTy &V) { 2334 return m_c_Xor(m_AllOnes(), V); 2335 } 2336 2337 template <typename ValTy> struct NotForbidUndef_match { 2338 ValTy Val; 2339 NotForbidUndef_match(const ValTy &V) : Val(V) {} 2340 2341 template <typename OpTy> bool match(OpTy *V) { 2342 // We do not use m_c_Xor because that could match an arbitrary APInt that is 2343 // not -1 as C and then fail to match the other operand if it is -1. 2344 // This code should still work even when both operands are constants. 2345 Value *X; 2346 const APInt *C; 2347 if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes()) 2348 return Val.match(X); 2349 if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes()) 2350 return Val.match(X); 2351 return false; 2352 } 2353 }; 2354 2355 /// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the 2356 /// constant value must be composed of only -1 scalar elements. 2357 template <typename ValTy> 2358 inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) { 2359 return NotForbidUndef_match<ValTy>(V); 2360 } 2361 2362 /// Matches an SMin with LHS and RHS in either order. 2363 template <typename LHS, typename RHS> 2364 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true> 2365 m_c_SMin(const LHS &L, const RHS &R) { 2366 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R); 2367 } 2368 /// Matches an SMax with LHS and RHS in either order. 2369 template <typename LHS, typename RHS> 2370 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true> 2371 m_c_SMax(const LHS &L, const RHS &R) { 2372 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R); 2373 } 2374 /// Matches a UMin with LHS and RHS in either order. 2375 template <typename LHS, typename RHS> 2376 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true> 2377 m_c_UMin(const LHS &L, const RHS &R) { 2378 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R); 2379 } 2380 /// Matches a UMax with LHS and RHS in either order. 2381 template <typename LHS, typename RHS> 2382 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true> 2383 m_c_UMax(const LHS &L, const RHS &R) { 2384 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R); 2385 } 2386 2387 template <typename LHS, typename RHS> 2388 inline match_combine_or< 2389 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>, 2390 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>, 2391 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>, 2392 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>> 2393 m_c_MaxOrMin(const LHS &L, const RHS &R) { 2394 return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)), 2395 m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R))); 2396 } 2397 2398 template <Intrinsic::ID IntrID, typename T0, typename T1> 2399 inline match_combine_or<typename m_Intrinsic_Ty<T0, T1>::Ty, 2400 typename m_Intrinsic_Ty<T1, T0>::Ty> 2401 m_c_Intrinsic(const T0 &Op0, const T1 &Op1) { 2402 return m_CombineOr(m_Intrinsic<IntrID>(Op0, Op1), 2403 m_Intrinsic<IntrID>(Op1, Op0)); 2404 } 2405 2406 /// Matches FAdd with LHS and RHS in either order. 2407 template <typename LHS, typename RHS> 2408 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true> 2409 m_c_FAdd(const LHS &L, const RHS &R) { 2410 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R); 2411 } 2412 2413 /// Matches FMul with LHS and RHS in either order. 2414 template <typename LHS, typename RHS> 2415 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true> 2416 m_c_FMul(const LHS &L, const RHS &R) { 2417 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R); 2418 } 2419 2420 template <typename Opnd_t> struct Signum_match { 2421 Opnd_t Val; 2422 Signum_match(const Opnd_t &V) : Val(V) {} 2423 2424 template <typename OpTy> bool match(OpTy *V) { 2425 unsigned TypeSize = V->getType()->getScalarSizeInBits(); 2426 if (TypeSize == 0) 2427 return false; 2428 2429 unsigned ShiftWidth = TypeSize - 1; 2430 Value *OpL = nullptr, *OpR = nullptr; 2431 2432 // This is the representation of signum we match: 2433 // 2434 // signum(x) == (x >> 63) | (-x >>u 63) 2435 // 2436 // An i1 value is its own signum, so it's correct to match 2437 // 2438 // signum(x) == (x >> 0) | (-x >>u 0) 2439 // 2440 // for i1 values. 2441 2442 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth)); 2443 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth)); 2444 auto Signum = m_Or(LHS, RHS); 2445 2446 return Signum.match(V) && OpL == OpR && Val.match(OpL); 2447 } 2448 }; 2449 2450 /// Matches a signum pattern. 2451 /// 2452 /// signum(x) = 2453 /// x > 0 -> 1 2454 /// x == 0 -> 0 2455 /// x < 0 -> -1 2456 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) { 2457 return Signum_match<Val_t>(V); 2458 } 2459 2460 template <int Ind, typename Opnd_t> struct ExtractValue_match { 2461 Opnd_t Val; 2462 ExtractValue_match(const Opnd_t &V) : Val(V) {} 2463 2464 template <typename OpTy> bool match(OpTy *V) { 2465 if (auto *I = dyn_cast<ExtractValueInst>(V)) { 2466 // If Ind is -1, don't inspect indices 2467 if (Ind != -1 && 2468 !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind)) 2469 return false; 2470 return Val.match(I->getAggregateOperand()); 2471 } 2472 return false; 2473 } 2474 }; 2475 2476 /// Match a single index ExtractValue instruction. 2477 /// For example m_ExtractValue<1>(...) 2478 template <int Ind, typename Val_t> 2479 inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) { 2480 return ExtractValue_match<Ind, Val_t>(V); 2481 } 2482 2483 /// Match an ExtractValue instruction with any index. 2484 /// For example m_ExtractValue(...) 2485 template <typename Val_t> 2486 inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) { 2487 return ExtractValue_match<-1, Val_t>(V); 2488 } 2489 2490 /// Matcher for a single index InsertValue instruction. 2491 template <int Ind, typename T0, typename T1> struct InsertValue_match { 2492 T0 Op0; 2493 T1 Op1; 2494 2495 InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {} 2496 2497 template <typename OpTy> bool match(OpTy *V) { 2498 if (auto *I = dyn_cast<InsertValueInst>(V)) { 2499 return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) && 2500 I->getNumIndices() == 1 && Ind == I->getIndices()[0]; 2501 } 2502 return false; 2503 } 2504 }; 2505 2506 /// Matches a single index InsertValue instruction. 2507 template <int Ind, typename Val_t, typename Elt_t> 2508 inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val, 2509 const Elt_t &Elt) { 2510 return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt); 2511 } 2512 2513 /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or 2514 /// the constant expression 2515 /// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>` 2516 /// under the right conditions determined by DataLayout. 2517 struct VScaleVal_match { 2518 template <typename ITy> bool match(ITy *V) { 2519 if (m_Intrinsic<Intrinsic::vscale>().match(V)) 2520 return true; 2521 2522 Value *Ptr; 2523 if (m_PtrToInt(m_Value(Ptr)).match(V)) { 2524 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 2525 auto *DerefTy = 2526 dyn_cast<ScalableVectorType>(GEP->getSourceElementType()); 2527 if (GEP->getNumIndices() == 1 && DerefTy && 2528 DerefTy->getElementType()->isIntegerTy(8) && 2529 m_Zero().match(GEP->getPointerOperand()) && 2530 m_SpecificInt(1).match(GEP->idx_begin()->get())) 2531 return true; 2532 } 2533 } 2534 2535 return false; 2536 } 2537 }; 2538 2539 inline VScaleVal_match m_VScale() { 2540 return VScaleVal_match(); 2541 } 2542 2543 template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false> 2544 struct LogicalOp_match { 2545 LHS L; 2546 RHS R; 2547 2548 LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {} 2549 2550 template <typename T> bool match(T *V) { 2551 auto *I = dyn_cast<Instruction>(V); 2552 if (!I || !I->getType()->isIntOrIntVectorTy(1)) 2553 return false; 2554 2555 if (I->getOpcode() == Opcode) { 2556 auto *Op0 = I->getOperand(0); 2557 auto *Op1 = I->getOperand(1); 2558 return (L.match(Op0) && R.match(Op1)) || 2559 (Commutable && L.match(Op1) && R.match(Op0)); 2560 } 2561 2562 if (auto *Select = dyn_cast<SelectInst>(I)) { 2563 auto *Cond = Select->getCondition(); 2564 auto *TVal = Select->getTrueValue(); 2565 auto *FVal = Select->getFalseValue(); 2566 2567 // Don't match a scalar select of bool vectors. 2568 // Transforms expect a single type for operands if this matches. 2569 if (Cond->getType() != Select->getType()) 2570 return false; 2571 2572 if (Opcode == Instruction::And) { 2573 auto *C = dyn_cast<Constant>(FVal); 2574 if (C && C->isNullValue()) 2575 return (L.match(Cond) && R.match(TVal)) || 2576 (Commutable && L.match(TVal) && R.match(Cond)); 2577 } else { 2578 assert(Opcode == Instruction::Or); 2579 auto *C = dyn_cast<Constant>(TVal); 2580 if (C && C->isOneValue()) 2581 return (L.match(Cond) && R.match(FVal)) || 2582 (Commutable && L.match(FVal) && R.match(Cond)); 2583 } 2584 } 2585 2586 return false; 2587 } 2588 }; 2589 2590 /// Matches L && R either in the form of L & R or L ? R : false. 2591 /// Note that the latter form is poison-blocking. 2592 template <typename LHS, typename RHS> 2593 inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L, 2594 const RHS &R) { 2595 return LogicalOp_match<LHS, RHS, Instruction::And>(L, R); 2596 } 2597 2598 /// Matches L && R where L and R are arbitrary values. 2599 inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); } 2600 2601 /// Matches L && R with LHS and RHS in either order. 2602 template <typename LHS, typename RHS> 2603 inline LogicalOp_match<LHS, RHS, Instruction::And, true> 2604 m_c_LogicalAnd(const LHS &L, const RHS &R) { 2605 return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R); 2606 } 2607 2608 /// Matches L || R either in the form of L | R or L ? true : R. 2609 /// Note that the latter form is poison-blocking. 2610 template <typename LHS, typename RHS> 2611 inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L, 2612 const RHS &R) { 2613 return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R); 2614 } 2615 2616 /// Matches L || R where L and R are arbitrary values. 2617 inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); } 2618 2619 /// Matches L || R with LHS and RHS in either order. 2620 template <typename LHS, typename RHS> 2621 inline LogicalOp_match<LHS, RHS, Instruction::Or, true> 2622 m_c_LogicalOr(const LHS &L, const RHS &R) { 2623 return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R); 2624 } 2625 2626 /// Matches either L && R or L || R, 2627 /// either one being in the either binary or logical form. 2628 /// Note that the latter form is poison-blocking. 2629 template <typename LHS, typename RHS, bool Commutable = false> 2630 inline auto m_LogicalOp(const LHS &L, const RHS &R) { 2631 return m_CombineOr( 2632 LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R), 2633 LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R)); 2634 } 2635 2636 /// Matches either L && R or L || R where L and R are arbitrary values. 2637 inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); } 2638 2639 /// Matches either L && R or L || R with LHS and RHS in either order. 2640 template <typename LHS, typename RHS> 2641 inline auto m_c_LogicalOp(const LHS &L, const RHS &R) { 2642 return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R); 2643 } 2644 2645 } // end namespace PatternMatch 2646 } // end namespace llvm 2647 2648 #endif // LLVM_IR_PATTERNMATCH_H 2649