xref: /freebsd/contrib/llvm-project/llvm/include/llvm/IR/PatternMatch.h (revision bc5304a006238115291e7568583632889dffbab9)
1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
15 //
16 //  Value *Exp = ...
17 //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
18 //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 //    ... Pattern is matched and variables are bound ...
21 //  }
22 //
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
30 
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include <cstdint>
45 
46 namespace llvm {
47 namespace PatternMatch {
48 
49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50   return const_cast<Pattern &>(P).match(V);
51 }
52 
53 template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54   return const_cast<Pattern &>(P).match(Mask);
55 }
56 
57 template <typename SubPattern_t> struct OneUse_match {
58   SubPattern_t SubPattern;
59 
60   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61 
62   template <typename OpTy> bool match(OpTy *V) {
63     return V->hasOneUse() && SubPattern.match(V);
64   }
65 };
66 
67 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68   return SubPattern;
69 }
70 
71 template <typename Class> struct class_match {
72   template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73 };
74 
75 /// Match an arbitrary value and ignore it.
76 inline class_match<Value> m_Value() { return class_match<Value>(); }
77 
78 /// Match an arbitrary unary operation and ignore it.
79 inline class_match<UnaryOperator> m_UnOp() {
80   return class_match<UnaryOperator>();
81 }
82 
83 /// Match an arbitrary binary operation and ignore it.
84 inline class_match<BinaryOperator> m_BinOp() {
85   return class_match<BinaryOperator>();
86 }
87 
88 /// Matches any compare instruction and ignore it.
89 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90 
91 /// Match an arbitrary undef constant.
92 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
93 
94 /// Match an arbitrary poison constant.
95 inline class_match<PoisonValue> m_Poison() { return class_match<PoisonValue>(); }
96 
97 /// Match an arbitrary Constant and ignore it.
98 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
99 
100 /// Match an arbitrary ConstantInt and ignore it.
101 inline class_match<ConstantInt> m_ConstantInt() {
102   return class_match<ConstantInt>();
103 }
104 
105 /// Match an arbitrary ConstantFP and ignore it.
106 inline class_match<ConstantFP> m_ConstantFP() {
107   return class_match<ConstantFP>();
108 }
109 
110 /// Match an arbitrary ConstantExpr and ignore it.
111 inline class_match<ConstantExpr> m_ConstantExpr() {
112   return class_match<ConstantExpr>();
113 }
114 
115 /// Match an arbitrary basic block value and ignore it.
116 inline class_match<BasicBlock> m_BasicBlock() {
117   return class_match<BasicBlock>();
118 }
119 
120 /// Inverting matcher
121 template <typename Ty> struct match_unless {
122   Ty M;
123 
124   match_unless(const Ty &Matcher) : M(Matcher) {}
125 
126   template <typename ITy> bool match(ITy *V) { return !M.match(V); }
127 };
128 
129 /// Match if the inner matcher does *NOT* match.
130 template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
131   return match_unless<Ty>(M);
132 }
133 
134 /// Matching combinators
135 template <typename LTy, typename RTy> struct match_combine_or {
136   LTy L;
137   RTy R;
138 
139   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
140 
141   template <typename ITy> bool match(ITy *V) {
142     if (L.match(V))
143       return true;
144     if (R.match(V))
145       return true;
146     return false;
147   }
148 };
149 
150 template <typename LTy, typename RTy> struct match_combine_and {
151   LTy L;
152   RTy R;
153 
154   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
155 
156   template <typename ITy> bool match(ITy *V) {
157     if (L.match(V))
158       if (R.match(V))
159         return true;
160     return false;
161   }
162 };
163 
164 /// Combine two pattern matchers matching L || R
165 template <typename LTy, typename RTy>
166 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
167   return match_combine_or<LTy, RTy>(L, R);
168 }
169 
170 /// Combine two pattern matchers matching L && R
171 template <typename LTy, typename RTy>
172 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
173   return match_combine_and<LTy, RTy>(L, R);
174 }
175 
176 struct apint_match {
177   const APInt *&Res;
178   bool AllowUndef;
179 
180   apint_match(const APInt *&Res, bool AllowUndef)
181     : Res(Res), AllowUndef(AllowUndef) {}
182 
183   template <typename ITy> bool match(ITy *V) {
184     if (auto *CI = dyn_cast<ConstantInt>(V)) {
185       Res = &CI->getValue();
186       return true;
187     }
188     if (V->getType()->isVectorTy())
189       if (const auto *C = dyn_cast<Constant>(V))
190         if (auto *CI = dyn_cast_or_null<ConstantInt>(
191                 C->getSplatValue(AllowUndef))) {
192           Res = &CI->getValue();
193           return true;
194         }
195     return false;
196   }
197 };
198 // Either constexpr if or renaming ConstantFP::getValueAPF to
199 // ConstantFP::getValue is needed to do it via single template
200 // function for both apint/apfloat.
201 struct apfloat_match {
202   const APFloat *&Res;
203   bool AllowUndef;
204 
205   apfloat_match(const APFloat *&Res, bool AllowUndef)
206       : Res(Res), AllowUndef(AllowUndef) {}
207 
208   template <typename ITy> bool match(ITy *V) {
209     if (auto *CI = dyn_cast<ConstantFP>(V)) {
210       Res = &CI->getValueAPF();
211       return true;
212     }
213     if (V->getType()->isVectorTy())
214       if (const auto *C = dyn_cast<Constant>(V))
215         if (auto *CI = dyn_cast_or_null<ConstantFP>(
216                 C->getSplatValue(AllowUndef))) {
217           Res = &CI->getValueAPF();
218           return true;
219         }
220     return false;
221   }
222 };
223 
224 /// Match a ConstantInt or splatted ConstantVector, binding the
225 /// specified pointer to the contained APInt.
226 inline apint_match m_APInt(const APInt *&Res) {
227   // Forbid undefs by default to maintain previous behavior.
228   return apint_match(Res, /* AllowUndef */ false);
229 }
230 
231 /// Match APInt while allowing undefs in splat vector constants.
232 inline apint_match m_APIntAllowUndef(const APInt *&Res) {
233   return apint_match(Res, /* AllowUndef */ true);
234 }
235 
236 /// Match APInt while forbidding undefs in splat vector constants.
237 inline apint_match m_APIntForbidUndef(const APInt *&Res) {
238   return apint_match(Res, /* AllowUndef */ false);
239 }
240 
241 /// Match a ConstantFP or splatted ConstantVector, binding the
242 /// specified pointer to the contained APFloat.
243 inline apfloat_match m_APFloat(const APFloat *&Res) {
244   // Forbid undefs by default to maintain previous behavior.
245   return apfloat_match(Res, /* AllowUndef */ false);
246 }
247 
248 /// Match APFloat while allowing undefs in splat vector constants.
249 inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
250   return apfloat_match(Res, /* AllowUndef */ true);
251 }
252 
253 /// Match APFloat while forbidding undefs in splat vector constants.
254 inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
255   return apfloat_match(Res, /* AllowUndef */ false);
256 }
257 
258 template <int64_t Val> struct constantint_match {
259   template <typename ITy> bool match(ITy *V) {
260     if (const auto *CI = dyn_cast<ConstantInt>(V)) {
261       const APInt &CIV = CI->getValue();
262       if (Val >= 0)
263         return CIV == static_cast<uint64_t>(Val);
264       // If Val is negative, and CI is shorter than it, truncate to the right
265       // number of bits.  If it is larger, then we have to sign extend.  Just
266       // compare their negated values.
267       return -CIV == -Val;
268     }
269     return false;
270   }
271 };
272 
273 /// Match a ConstantInt with a specific value.
274 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
275   return constantint_match<Val>();
276 }
277 
278 /// This helper class is used to match constant scalars, vector splats,
279 /// and fixed width vectors that satisfy a specified predicate.
280 /// For fixed width vector constants, undefined elements are ignored.
281 template <typename Predicate, typename ConstantVal>
282 struct cstval_pred_ty : public Predicate {
283   template <typename ITy> bool match(ITy *V) {
284     if (const auto *CV = dyn_cast<ConstantVal>(V))
285       return this->isValue(CV->getValue());
286     if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
287       if (const auto *C = dyn_cast<Constant>(V)) {
288         if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
289           return this->isValue(CV->getValue());
290 
291         // Number of elements of a scalable vector unknown at compile time
292         auto *FVTy = dyn_cast<FixedVectorType>(VTy);
293         if (!FVTy)
294           return false;
295 
296         // Non-splat vector constant: check each element for a match.
297         unsigned NumElts = FVTy->getNumElements();
298         assert(NumElts != 0 && "Constant vector with no elements?");
299         bool HasNonUndefElements = false;
300         for (unsigned i = 0; i != NumElts; ++i) {
301           Constant *Elt = C->getAggregateElement(i);
302           if (!Elt)
303             return false;
304           if (isa<UndefValue>(Elt))
305             continue;
306           auto *CV = dyn_cast<ConstantVal>(Elt);
307           if (!CV || !this->isValue(CV->getValue()))
308             return false;
309           HasNonUndefElements = true;
310         }
311         return HasNonUndefElements;
312       }
313     }
314     return false;
315   }
316 };
317 
318 /// specialization of cstval_pred_ty for ConstantInt
319 template <typename Predicate>
320 using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
321 
322 /// specialization of cstval_pred_ty for ConstantFP
323 template <typename Predicate>
324 using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
325 
326 /// This helper class is used to match scalar and vector constants that
327 /// satisfy a specified predicate, and bind them to an APInt.
328 template <typename Predicate> struct api_pred_ty : public Predicate {
329   const APInt *&Res;
330 
331   api_pred_ty(const APInt *&R) : Res(R) {}
332 
333   template <typename ITy> bool match(ITy *V) {
334     if (const auto *CI = dyn_cast<ConstantInt>(V))
335       if (this->isValue(CI->getValue())) {
336         Res = &CI->getValue();
337         return true;
338       }
339     if (V->getType()->isVectorTy())
340       if (const auto *C = dyn_cast<Constant>(V))
341         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
342           if (this->isValue(CI->getValue())) {
343             Res = &CI->getValue();
344             return true;
345           }
346 
347     return false;
348   }
349 };
350 
351 /// This helper class is used to match scalar and vector constants that
352 /// satisfy a specified predicate, and bind them to an APFloat.
353 /// Undefs are allowed in splat vector constants.
354 template <typename Predicate> struct apf_pred_ty : public Predicate {
355   const APFloat *&Res;
356 
357   apf_pred_ty(const APFloat *&R) : Res(R) {}
358 
359   template <typename ITy> bool match(ITy *V) {
360     if (const auto *CI = dyn_cast<ConstantFP>(V))
361       if (this->isValue(CI->getValue())) {
362         Res = &CI->getValue();
363         return true;
364       }
365     if (V->getType()->isVectorTy())
366       if (const auto *C = dyn_cast<Constant>(V))
367         if (auto *CI = dyn_cast_or_null<ConstantFP>(
368                 C->getSplatValue(/* AllowUndef */ true)))
369           if (this->isValue(CI->getValue())) {
370             Res = &CI->getValue();
371             return true;
372           }
373 
374     return false;
375   }
376 };
377 
378 ///////////////////////////////////////////////////////////////////////////////
379 //
380 // Encapsulate constant value queries for use in templated predicate matchers.
381 // This allows checking if constants match using compound predicates and works
382 // with vector constants, possibly with relaxed constraints. For example, ignore
383 // undef values.
384 //
385 ///////////////////////////////////////////////////////////////////////////////
386 
387 struct is_any_apint {
388   bool isValue(const APInt &C) { return true; }
389 };
390 /// Match an integer or vector with any integral constant.
391 /// For vectors, this includes constants with undefined elements.
392 inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
393   return cst_pred_ty<is_any_apint>();
394 }
395 
396 struct is_all_ones {
397   bool isValue(const APInt &C) { return C.isAllOnesValue(); }
398 };
399 /// Match an integer or vector with all bits set.
400 /// For vectors, this includes constants with undefined elements.
401 inline cst_pred_ty<is_all_ones> m_AllOnes() {
402   return cst_pred_ty<is_all_ones>();
403 }
404 
405 struct is_maxsignedvalue {
406   bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
407 };
408 /// Match an integer or vector with values having all bits except for the high
409 /// bit set (0x7f...).
410 /// For vectors, this includes constants with undefined elements.
411 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
412   return cst_pred_ty<is_maxsignedvalue>();
413 }
414 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
415   return V;
416 }
417 
418 struct is_negative {
419   bool isValue(const APInt &C) { return C.isNegative(); }
420 };
421 /// Match an integer or vector of negative values.
422 /// For vectors, this includes constants with undefined elements.
423 inline cst_pred_ty<is_negative> m_Negative() {
424   return cst_pred_ty<is_negative>();
425 }
426 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
427   return V;
428 }
429 
430 struct is_nonnegative {
431   bool isValue(const APInt &C) { return C.isNonNegative(); }
432 };
433 /// Match an integer or vector of non-negative values.
434 /// For vectors, this includes constants with undefined elements.
435 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
436   return cst_pred_ty<is_nonnegative>();
437 }
438 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
439   return V;
440 }
441 
442 struct is_strictlypositive {
443   bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
444 };
445 /// Match an integer or vector of strictly positive values.
446 /// For vectors, this includes constants with undefined elements.
447 inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
448   return cst_pred_ty<is_strictlypositive>();
449 }
450 inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
451   return V;
452 }
453 
454 struct is_nonpositive {
455   bool isValue(const APInt &C) { return C.isNonPositive(); }
456 };
457 /// Match an integer or vector of non-positive values.
458 /// For vectors, this includes constants with undefined elements.
459 inline cst_pred_ty<is_nonpositive> m_NonPositive() {
460   return cst_pred_ty<is_nonpositive>();
461 }
462 inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
463 
464 struct is_one {
465   bool isValue(const APInt &C) { return C.isOneValue(); }
466 };
467 /// Match an integer 1 or a vector with all elements equal to 1.
468 /// For vectors, this includes constants with undefined elements.
469 inline cst_pred_ty<is_one> m_One() {
470   return cst_pred_ty<is_one>();
471 }
472 
473 struct is_zero_int {
474   bool isValue(const APInt &C) { return C.isNullValue(); }
475 };
476 /// Match an integer 0 or a vector with all elements equal to 0.
477 /// For vectors, this includes constants with undefined elements.
478 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
479   return cst_pred_ty<is_zero_int>();
480 }
481 
482 struct is_zero {
483   template <typename ITy> bool match(ITy *V) {
484     auto *C = dyn_cast<Constant>(V);
485     // FIXME: this should be able to do something for scalable vectors
486     return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
487   }
488 };
489 /// Match any null constant or a vector with all elements equal to 0.
490 /// For vectors, this includes constants with undefined elements.
491 inline is_zero m_Zero() {
492   return is_zero();
493 }
494 
495 struct is_power2 {
496   bool isValue(const APInt &C) { return C.isPowerOf2(); }
497 };
498 /// Match an integer or vector power-of-2.
499 /// For vectors, this includes constants with undefined elements.
500 inline cst_pred_ty<is_power2> m_Power2() {
501   return cst_pred_ty<is_power2>();
502 }
503 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
504   return V;
505 }
506 
507 struct is_negated_power2 {
508   bool isValue(const APInt &C) { return (-C).isPowerOf2(); }
509 };
510 /// Match a integer or vector negated power-of-2.
511 /// For vectors, this includes constants with undefined elements.
512 inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
513   return cst_pred_ty<is_negated_power2>();
514 }
515 inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
516   return V;
517 }
518 
519 struct is_power2_or_zero {
520   bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
521 };
522 /// Match an integer or vector of 0 or power-of-2 values.
523 /// For vectors, this includes constants with undefined elements.
524 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
525   return cst_pred_ty<is_power2_or_zero>();
526 }
527 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
528   return V;
529 }
530 
531 struct is_sign_mask {
532   bool isValue(const APInt &C) { return C.isSignMask(); }
533 };
534 /// Match an integer or vector with only the sign bit(s) set.
535 /// For vectors, this includes constants with undefined elements.
536 inline cst_pred_ty<is_sign_mask> m_SignMask() {
537   return cst_pred_ty<is_sign_mask>();
538 }
539 
540 struct is_lowbit_mask {
541   bool isValue(const APInt &C) { return C.isMask(); }
542 };
543 /// Match an integer or vector with only the low bit(s) set.
544 /// For vectors, this includes constants with undefined elements.
545 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
546   return cst_pred_ty<is_lowbit_mask>();
547 }
548 
549 struct icmp_pred_with_threshold {
550   ICmpInst::Predicate Pred;
551   const APInt *Thr;
552   bool isValue(const APInt &C) {
553     switch (Pred) {
554     case ICmpInst::Predicate::ICMP_EQ:
555       return C.eq(*Thr);
556     case ICmpInst::Predicate::ICMP_NE:
557       return C.ne(*Thr);
558     case ICmpInst::Predicate::ICMP_UGT:
559       return C.ugt(*Thr);
560     case ICmpInst::Predicate::ICMP_UGE:
561       return C.uge(*Thr);
562     case ICmpInst::Predicate::ICMP_ULT:
563       return C.ult(*Thr);
564     case ICmpInst::Predicate::ICMP_ULE:
565       return C.ule(*Thr);
566     case ICmpInst::Predicate::ICMP_SGT:
567       return C.sgt(*Thr);
568     case ICmpInst::Predicate::ICMP_SGE:
569       return C.sge(*Thr);
570     case ICmpInst::Predicate::ICMP_SLT:
571       return C.slt(*Thr);
572     case ICmpInst::Predicate::ICMP_SLE:
573       return C.sle(*Thr);
574     default:
575       llvm_unreachable("Unhandled ICmp predicate");
576     }
577   }
578 };
579 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
580 /// to Threshold. For vectors, this includes constants with undefined elements.
581 inline cst_pred_ty<icmp_pred_with_threshold>
582 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
583   cst_pred_ty<icmp_pred_with_threshold> P;
584   P.Pred = Predicate;
585   P.Thr = &Threshold;
586   return P;
587 }
588 
589 struct is_nan {
590   bool isValue(const APFloat &C) { return C.isNaN(); }
591 };
592 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
593 /// For vectors, this includes constants with undefined elements.
594 inline cstfp_pred_ty<is_nan> m_NaN() {
595   return cstfp_pred_ty<is_nan>();
596 }
597 
598 struct is_nonnan {
599   bool isValue(const APFloat &C) { return !C.isNaN(); }
600 };
601 /// Match a non-NaN FP constant.
602 /// For vectors, this includes constants with undefined elements.
603 inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
604   return cstfp_pred_ty<is_nonnan>();
605 }
606 
607 struct is_inf {
608   bool isValue(const APFloat &C) { return C.isInfinity(); }
609 };
610 /// Match a positive or negative infinity FP constant.
611 /// For vectors, this includes constants with undefined elements.
612 inline cstfp_pred_ty<is_inf> m_Inf() {
613   return cstfp_pred_ty<is_inf>();
614 }
615 
616 struct is_noninf {
617   bool isValue(const APFloat &C) { return !C.isInfinity(); }
618 };
619 /// Match a non-infinity FP constant, i.e. finite or NaN.
620 /// For vectors, this includes constants with undefined elements.
621 inline cstfp_pred_ty<is_noninf> m_NonInf() {
622   return cstfp_pred_ty<is_noninf>();
623 }
624 
625 struct is_finite {
626   bool isValue(const APFloat &C) { return C.isFinite(); }
627 };
628 /// Match a finite FP constant, i.e. not infinity or NaN.
629 /// For vectors, this includes constants with undefined elements.
630 inline cstfp_pred_ty<is_finite> m_Finite() {
631   return cstfp_pred_ty<is_finite>();
632 }
633 inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
634 
635 struct is_finitenonzero {
636   bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
637 };
638 /// Match a finite non-zero FP constant.
639 /// For vectors, this includes constants with undefined elements.
640 inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
641   return cstfp_pred_ty<is_finitenonzero>();
642 }
643 inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
644   return V;
645 }
646 
647 struct is_any_zero_fp {
648   bool isValue(const APFloat &C) { return C.isZero(); }
649 };
650 /// Match a floating-point negative zero or positive zero.
651 /// For vectors, this includes constants with undefined elements.
652 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
653   return cstfp_pred_ty<is_any_zero_fp>();
654 }
655 
656 struct is_pos_zero_fp {
657   bool isValue(const APFloat &C) { return C.isPosZero(); }
658 };
659 /// Match a floating-point positive zero.
660 /// For vectors, this includes constants with undefined elements.
661 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
662   return cstfp_pred_ty<is_pos_zero_fp>();
663 }
664 
665 struct is_neg_zero_fp {
666   bool isValue(const APFloat &C) { return C.isNegZero(); }
667 };
668 /// Match a floating-point negative zero.
669 /// For vectors, this includes constants with undefined elements.
670 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
671   return cstfp_pred_ty<is_neg_zero_fp>();
672 }
673 
674 struct is_non_zero_fp {
675   bool isValue(const APFloat &C) { return C.isNonZero(); }
676 };
677 /// Match a floating-point non-zero.
678 /// For vectors, this includes constants with undefined elements.
679 inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
680   return cstfp_pred_ty<is_non_zero_fp>();
681 }
682 
683 ///////////////////////////////////////////////////////////////////////////////
684 
685 template <typename Class> struct bind_ty {
686   Class *&VR;
687 
688   bind_ty(Class *&V) : VR(V) {}
689 
690   template <typename ITy> bool match(ITy *V) {
691     if (auto *CV = dyn_cast<Class>(V)) {
692       VR = CV;
693       return true;
694     }
695     return false;
696   }
697 };
698 
699 /// Match a value, capturing it if we match.
700 inline bind_ty<Value> m_Value(Value *&V) { return V; }
701 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
702 
703 /// Match an instruction, capturing it if we match.
704 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
705 /// Match a unary operator, capturing it if we match.
706 inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
707 /// Match a binary operator, capturing it if we match.
708 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
709 /// Match a with overflow intrinsic, capturing it if we match.
710 inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; }
711 
712 /// Match a Constant, capturing the value if we match.
713 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
714 
715 /// Match a ConstantInt, capturing the value if we match.
716 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
717 
718 /// Match a ConstantFP, capturing the value if we match.
719 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
720 
721 /// Match a ConstantExpr, capturing the value if we match.
722 inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
723 
724 /// Match a basic block value, capturing it if we match.
725 inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
726 inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
727   return V;
728 }
729 
730 /// Match an arbitrary immediate Constant and ignore it.
731 inline match_combine_and<class_match<Constant>,
732                          match_unless<class_match<ConstantExpr>>>
733 m_ImmConstant() {
734   return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
735 }
736 
737 /// Match an immediate Constant, capturing the value if we match.
738 inline match_combine_and<bind_ty<Constant>,
739                          match_unless<class_match<ConstantExpr>>>
740 m_ImmConstant(Constant *&C) {
741   return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
742 }
743 
744 /// Match a specified Value*.
745 struct specificval_ty {
746   const Value *Val;
747 
748   specificval_ty(const Value *V) : Val(V) {}
749 
750   template <typename ITy> bool match(ITy *V) { return V == Val; }
751 };
752 
753 /// Match if we have a specific specified value.
754 inline specificval_ty m_Specific(const Value *V) { return V; }
755 
756 /// Stores a reference to the Value *, not the Value * itself,
757 /// thus can be used in commutative matchers.
758 template <typename Class> struct deferredval_ty {
759   Class *const &Val;
760 
761   deferredval_ty(Class *const &V) : Val(V) {}
762 
763   template <typename ITy> bool match(ITy *const V) { return V == Val; }
764 };
765 
766 /// A commutative-friendly version of m_Specific().
767 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
768 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
769   return V;
770 }
771 
772 /// Match a specified floating point value or vector of all elements of
773 /// that value.
774 struct specific_fpval {
775   double Val;
776 
777   specific_fpval(double V) : Val(V) {}
778 
779   template <typename ITy> bool match(ITy *V) {
780     if (const auto *CFP = dyn_cast<ConstantFP>(V))
781       return CFP->isExactlyValue(Val);
782     if (V->getType()->isVectorTy())
783       if (const auto *C = dyn_cast<Constant>(V))
784         if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
785           return CFP->isExactlyValue(Val);
786     return false;
787   }
788 };
789 
790 /// Match a specific floating point value or vector with all elements
791 /// equal to the value.
792 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
793 
794 /// Match a float 1.0 or vector with all elements equal to 1.0.
795 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
796 
797 struct bind_const_intval_ty {
798   uint64_t &VR;
799 
800   bind_const_intval_ty(uint64_t &V) : VR(V) {}
801 
802   template <typename ITy> bool match(ITy *V) {
803     if (const auto *CV = dyn_cast<ConstantInt>(V))
804       if (CV->getValue().ule(UINT64_MAX)) {
805         VR = CV->getZExtValue();
806         return true;
807       }
808     return false;
809   }
810 };
811 
812 /// Match a specified integer value or vector of all elements of that
813 /// value.
814 template <bool AllowUndefs>
815 struct specific_intval {
816   APInt Val;
817 
818   specific_intval(APInt V) : Val(std::move(V)) {}
819 
820   template <typename ITy> bool match(ITy *V) {
821     const auto *CI = dyn_cast<ConstantInt>(V);
822     if (!CI && V->getType()->isVectorTy())
823       if (const auto *C = dyn_cast<Constant>(V))
824         CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
825 
826     return CI && APInt::isSameValue(CI->getValue(), Val);
827   }
828 };
829 
830 /// Match a specific integer value or vector with all elements equal to
831 /// the value.
832 inline specific_intval<false> m_SpecificInt(APInt V) {
833   return specific_intval<false>(std::move(V));
834 }
835 
836 inline specific_intval<false> m_SpecificInt(uint64_t V) {
837   return m_SpecificInt(APInt(64, V));
838 }
839 
840 inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
841   return specific_intval<true>(std::move(V));
842 }
843 
844 inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
845   return m_SpecificIntAllowUndef(APInt(64, V));
846 }
847 
848 /// Match a ConstantInt and bind to its value.  This does not match
849 /// ConstantInts wider than 64-bits.
850 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
851 
852 /// Match a specified basic block value.
853 struct specific_bbval {
854   BasicBlock *Val;
855 
856   specific_bbval(BasicBlock *Val) : Val(Val) {}
857 
858   template <typename ITy> bool match(ITy *V) {
859     const auto *BB = dyn_cast<BasicBlock>(V);
860     return BB && BB == Val;
861   }
862 };
863 
864 /// Match a specific basic block value.
865 inline specific_bbval m_SpecificBB(BasicBlock *BB) {
866   return specific_bbval(BB);
867 }
868 
869 /// A commutative-friendly version of m_Specific().
870 inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
871   return BB;
872 }
873 inline deferredval_ty<const BasicBlock>
874 m_Deferred(const BasicBlock *const &BB) {
875   return BB;
876 }
877 
878 //===----------------------------------------------------------------------===//
879 // Matcher for any binary operator.
880 //
881 template <typename LHS_t, typename RHS_t, bool Commutable = false>
882 struct AnyBinaryOp_match {
883   LHS_t L;
884   RHS_t R;
885 
886   // The evaluation order is always stable, regardless of Commutability.
887   // The LHS is always matched first.
888   AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
889 
890   template <typename OpTy> bool match(OpTy *V) {
891     if (auto *I = dyn_cast<BinaryOperator>(V))
892       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
893              (Commutable && L.match(I->getOperand(1)) &&
894               R.match(I->getOperand(0)));
895     return false;
896   }
897 };
898 
899 template <typename LHS, typename RHS>
900 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
901   return AnyBinaryOp_match<LHS, RHS>(L, R);
902 }
903 
904 //===----------------------------------------------------------------------===//
905 // Matcher for any unary operator.
906 // TODO fuse unary, binary matcher into n-ary matcher
907 //
908 template <typename OP_t> struct AnyUnaryOp_match {
909   OP_t X;
910 
911   AnyUnaryOp_match(const OP_t &X) : X(X) {}
912 
913   template <typename OpTy> bool match(OpTy *V) {
914     if (auto *I = dyn_cast<UnaryOperator>(V))
915       return X.match(I->getOperand(0));
916     return false;
917   }
918 };
919 
920 template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
921   return AnyUnaryOp_match<OP_t>(X);
922 }
923 
924 //===----------------------------------------------------------------------===//
925 // Matchers for specific binary operators.
926 //
927 
928 template <typename LHS_t, typename RHS_t, unsigned Opcode,
929           bool Commutable = false>
930 struct BinaryOp_match {
931   LHS_t L;
932   RHS_t R;
933 
934   // The evaluation order is always stable, regardless of Commutability.
935   // The LHS is always matched first.
936   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
937 
938   template <typename OpTy> bool match(OpTy *V) {
939     if (V->getValueID() == Value::InstructionVal + Opcode) {
940       auto *I = cast<BinaryOperator>(V);
941       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
942              (Commutable && L.match(I->getOperand(1)) &&
943               R.match(I->getOperand(0)));
944     }
945     if (auto *CE = dyn_cast<ConstantExpr>(V))
946       return CE->getOpcode() == Opcode &&
947              ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
948               (Commutable && L.match(CE->getOperand(1)) &&
949                R.match(CE->getOperand(0))));
950     return false;
951   }
952 };
953 
954 template <typename LHS, typename RHS>
955 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
956                                                         const RHS &R) {
957   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
958 }
959 
960 template <typename LHS, typename RHS>
961 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
962                                                           const RHS &R) {
963   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
964 }
965 
966 template <typename LHS, typename RHS>
967 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
968                                                         const RHS &R) {
969   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
970 }
971 
972 template <typename LHS, typename RHS>
973 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
974                                                           const RHS &R) {
975   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
976 }
977 
978 template <typename Op_t> struct FNeg_match {
979   Op_t X;
980 
981   FNeg_match(const Op_t &Op) : X(Op) {}
982   template <typename OpTy> bool match(OpTy *V) {
983     auto *FPMO = dyn_cast<FPMathOperator>(V);
984     if (!FPMO) return false;
985 
986     if (FPMO->getOpcode() == Instruction::FNeg)
987       return X.match(FPMO->getOperand(0));
988 
989     if (FPMO->getOpcode() == Instruction::FSub) {
990       if (FPMO->hasNoSignedZeros()) {
991         // With 'nsz', any zero goes.
992         if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
993           return false;
994       } else {
995         // Without 'nsz', we need fsub -0.0, X exactly.
996         if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
997           return false;
998       }
999 
1000       return X.match(FPMO->getOperand(1));
1001     }
1002 
1003     return false;
1004   }
1005 };
1006 
1007 /// Match 'fneg X' as 'fsub -0.0, X'.
1008 template <typename OpTy>
1009 inline FNeg_match<OpTy>
1010 m_FNeg(const OpTy &X) {
1011   return FNeg_match<OpTy>(X);
1012 }
1013 
1014 /// Match 'fneg X' as 'fsub +-0.0, X'.
1015 template <typename RHS>
1016 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
1017 m_FNegNSZ(const RHS &X) {
1018   return m_FSub(m_AnyZeroFP(), X);
1019 }
1020 
1021 template <typename LHS, typename RHS>
1022 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1023                                                         const RHS &R) {
1024   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1025 }
1026 
1027 template <typename LHS, typename RHS>
1028 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1029                                                           const RHS &R) {
1030   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1031 }
1032 
1033 template <typename LHS, typename RHS>
1034 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1035                                                           const RHS &R) {
1036   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1037 }
1038 
1039 template <typename LHS, typename RHS>
1040 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1041                                                           const RHS &R) {
1042   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1043 }
1044 
1045 template <typename LHS, typename RHS>
1046 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1047                                                           const RHS &R) {
1048   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1049 }
1050 
1051 template <typename LHS, typename RHS>
1052 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1053                                                           const RHS &R) {
1054   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1055 }
1056 
1057 template <typename LHS, typename RHS>
1058 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1059                                                           const RHS &R) {
1060   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1061 }
1062 
1063 template <typename LHS, typename RHS>
1064 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1065                                                           const RHS &R) {
1066   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1067 }
1068 
1069 template <typename LHS, typename RHS>
1070 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1071                                                         const RHS &R) {
1072   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1073 }
1074 
1075 template <typename LHS, typename RHS>
1076 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1077                                                       const RHS &R) {
1078   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1079 }
1080 
1081 template <typename LHS, typename RHS>
1082 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1083                                                         const RHS &R) {
1084   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1085 }
1086 
1087 template <typename LHS, typename RHS>
1088 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1089                                                         const RHS &R) {
1090   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1091 }
1092 
1093 template <typename LHS, typename RHS>
1094 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1095                                                           const RHS &R) {
1096   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1097 }
1098 
1099 template <typename LHS, typename RHS>
1100 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1101                                                           const RHS &R) {
1102   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1103 }
1104 
1105 template <typename LHS_t, typename RHS_t, unsigned Opcode,
1106           unsigned WrapFlags = 0>
1107 struct OverflowingBinaryOp_match {
1108   LHS_t L;
1109   RHS_t R;
1110 
1111   OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1112       : L(LHS), R(RHS) {}
1113 
1114   template <typename OpTy> bool match(OpTy *V) {
1115     if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1116       if (Op->getOpcode() != Opcode)
1117         return false;
1118       if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
1119           !Op->hasNoUnsignedWrap())
1120         return false;
1121       if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
1122           !Op->hasNoSignedWrap())
1123         return false;
1124       return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1125     }
1126     return false;
1127   }
1128 };
1129 
1130 template <typename LHS, typename RHS>
1131 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1132                                  OverflowingBinaryOperator::NoSignedWrap>
1133 m_NSWAdd(const LHS &L, const RHS &R) {
1134   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1135                                    OverflowingBinaryOperator::NoSignedWrap>(
1136       L, R);
1137 }
1138 template <typename LHS, typename RHS>
1139 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1140                                  OverflowingBinaryOperator::NoSignedWrap>
1141 m_NSWSub(const LHS &L, const RHS &R) {
1142   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1143                                    OverflowingBinaryOperator::NoSignedWrap>(
1144       L, R);
1145 }
1146 template <typename LHS, typename RHS>
1147 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1148                                  OverflowingBinaryOperator::NoSignedWrap>
1149 m_NSWMul(const LHS &L, const RHS &R) {
1150   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1151                                    OverflowingBinaryOperator::NoSignedWrap>(
1152       L, R);
1153 }
1154 template <typename LHS, typename RHS>
1155 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1156                                  OverflowingBinaryOperator::NoSignedWrap>
1157 m_NSWShl(const LHS &L, const RHS &R) {
1158   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1159                                    OverflowingBinaryOperator::NoSignedWrap>(
1160       L, R);
1161 }
1162 
1163 template <typename LHS, typename RHS>
1164 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1165                                  OverflowingBinaryOperator::NoUnsignedWrap>
1166 m_NUWAdd(const LHS &L, const RHS &R) {
1167   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1168                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1169       L, R);
1170 }
1171 template <typename LHS, typename RHS>
1172 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1173                                  OverflowingBinaryOperator::NoUnsignedWrap>
1174 m_NUWSub(const LHS &L, const RHS &R) {
1175   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1176                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1177       L, R);
1178 }
1179 template <typename LHS, typename RHS>
1180 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1181                                  OverflowingBinaryOperator::NoUnsignedWrap>
1182 m_NUWMul(const LHS &L, const RHS &R) {
1183   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1184                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1185       L, R);
1186 }
1187 template <typename LHS, typename RHS>
1188 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1189                                  OverflowingBinaryOperator::NoUnsignedWrap>
1190 m_NUWShl(const LHS &L, const RHS &R) {
1191   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1192                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1193       L, R);
1194 }
1195 
1196 //===----------------------------------------------------------------------===//
1197 // Class that matches a group of binary opcodes.
1198 //
1199 template <typename LHS_t, typename RHS_t, typename Predicate>
1200 struct BinOpPred_match : Predicate {
1201   LHS_t L;
1202   RHS_t R;
1203 
1204   BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1205 
1206   template <typename OpTy> bool match(OpTy *V) {
1207     if (auto *I = dyn_cast<Instruction>(V))
1208       return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1209              R.match(I->getOperand(1));
1210     if (auto *CE = dyn_cast<ConstantExpr>(V))
1211       return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1212              R.match(CE->getOperand(1));
1213     return false;
1214   }
1215 };
1216 
1217 struct is_shift_op {
1218   bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1219 };
1220 
1221 struct is_right_shift_op {
1222   bool isOpType(unsigned Opcode) {
1223     return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1224   }
1225 };
1226 
1227 struct is_logical_shift_op {
1228   bool isOpType(unsigned Opcode) {
1229     return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1230   }
1231 };
1232 
1233 struct is_bitwiselogic_op {
1234   bool isOpType(unsigned Opcode) {
1235     return Instruction::isBitwiseLogicOp(Opcode);
1236   }
1237 };
1238 
1239 struct is_idiv_op {
1240   bool isOpType(unsigned Opcode) {
1241     return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1242   }
1243 };
1244 
1245 struct is_irem_op {
1246   bool isOpType(unsigned Opcode) {
1247     return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1248   }
1249 };
1250 
1251 /// Matches shift operations.
1252 template <typename LHS, typename RHS>
1253 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1254                                                       const RHS &R) {
1255   return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1256 }
1257 
1258 /// Matches logical shift operations.
1259 template <typename LHS, typename RHS>
1260 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1261                                                           const RHS &R) {
1262   return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1263 }
1264 
1265 /// Matches logical shift operations.
1266 template <typename LHS, typename RHS>
1267 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1268 m_LogicalShift(const LHS &L, const RHS &R) {
1269   return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1270 }
1271 
1272 /// Matches bitwise logic operations.
1273 template <typename LHS, typename RHS>
1274 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1275 m_BitwiseLogic(const LHS &L, const RHS &R) {
1276   return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1277 }
1278 
1279 /// Matches integer division operations.
1280 template <typename LHS, typename RHS>
1281 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1282                                                     const RHS &R) {
1283   return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1284 }
1285 
1286 /// Matches integer remainder operations.
1287 template <typename LHS, typename RHS>
1288 inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1289                                                     const RHS &R) {
1290   return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1291 }
1292 
1293 //===----------------------------------------------------------------------===//
1294 // Class that matches exact binary ops.
1295 //
1296 template <typename SubPattern_t> struct Exact_match {
1297   SubPattern_t SubPattern;
1298 
1299   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1300 
1301   template <typename OpTy> bool match(OpTy *V) {
1302     if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1303       return PEO->isExact() && SubPattern.match(V);
1304     return false;
1305   }
1306 };
1307 
1308 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1309   return SubPattern;
1310 }
1311 
1312 //===----------------------------------------------------------------------===//
1313 // Matchers for CmpInst classes
1314 //
1315 
1316 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1317           bool Commutable = false>
1318 struct CmpClass_match {
1319   PredicateTy &Predicate;
1320   LHS_t L;
1321   RHS_t R;
1322 
1323   // The evaluation order is always stable, regardless of Commutability.
1324   // The LHS is always matched first.
1325   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1326       : Predicate(Pred), L(LHS), R(RHS) {}
1327 
1328   template <typename OpTy> bool match(OpTy *V) {
1329     if (auto *I = dyn_cast<Class>(V)) {
1330       if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1331         Predicate = I->getPredicate();
1332         return true;
1333       } else if (Commutable && L.match(I->getOperand(1)) &&
1334            R.match(I->getOperand(0))) {
1335         Predicate = I->getSwappedPredicate();
1336         return true;
1337       }
1338     }
1339     return false;
1340   }
1341 };
1342 
1343 template <typename LHS, typename RHS>
1344 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1345 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1346   return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1347 }
1348 
1349 template <typename LHS, typename RHS>
1350 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1351 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1352   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1353 }
1354 
1355 template <typename LHS, typename RHS>
1356 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1357 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1358   return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1359 }
1360 
1361 //===----------------------------------------------------------------------===//
1362 // Matchers for instructions with a given opcode and number of operands.
1363 //
1364 
1365 /// Matches instructions with Opcode and three operands.
1366 template <typename T0, unsigned Opcode> struct OneOps_match {
1367   T0 Op1;
1368 
1369   OneOps_match(const T0 &Op1) : Op1(Op1) {}
1370 
1371   template <typename OpTy> bool match(OpTy *V) {
1372     if (V->getValueID() == Value::InstructionVal + Opcode) {
1373       auto *I = cast<Instruction>(V);
1374       return Op1.match(I->getOperand(0));
1375     }
1376     return false;
1377   }
1378 };
1379 
1380 /// Matches instructions with Opcode and three operands.
1381 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1382   T0 Op1;
1383   T1 Op2;
1384 
1385   TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1386 
1387   template <typename OpTy> bool match(OpTy *V) {
1388     if (V->getValueID() == Value::InstructionVal + Opcode) {
1389       auto *I = cast<Instruction>(V);
1390       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1391     }
1392     return false;
1393   }
1394 };
1395 
1396 /// Matches instructions with Opcode and three operands.
1397 template <typename T0, typename T1, typename T2, unsigned Opcode>
1398 struct ThreeOps_match {
1399   T0 Op1;
1400   T1 Op2;
1401   T2 Op3;
1402 
1403   ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1404       : Op1(Op1), Op2(Op2), Op3(Op3) {}
1405 
1406   template <typename OpTy> bool match(OpTy *V) {
1407     if (V->getValueID() == Value::InstructionVal + Opcode) {
1408       auto *I = cast<Instruction>(V);
1409       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1410              Op3.match(I->getOperand(2));
1411     }
1412     return false;
1413   }
1414 };
1415 
1416 /// Matches SelectInst.
1417 template <typename Cond, typename LHS, typename RHS>
1418 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1419 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1420   return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1421 }
1422 
1423 /// This matches a select of two constants, e.g.:
1424 /// m_SelectCst<-1, 0>(m_Value(V))
1425 template <int64_t L, int64_t R, typename Cond>
1426 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1427                       Instruction::Select>
1428 m_SelectCst(const Cond &C) {
1429   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1430 }
1431 
1432 /// Matches FreezeInst.
1433 template <typename OpTy>
1434 inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1435   return OneOps_match<OpTy, Instruction::Freeze>(Op);
1436 }
1437 
1438 /// Matches InsertElementInst.
1439 template <typename Val_t, typename Elt_t, typename Idx_t>
1440 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1441 m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1442   return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1443       Val, Elt, Idx);
1444 }
1445 
1446 /// Matches ExtractElementInst.
1447 template <typename Val_t, typename Idx_t>
1448 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1449 m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1450   return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1451 }
1452 
1453 /// Matches shuffle.
1454 template <typename T0, typename T1, typename T2> struct Shuffle_match {
1455   T0 Op1;
1456   T1 Op2;
1457   T2 Mask;
1458 
1459   Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1460       : Op1(Op1), Op2(Op2), Mask(Mask) {}
1461 
1462   template <typename OpTy> bool match(OpTy *V) {
1463     if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1464       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1465              Mask.match(I->getShuffleMask());
1466     }
1467     return false;
1468   }
1469 };
1470 
1471 struct m_Mask {
1472   ArrayRef<int> &MaskRef;
1473   m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1474   bool match(ArrayRef<int> Mask) {
1475     MaskRef = Mask;
1476     return true;
1477   }
1478 };
1479 
1480 struct m_ZeroMask {
1481   bool match(ArrayRef<int> Mask) {
1482     return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1483   }
1484 };
1485 
1486 struct m_SpecificMask {
1487   ArrayRef<int> &MaskRef;
1488   m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1489   bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1490 };
1491 
1492 struct m_SplatOrUndefMask {
1493   int &SplatIndex;
1494   m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
1495   bool match(ArrayRef<int> Mask) {
1496     auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
1497     if (First == Mask.end())
1498       return false;
1499     SplatIndex = *First;
1500     return all_of(Mask,
1501                   [First](int Elem) { return Elem == *First || Elem == -1; });
1502   }
1503 };
1504 
1505 /// Matches ShuffleVectorInst independently of mask value.
1506 template <typename V1_t, typename V2_t>
1507 inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
1508 m_Shuffle(const V1_t &v1, const V2_t &v2) {
1509   return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1510 }
1511 
1512 template <typename V1_t, typename V2_t, typename Mask_t>
1513 inline Shuffle_match<V1_t, V2_t, Mask_t>
1514 m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1515   return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1516 }
1517 
1518 /// Matches LoadInst.
1519 template <typename OpTy>
1520 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1521   return OneOps_match<OpTy, Instruction::Load>(Op);
1522 }
1523 
1524 /// Matches StoreInst.
1525 template <typename ValueOpTy, typename PointerOpTy>
1526 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1527 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1528   return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1529                                                                   PointerOp);
1530 }
1531 
1532 //===----------------------------------------------------------------------===//
1533 // Matchers for CastInst classes
1534 //
1535 
1536 template <typename Op_t, unsigned Opcode> struct CastClass_match {
1537   Op_t Op;
1538 
1539   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1540 
1541   template <typename OpTy> bool match(OpTy *V) {
1542     if (auto *O = dyn_cast<Operator>(V))
1543       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1544     return false;
1545   }
1546 };
1547 
1548 /// Matches BitCast.
1549 template <typename OpTy>
1550 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1551   return CastClass_match<OpTy, Instruction::BitCast>(Op);
1552 }
1553 
1554 /// Matches PtrToInt.
1555 template <typename OpTy>
1556 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1557   return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1558 }
1559 
1560 /// Matches IntToPtr.
1561 template <typename OpTy>
1562 inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) {
1563   return CastClass_match<OpTy, Instruction::IntToPtr>(Op);
1564 }
1565 
1566 /// Matches Trunc.
1567 template <typename OpTy>
1568 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1569   return CastClass_match<OpTy, Instruction::Trunc>(Op);
1570 }
1571 
1572 template <typename OpTy>
1573 inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
1574 m_TruncOrSelf(const OpTy &Op) {
1575   return m_CombineOr(m_Trunc(Op), Op);
1576 }
1577 
1578 /// Matches SExt.
1579 template <typename OpTy>
1580 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1581   return CastClass_match<OpTy, Instruction::SExt>(Op);
1582 }
1583 
1584 /// Matches ZExt.
1585 template <typename OpTy>
1586 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1587   return CastClass_match<OpTy, Instruction::ZExt>(Op);
1588 }
1589 
1590 template <typename OpTy>
1591 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
1592 m_ZExtOrSelf(const OpTy &Op) {
1593   return m_CombineOr(m_ZExt(Op), Op);
1594 }
1595 
1596 template <typename OpTy>
1597 inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
1598 m_SExtOrSelf(const OpTy &Op) {
1599   return m_CombineOr(m_SExt(Op), Op);
1600 }
1601 
1602 template <typename OpTy>
1603 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1604                         CastClass_match<OpTy, Instruction::SExt>>
1605 m_ZExtOrSExt(const OpTy &Op) {
1606   return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1607 }
1608 
1609 template <typename OpTy>
1610 inline match_combine_or<
1611     match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1612                      CastClass_match<OpTy, Instruction::SExt>>,
1613     OpTy>
1614 m_ZExtOrSExtOrSelf(const OpTy &Op) {
1615   return m_CombineOr(m_ZExtOrSExt(Op), Op);
1616 }
1617 
1618 template <typename OpTy>
1619 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1620   return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1621 }
1622 
1623 template <typename OpTy>
1624 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1625   return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1626 }
1627 
1628 template <typename OpTy>
1629 inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
1630   return CastClass_match<OpTy, Instruction::FPToUI>(Op);
1631 }
1632 
1633 template <typename OpTy>
1634 inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
1635   return CastClass_match<OpTy, Instruction::FPToSI>(Op);
1636 }
1637 
1638 template <typename OpTy>
1639 inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1640   return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1641 }
1642 
1643 template <typename OpTy>
1644 inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1645   return CastClass_match<OpTy, Instruction::FPExt>(Op);
1646 }
1647 
1648 //===----------------------------------------------------------------------===//
1649 // Matchers for control flow.
1650 //
1651 
1652 struct br_match {
1653   BasicBlock *&Succ;
1654 
1655   br_match(BasicBlock *&Succ) : Succ(Succ) {}
1656 
1657   template <typename OpTy> bool match(OpTy *V) {
1658     if (auto *BI = dyn_cast<BranchInst>(V))
1659       if (BI->isUnconditional()) {
1660         Succ = BI->getSuccessor(0);
1661         return true;
1662       }
1663     return false;
1664   }
1665 };
1666 
1667 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1668 
1669 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1670 struct brc_match {
1671   Cond_t Cond;
1672   TrueBlock_t T;
1673   FalseBlock_t F;
1674 
1675   brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1676       : Cond(C), T(t), F(f) {}
1677 
1678   template <typename OpTy> bool match(OpTy *V) {
1679     if (auto *BI = dyn_cast<BranchInst>(V))
1680       if (BI->isConditional() && Cond.match(BI->getCondition()))
1681         return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1682     return false;
1683   }
1684 };
1685 
1686 template <typename Cond_t>
1687 inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
1688 m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1689   return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1690       C, m_BasicBlock(T), m_BasicBlock(F));
1691 }
1692 
1693 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1694 inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
1695 m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1696   return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1697 }
1698 
1699 //===----------------------------------------------------------------------===//
1700 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1701 //
1702 
1703 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1704           bool Commutable = false>
1705 struct MaxMin_match {
1706   LHS_t L;
1707   RHS_t R;
1708 
1709   // The evaluation order is always stable, regardless of Commutability.
1710   // The LHS is always matched first.
1711   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1712 
1713   template <typename OpTy> bool match(OpTy *V) {
1714     if (auto *II = dyn_cast<IntrinsicInst>(V)) {
1715       Intrinsic::ID IID = II->getIntrinsicID();
1716       if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
1717           (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
1718           (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
1719           (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
1720         Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1721         return (L.match(LHS) && R.match(RHS)) ||
1722                (Commutable && L.match(RHS) && R.match(LHS));
1723       }
1724     }
1725     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1726     auto *SI = dyn_cast<SelectInst>(V);
1727     if (!SI)
1728       return false;
1729     auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1730     if (!Cmp)
1731       return false;
1732     // At this point we have a select conditioned on a comparison.  Check that
1733     // it is the values returned by the select that are being compared.
1734     Value *TrueVal = SI->getTrueValue();
1735     Value *FalseVal = SI->getFalseValue();
1736     Value *LHS = Cmp->getOperand(0);
1737     Value *RHS = Cmp->getOperand(1);
1738     if ((TrueVal != LHS || FalseVal != RHS) &&
1739         (TrueVal != RHS || FalseVal != LHS))
1740       return false;
1741     typename CmpInst_t::Predicate Pred =
1742         LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1743     // Does "(x pred y) ? x : y" represent the desired max/min operation?
1744     if (!Pred_t::match(Pred))
1745       return false;
1746     // It does!  Bind the operands.
1747     return (L.match(LHS) && R.match(RHS)) ||
1748            (Commutable && L.match(RHS) && R.match(LHS));
1749   }
1750 };
1751 
1752 /// Helper class for identifying signed max predicates.
1753 struct smax_pred_ty {
1754   static bool match(ICmpInst::Predicate Pred) {
1755     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1756   }
1757 };
1758 
1759 /// Helper class for identifying signed min predicates.
1760 struct smin_pred_ty {
1761   static bool match(ICmpInst::Predicate Pred) {
1762     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1763   }
1764 };
1765 
1766 /// Helper class for identifying unsigned max predicates.
1767 struct umax_pred_ty {
1768   static bool match(ICmpInst::Predicate Pred) {
1769     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1770   }
1771 };
1772 
1773 /// Helper class for identifying unsigned min predicates.
1774 struct umin_pred_ty {
1775   static bool match(ICmpInst::Predicate Pred) {
1776     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1777   }
1778 };
1779 
1780 /// Helper class for identifying ordered max predicates.
1781 struct ofmax_pred_ty {
1782   static bool match(FCmpInst::Predicate Pred) {
1783     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1784   }
1785 };
1786 
1787 /// Helper class for identifying ordered min predicates.
1788 struct ofmin_pred_ty {
1789   static bool match(FCmpInst::Predicate Pred) {
1790     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1791   }
1792 };
1793 
1794 /// Helper class for identifying unordered max predicates.
1795 struct ufmax_pred_ty {
1796   static bool match(FCmpInst::Predicate Pred) {
1797     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1798   }
1799 };
1800 
1801 /// Helper class for identifying unordered min predicates.
1802 struct ufmin_pred_ty {
1803   static bool match(FCmpInst::Predicate Pred) {
1804     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1805   }
1806 };
1807 
1808 template <typename LHS, typename RHS>
1809 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1810                                                              const RHS &R) {
1811   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1812 }
1813 
1814 template <typename LHS, typename RHS>
1815 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1816                                                              const RHS &R) {
1817   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1818 }
1819 
1820 template <typename LHS, typename RHS>
1821 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1822                                                              const RHS &R) {
1823   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1824 }
1825 
1826 template <typename LHS, typename RHS>
1827 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1828                                                              const RHS &R) {
1829   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1830 }
1831 
1832 template <typename LHS, typename RHS>
1833 inline match_combine_or<
1834     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
1835                      MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
1836     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
1837                      MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
1838 m_MaxOrMin(const LHS &L, const RHS &R) {
1839   return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
1840                      m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
1841 }
1842 
1843 /// Match an 'ordered' floating point maximum function.
1844 /// Floating point has one special value 'NaN'. Therefore, there is no total
1845 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1846 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1847 /// semantics. In the presence of 'NaN' we have to preserve the original
1848 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1849 ///
1850 ///                         max(L, R)  iff L and R are not NaN
1851 ///  m_OrdFMax(L, R) =      R          iff L or R are NaN
1852 template <typename LHS, typename RHS>
1853 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1854                                                                  const RHS &R) {
1855   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1856 }
1857 
1858 /// Match an 'ordered' floating point minimum function.
1859 /// Floating point has one special value 'NaN'. Therefore, there is no total
1860 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1861 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1862 /// semantics. In the presence of 'NaN' we have to preserve the original
1863 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1864 ///
1865 ///                         min(L, R)  iff L and R are not NaN
1866 ///  m_OrdFMin(L, R) =      R          iff L or R are NaN
1867 template <typename LHS, typename RHS>
1868 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1869                                                                  const RHS &R) {
1870   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1871 }
1872 
1873 /// Match an 'unordered' floating point maximum function.
1874 /// Floating point has one special value 'NaN'. Therefore, there is no total
1875 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1876 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1877 /// semantics. In the presence of 'NaN' we have to preserve the original
1878 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1879 ///
1880 ///                         max(L, R)  iff L and R are not NaN
1881 ///  m_UnordFMax(L, R) =    L          iff L or R are NaN
1882 template <typename LHS, typename RHS>
1883 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1884 m_UnordFMax(const LHS &L, const RHS &R) {
1885   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1886 }
1887 
1888 /// Match an 'unordered' floating point minimum function.
1889 /// Floating point has one special value 'NaN'. Therefore, there is no total
1890 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1891 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1892 /// semantics. In the presence of 'NaN' we have to preserve the original
1893 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1894 ///
1895 ///                          min(L, R)  iff L and R are not NaN
1896 ///  m_UnordFMin(L, R) =     L          iff L or R are NaN
1897 template <typename LHS, typename RHS>
1898 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1899 m_UnordFMin(const LHS &L, const RHS &R) {
1900   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1901 }
1902 
1903 //===----------------------------------------------------------------------===//
1904 // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
1905 // Note that S might be matched to other instructions than AddInst.
1906 //
1907 
1908 template <typename LHS_t, typename RHS_t, typename Sum_t>
1909 struct UAddWithOverflow_match {
1910   LHS_t L;
1911   RHS_t R;
1912   Sum_t S;
1913 
1914   UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1915       : L(L), R(R), S(S) {}
1916 
1917   template <typename OpTy> bool match(OpTy *V) {
1918     Value *ICmpLHS, *ICmpRHS;
1919     ICmpInst::Predicate Pred;
1920     if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1921       return false;
1922 
1923     Value *AddLHS, *AddRHS;
1924     auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1925 
1926     // (a + b) u< a, (a + b) u< b
1927     if (Pred == ICmpInst::ICMP_ULT)
1928       if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1929         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1930 
1931     // a >u (a + b), b >u (a + b)
1932     if (Pred == ICmpInst::ICMP_UGT)
1933       if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1934         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1935 
1936     Value *Op1;
1937     auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
1938     // (a ^ -1) <u b
1939     if (Pred == ICmpInst::ICMP_ULT) {
1940       if (XorExpr.match(ICmpLHS))
1941         return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
1942     }
1943     //  b > u (a ^ -1)
1944     if (Pred == ICmpInst::ICMP_UGT) {
1945       if (XorExpr.match(ICmpRHS))
1946         return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
1947     }
1948 
1949     // Match special-case for increment-by-1.
1950     if (Pred == ICmpInst::ICMP_EQ) {
1951       // (a + 1) == 0
1952       // (1 + a) == 0
1953       if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1954           (m_One().match(AddLHS) || m_One().match(AddRHS)))
1955         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1956       // 0 == (a + 1)
1957       // 0 == (1 + a)
1958       if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
1959           (m_One().match(AddLHS) || m_One().match(AddRHS)))
1960         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1961     }
1962 
1963     return false;
1964   }
1965 };
1966 
1967 /// Match an icmp instruction checking for unsigned overflow on addition.
1968 ///
1969 /// S is matched to the addition whose result is being checked for overflow, and
1970 /// L and R are matched to the LHS and RHS of S.
1971 template <typename LHS_t, typename RHS_t, typename Sum_t>
1972 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
1973 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1974   return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1975 }
1976 
1977 template <typename Opnd_t> struct Argument_match {
1978   unsigned OpI;
1979   Opnd_t Val;
1980 
1981   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1982 
1983   template <typename OpTy> bool match(OpTy *V) {
1984     // FIXME: Should likely be switched to use `CallBase`.
1985     if (const auto *CI = dyn_cast<CallInst>(V))
1986       return Val.match(CI->getArgOperand(OpI));
1987     return false;
1988   }
1989 };
1990 
1991 /// Match an argument.
1992 template <unsigned OpI, typename Opnd_t>
1993 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1994   return Argument_match<Opnd_t>(OpI, Op);
1995 }
1996 
1997 /// Intrinsic matchers.
1998 struct IntrinsicID_match {
1999   unsigned ID;
2000 
2001   IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2002 
2003   template <typename OpTy> bool match(OpTy *V) {
2004     if (const auto *CI = dyn_cast<CallInst>(V))
2005       if (const auto *F = CI->getCalledFunction())
2006         return F->getIntrinsicID() == ID;
2007     return false;
2008   }
2009 };
2010 
2011 /// Intrinsic matches are combinations of ID matchers, and argument
2012 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
2013 /// them with lower arity matchers. Here's some convenient typedefs for up to
2014 /// several arguments, and more can be added as needed
2015 template <typename T0 = void, typename T1 = void, typename T2 = void,
2016           typename T3 = void, typename T4 = void, typename T5 = void,
2017           typename T6 = void, typename T7 = void, typename T8 = void,
2018           typename T9 = void, typename T10 = void>
2019 struct m_Intrinsic_Ty;
2020 template <typename T0> struct m_Intrinsic_Ty<T0> {
2021   using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2022 };
2023 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2024   using Ty =
2025       match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2026 };
2027 template <typename T0, typename T1, typename T2>
2028 struct m_Intrinsic_Ty<T0, T1, T2> {
2029   using Ty =
2030       match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2031                         Argument_match<T2>>;
2032 };
2033 template <typename T0, typename T1, typename T2, typename T3>
2034 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2035   using Ty =
2036       match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2037                         Argument_match<T3>>;
2038 };
2039 
2040 template <typename T0, typename T1, typename T2, typename T3, typename T4>
2041 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2042   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2043                                Argument_match<T4>>;
2044 };
2045 
2046 template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
2047 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2048   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2049                                Argument_match<T5>>;
2050 };
2051 
2052 /// Match intrinsic calls like this:
2053 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2054 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2055   return IntrinsicID_match(IntrID);
2056 }
2057 
2058 template <Intrinsic::ID IntrID, typename T0>
2059 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2060   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2061 }
2062 
2063 template <Intrinsic::ID IntrID, typename T0, typename T1>
2064 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2065                                                        const T1 &Op1) {
2066   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2067 }
2068 
2069 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2070 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2071 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2072   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2073 }
2074 
2075 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2076           typename T3>
2077 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2078 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2079   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2080 }
2081 
2082 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2083           typename T3, typename T4>
2084 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2085 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2086             const T4 &Op4) {
2087   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2088                       m_Argument<4>(Op4));
2089 }
2090 
2091 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2092           typename T3, typename T4, typename T5>
2093 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2094 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2095             const T4 &Op4, const T5 &Op5) {
2096   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2097                       m_Argument<5>(Op5));
2098 }
2099 
2100 // Helper intrinsic matching specializations.
2101 template <typename Opnd0>
2102 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2103   return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2104 }
2105 
2106 template <typename Opnd0>
2107 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2108   return m_Intrinsic<Intrinsic::bswap>(Op0);
2109 }
2110 
2111 template <typename Opnd0>
2112 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2113   return m_Intrinsic<Intrinsic::fabs>(Op0);
2114 }
2115 
2116 template <typename Opnd0>
2117 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2118   return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2119 }
2120 
2121 template <typename Opnd0, typename Opnd1>
2122 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2123                                                         const Opnd1 &Op1) {
2124   return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2125 }
2126 
2127 template <typename Opnd0, typename Opnd1>
2128 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2129                                                         const Opnd1 &Op1) {
2130   return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2131 }
2132 
2133 template <typename Opnd0, typename Opnd1, typename Opnd2>
2134 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2135 m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2136   return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2137 }
2138 
2139 template <typename Opnd0, typename Opnd1, typename Opnd2>
2140 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2141 m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2142   return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2143 }
2144 
2145 //===----------------------------------------------------------------------===//
2146 // Matchers for two-operands operators with the operators in either order
2147 //
2148 
2149 /// Matches a BinaryOperator with LHS and RHS in either order.
2150 template <typename LHS, typename RHS>
2151 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2152   return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2153 }
2154 
2155 /// Matches an ICmp with a predicate over LHS and RHS in either order.
2156 /// Swaps the predicate if operands are commuted.
2157 template <typename LHS, typename RHS>
2158 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2159 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2160   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2161                                                                        R);
2162 }
2163 
2164 /// Matches a Add with LHS and RHS in either order.
2165 template <typename LHS, typename RHS>
2166 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2167                                                                 const RHS &R) {
2168   return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2169 }
2170 
2171 /// Matches a Mul with LHS and RHS in either order.
2172 template <typename LHS, typename RHS>
2173 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2174                                                                 const RHS &R) {
2175   return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2176 }
2177 
2178 /// Matches an And with LHS and RHS in either order.
2179 template <typename LHS, typename RHS>
2180 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2181                                                                 const RHS &R) {
2182   return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2183 }
2184 
2185 /// Matches an Or with LHS and RHS in either order.
2186 template <typename LHS, typename RHS>
2187 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2188                                                               const RHS &R) {
2189   return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2190 }
2191 
2192 /// Matches an Xor with LHS and RHS in either order.
2193 template <typename LHS, typename RHS>
2194 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2195                                                                 const RHS &R) {
2196   return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2197 }
2198 
2199 /// Matches a 'Neg' as 'sub 0, V'.
2200 template <typename ValTy>
2201 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2202 m_Neg(const ValTy &V) {
2203   return m_Sub(m_ZeroInt(), V);
2204 }
2205 
2206 /// Matches a 'Neg' as 'sub nsw 0, V'.
2207 template <typename ValTy>
2208 inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2209                                  Instruction::Sub,
2210                                  OverflowingBinaryOperator::NoSignedWrap>
2211 m_NSWNeg(const ValTy &V) {
2212   return m_NSWSub(m_ZeroInt(), V);
2213 }
2214 
2215 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2216 template <typename ValTy>
2217 inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
2218 m_Not(const ValTy &V) {
2219   return m_c_Xor(V, m_AllOnes());
2220 }
2221 
2222 /// Matches an SMin with LHS and RHS in either order.
2223 template <typename LHS, typename RHS>
2224 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2225 m_c_SMin(const LHS &L, const RHS &R) {
2226   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2227 }
2228 /// Matches an SMax with LHS and RHS in either order.
2229 template <typename LHS, typename RHS>
2230 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2231 m_c_SMax(const LHS &L, const RHS &R) {
2232   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2233 }
2234 /// Matches a UMin with LHS and RHS in either order.
2235 template <typename LHS, typename RHS>
2236 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2237 m_c_UMin(const LHS &L, const RHS &R) {
2238   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2239 }
2240 /// Matches a UMax with LHS and RHS in either order.
2241 template <typename LHS, typename RHS>
2242 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2243 m_c_UMax(const LHS &L, const RHS &R) {
2244   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2245 }
2246 
2247 template <typename LHS, typename RHS>
2248 inline match_combine_or<
2249     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2250                      MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2251     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2252                      MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2253 m_c_MaxOrMin(const LHS &L, const RHS &R) {
2254   return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2255                      m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2256 }
2257 
2258 /// Matches FAdd with LHS and RHS in either order.
2259 template <typename LHS, typename RHS>
2260 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2261 m_c_FAdd(const LHS &L, const RHS &R) {
2262   return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2263 }
2264 
2265 /// Matches FMul with LHS and RHS in either order.
2266 template <typename LHS, typename RHS>
2267 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2268 m_c_FMul(const LHS &L, const RHS &R) {
2269   return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2270 }
2271 
2272 template <typename Opnd_t> struct Signum_match {
2273   Opnd_t Val;
2274   Signum_match(const Opnd_t &V) : Val(V) {}
2275 
2276   template <typename OpTy> bool match(OpTy *V) {
2277     unsigned TypeSize = V->getType()->getScalarSizeInBits();
2278     if (TypeSize == 0)
2279       return false;
2280 
2281     unsigned ShiftWidth = TypeSize - 1;
2282     Value *OpL = nullptr, *OpR = nullptr;
2283 
2284     // This is the representation of signum we match:
2285     //
2286     //  signum(x) == (x >> 63) | (-x >>u 63)
2287     //
2288     // An i1 value is its own signum, so it's correct to match
2289     //
2290     //  signum(x) == (x >> 0)  | (-x >>u 0)
2291     //
2292     // for i1 values.
2293 
2294     auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2295     auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2296     auto Signum = m_Or(LHS, RHS);
2297 
2298     return Signum.match(V) && OpL == OpR && Val.match(OpL);
2299   }
2300 };
2301 
2302 /// Matches a signum pattern.
2303 ///
2304 /// signum(x) =
2305 ///      x >  0  ->  1
2306 ///      x == 0  ->  0
2307 ///      x <  0  -> -1
2308 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2309   return Signum_match<Val_t>(V);
2310 }
2311 
2312 template <int Ind, typename Opnd_t> struct ExtractValue_match {
2313   Opnd_t Val;
2314   ExtractValue_match(const Opnd_t &V) : Val(V) {}
2315 
2316   template <typename OpTy> bool match(OpTy *V) {
2317     if (auto *I = dyn_cast<ExtractValueInst>(V))
2318       return I->getNumIndices() == 1 && I->getIndices()[0] == Ind &&
2319              Val.match(I->getAggregateOperand());
2320     return false;
2321   }
2322 };
2323 
2324 /// Match a single index ExtractValue instruction.
2325 /// For example m_ExtractValue<1>(...)
2326 template <int Ind, typename Val_t>
2327 inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2328   return ExtractValue_match<Ind, Val_t>(V);
2329 }
2330 
2331 /// Matcher for a single index InsertValue instruction.
2332 template <int Ind, typename T0, typename T1> struct InsertValue_match {
2333   T0 Op0;
2334   T1 Op1;
2335 
2336   InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2337 
2338   template <typename OpTy> bool match(OpTy *V) {
2339     if (auto *I = dyn_cast<InsertValueInst>(V)) {
2340       return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2341              I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2342     }
2343     return false;
2344   }
2345 };
2346 
2347 /// Matches a single index InsertValue instruction.
2348 template <int Ind, typename Val_t, typename Elt_t>
2349 inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2350                                                           const Elt_t &Elt) {
2351   return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2352 }
2353 
2354 /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2355 /// the constant expression
2356 ///  `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2357 /// under the right conditions determined by DataLayout.
2358 struct VScaleVal_match {
2359 private:
2360   template <typename Base, typename Offset>
2361   inline BinaryOp_match<Base, Offset, Instruction::GetElementPtr>
2362   m_OffsetGep(const Base &B, const Offset &O) {
2363     return BinaryOp_match<Base, Offset, Instruction::GetElementPtr>(B, O);
2364   }
2365 
2366 public:
2367   const DataLayout &DL;
2368   VScaleVal_match(const DataLayout &DL) : DL(DL) {}
2369 
2370   template <typename ITy> bool match(ITy *V) {
2371     if (m_Intrinsic<Intrinsic::vscale>().match(V))
2372       return true;
2373 
2374     if (m_PtrToInt(m_OffsetGep(m_Zero(), m_SpecificInt(1))).match(V)) {
2375       Type *PtrTy = cast<Operator>(V)->getOperand(0)->getType();
2376       auto *DerefTy = PtrTy->getPointerElementType();
2377       if (isa<ScalableVectorType>(DerefTy) &&
2378           DL.getTypeAllocSizeInBits(DerefTy).getKnownMinSize() == 8)
2379         return true;
2380     }
2381 
2382     return false;
2383   }
2384 };
2385 
2386 inline VScaleVal_match m_VScale(const DataLayout &DL) {
2387   return VScaleVal_match(DL);
2388 }
2389 
2390 template <typename LHS, typename RHS, unsigned Opcode>
2391 struct LogicalOp_match {
2392   LHS L;
2393   RHS R;
2394 
2395   LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2396 
2397   template <typename T> bool match(T *V) {
2398     if (auto *I = dyn_cast<Instruction>(V)) {
2399       if (!I->getType()->isIntOrIntVectorTy(1))
2400         return false;
2401 
2402       if (I->getOpcode() == Opcode && L.match(I->getOperand(0)) &&
2403           R.match(I->getOperand(1)))
2404         return true;
2405 
2406       if (auto *SI = dyn_cast<SelectInst>(I)) {
2407         if (Opcode == Instruction::And) {
2408           if (const auto *C = dyn_cast<Constant>(SI->getFalseValue()))
2409             if (C->isNullValue() && L.match(SI->getCondition()) &&
2410                 R.match(SI->getTrueValue()))
2411               return true;
2412         } else {
2413           assert(Opcode == Instruction::Or);
2414           if (const auto *C = dyn_cast<Constant>(SI->getTrueValue()))
2415             if (C->isOneValue() && L.match(SI->getCondition()) &&
2416                 R.match(SI->getFalseValue()))
2417               return true;
2418         }
2419       }
2420     }
2421 
2422     return false;
2423   }
2424 };
2425 
2426 /// Matches L && R either in the form of L & R or L ? R : false.
2427 /// Note that the latter form is poison-blocking.
2428 template <typename LHS, typename RHS>
2429 inline LogicalOp_match<LHS, RHS, Instruction::And>
2430 m_LogicalAnd(const LHS &L, const RHS &R) {
2431   return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2432 }
2433 
2434 /// Matches L || R either in the form of L | R or L ? true : R.
2435 /// Note that the latter form is poison-blocking.
2436 template <typename LHS, typename RHS>
2437 inline LogicalOp_match<LHS, RHS, Instruction::Or>
2438 m_LogicalOr(const LHS &L, const RHS &R) {
2439   return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2440 }
2441 
2442 } // end namespace PatternMatch
2443 } // end namespace llvm
2444 
2445 #endif // LLVM_IR_PATTERNMATCH_H
2446