xref: /freebsd/contrib/llvm-project/llvm/include/llvm/IR/PatternMatch.h (revision 9dba64be9536c28e4800e06512b7f29b43ade345)
1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
15 //
16 //  Value *Exp = ...
17 //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
18 //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 //    ... Pattern is matched and variables are bound ...
21 //  }
22 //
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
30 
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/Casting.h"
42 #include <cstdint>
43 
44 namespace llvm {
45 namespace PatternMatch {
46 
47 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
48   return const_cast<Pattern &>(P).match(V);
49 }
50 
51 template <typename SubPattern_t> struct OneUse_match {
52   SubPattern_t SubPattern;
53 
54   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
55 
56   template <typename OpTy> bool match(OpTy *V) {
57     return V->hasOneUse() && SubPattern.match(V);
58   }
59 };
60 
61 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
62   return SubPattern;
63 }
64 
65 template <typename Class> struct class_match {
66   template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
67 };
68 
69 /// Match an arbitrary value and ignore it.
70 inline class_match<Value> m_Value() { return class_match<Value>(); }
71 
72 /// Match an arbitrary binary operation and ignore it.
73 inline class_match<BinaryOperator> m_BinOp() {
74   return class_match<BinaryOperator>();
75 }
76 
77 /// Matches any compare instruction and ignore it.
78 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
79 
80 /// Match an arbitrary ConstantInt and ignore it.
81 inline class_match<ConstantInt> m_ConstantInt() {
82   return class_match<ConstantInt>();
83 }
84 
85 /// Match an arbitrary undef constant.
86 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
87 
88 /// Match an arbitrary Constant and ignore it.
89 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
90 
91 /// Match an arbitrary basic block value and ignore it.
92 inline class_match<BasicBlock> m_BasicBlock() {
93   return class_match<BasicBlock>();
94 }
95 
96 /// Inverting matcher
97 template <typename Ty> struct match_unless {
98   Ty M;
99 
100   match_unless(const Ty &Matcher) : M(Matcher) {}
101 
102   template <typename ITy> bool match(ITy *V) { return !M.match(V); }
103 };
104 
105 /// Match if the inner matcher does *NOT* match.
106 template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
107   return match_unless<Ty>(M);
108 }
109 
110 /// Matching combinators
111 template <typename LTy, typename RTy> struct match_combine_or {
112   LTy L;
113   RTy R;
114 
115   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
116 
117   template <typename ITy> bool match(ITy *V) {
118     if (L.match(V))
119       return true;
120     if (R.match(V))
121       return true;
122     return false;
123   }
124 };
125 
126 template <typename LTy, typename RTy> struct match_combine_and {
127   LTy L;
128   RTy R;
129 
130   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
131 
132   template <typename ITy> bool match(ITy *V) {
133     if (L.match(V))
134       if (R.match(V))
135         return true;
136     return false;
137   }
138 };
139 
140 /// Combine two pattern matchers matching L || R
141 template <typename LTy, typename RTy>
142 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
143   return match_combine_or<LTy, RTy>(L, R);
144 }
145 
146 /// Combine two pattern matchers matching L && R
147 template <typename LTy, typename RTy>
148 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
149   return match_combine_and<LTy, RTy>(L, R);
150 }
151 
152 struct apint_match {
153   const APInt *&Res;
154 
155   apint_match(const APInt *&R) : Res(R) {}
156 
157   template <typename ITy> bool match(ITy *V) {
158     if (auto *CI = dyn_cast<ConstantInt>(V)) {
159       Res = &CI->getValue();
160       return true;
161     }
162     if (V->getType()->isVectorTy())
163       if (const auto *C = dyn_cast<Constant>(V))
164         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
165           Res = &CI->getValue();
166           return true;
167         }
168     return false;
169   }
170 };
171 // Either constexpr if or renaming ConstantFP::getValueAPF to
172 // ConstantFP::getValue is needed to do it via single template
173 // function for both apint/apfloat.
174 struct apfloat_match {
175   const APFloat *&Res;
176   apfloat_match(const APFloat *&R) : Res(R) {}
177   template <typename ITy> bool match(ITy *V) {
178     if (auto *CI = dyn_cast<ConstantFP>(V)) {
179       Res = &CI->getValueAPF();
180       return true;
181     }
182     if (V->getType()->isVectorTy())
183       if (const auto *C = dyn_cast<Constant>(V))
184         if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) {
185           Res = &CI->getValueAPF();
186           return true;
187         }
188     return false;
189   }
190 };
191 
192 /// Match a ConstantInt or splatted ConstantVector, binding the
193 /// specified pointer to the contained APInt.
194 inline apint_match m_APInt(const APInt *&Res) { return Res; }
195 
196 /// Match a ConstantFP or splatted ConstantVector, binding the
197 /// specified pointer to the contained APFloat.
198 inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; }
199 
200 template <int64_t Val> struct constantint_match {
201   template <typename ITy> bool match(ITy *V) {
202     if (const auto *CI = dyn_cast<ConstantInt>(V)) {
203       const APInt &CIV = CI->getValue();
204       if (Val >= 0)
205         return CIV == static_cast<uint64_t>(Val);
206       // If Val is negative, and CI is shorter than it, truncate to the right
207       // number of bits.  If it is larger, then we have to sign extend.  Just
208       // compare their negated values.
209       return -CIV == -Val;
210     }
211     return false;
212   }
213 };
214 
215 /// Match a ConstantInt with a specific value.
216 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
217   return constantint_match<Val>();
218 }
219 
220 /// This helper class is used to match scalar and vector integer constants that
221 /// satisfy a specified predicate.
222 /// For vector constants, undefined elements are ignored.
223 template <typename Predicate> struct cst_pred_ty : public Predicate {
224   template <typename ITy> bool match(ITy *V) {
225     if (const auto *CI = dyn_cast<ConstantInt>(V))
226       return this->isValue(CI->getValue());
227     if (V->getType()->isVectorTy()) {
228       if (const auto *C = dyn_cast<Constant>(V)) {
229         if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
230           return this->isValue(CI->getValue());
231 
232         // Non-splat vector constant: check each element for a match.
233         unsigned NumElts = V->getType()->getVectorNumElements();
234         assert(NumElts != 0 && "Constant vector with no elements?");
235         bool HasNonUndefElements = false;
236         for (unsigned i = 0; i != NumElts; ++i) {
237           Constant *Elt = C->getAggregateElement(i);
238           if (!Elt)
239             return false;
240           if (isa<UndefValue>(Elt))
241             continue;
242           auto *CI = dyn_cast<ConstantInt>(Elt);
243           if (!CI || !this->isValue(CI->getValue()))
244             return false;
245           HasNonUndefElements = true;
246         }
247         return HasNonUndefElements;
248       }
249     }
250     return false;
251   }
252 };
253 
254 /// This helper class is used to match scalar and vector constants that
255 /// satisfy a specified predicate, and bind them to an APInt.
256 template <typename Predicate> struct api_pred_ty : public Predicate {
257   const APInt *&Res;
258 
259   api_pred_ty(const APInt *&R) : Res(R) {}
260 
261   template <typename ITy> bool match(ITy *V) {
262     if (const auto *CI = dyn_cast<ConstantInt>(V))
263       if (this->isValue(CI->getValue())) {
264         Res = &CI->getValue();
265         return true;
266       }
267     if (V->getType()->isVectorTy())
268       if (const auto *C = dyn_cast<Constant>(V))
269         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
270           if (this->isValue(CI->getValue())) {
271             Res = &CI->getValue();
272             return true;
273           }
274 
275     return false;
276   }
277 };
278 
279 /// This helper class is used to match scalar and vector floating-point
280 /// constants that satisfy a specified predicate.
281 /// For vector constants, undefined elements are ignored.
282 template <typename Predicate> struct cstfp_pred_ty : public Predicate {
283   template <typename ITy> bool match(ITy *V) {
284     if (const auto *CF = dyn_cast<ConstantFP>(V))
285       return this->isValue(CF->getValueAPF());
286     if (V->getType()->isVectorTy()) {
287       if (const auto *C = dyn_cast<Constant>(V)) {
288         if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
289           return this->isValue(CF->getValueAPF());
290 
291         // Non-splat vector constant: check each element for a match.
292         unsigned NumElts = V->getType()->getVectorNumElements();
293         assert(NumElts != 0 && "Constant vector with no elements?");
294         bool HasNonUndefElements = false;
295         for (unsigned i = 0; i != NumElts; ++i) {
296           Constant *Elt = C->getAggregateElement(i);
297           if (!Elt)
298             return false;
299           if (isa<UndefValue>(Elt))
300             continue;
301           auto *CF = dyn_cast<ConstantFP>(Elt);
302           if (!CF || !this->isValue(CF->getValueAPF()))
303             return false;
304           HasNonUndefElements = true;
305         }
306         return HasNonUndefElements;
307       }
308     }
309     return false;
310   }
311 };
312 
313 ///////////////////////////////////////////////////////////////////////////////
314 //
315 // Encapsulate constant value queries for use in templated predicate matchers.
316 // This allows checking if constants match using compound predicates and works
317 // with vector constants, possibly with relaxed constraints. For example, ignore
318 // undef values.
319 //
320 ///////////////////////////////////////////////////////////////////////////////
321 
322 struct is_any_apint {
323   bool isValue(const APInt &C) { return true; }
324 };
325 /// Match an integer or vector with any integral constant.
326 /// For vectors, this includes constants with undefined elements.
327 inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
328   return cst_pred_ty<is_any_apint>();
329 }
330 
331 struct is_all_ones {
332   bool isValue(const APInt &C) { return C.isAllOnesValue(); }
333 };
334 /// Match an integer or vector with all bits set.
335 /// For vectors, this includes constants with undefined elements.
336 inline cst_pred_ty<is_all_ones> m_AllOnes() {
337   return cst_pred_ty<is_all_ones>();
338 }
339 
340 struct is_maxsignedvalue {
341   bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
342 };
343 /// Match an integer or vector with values having all bits except for the high
344 /// bit set (0x7f...).
345 /// For vectors, this includes constants with undefined elements.
346 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
347   return cst_pred_ty<is_maxsignedvalue>();
348 }
349 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
350   return V;
351 }
352 
353 struct is_negative {
354   bool isValue(const APInt &C) { return C.isNegative(); }
355 };
356 /// Match an integer or vector of negative values.
357 /// For vectors, this includes constants with undefined elements.
358 inline cst_pred_ty<is_negative> m_Negative() {
359   return cst_pred_ty<is_negative>();
360 }
361 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
362   return V;
363 }
364 
365 struct is_nonnegative {
366   bool isValue(const APInt &C) { return C.isNonNegative(); }
367 };
368 /// Match an integer or vector of nonnegative values.
369 /// For vectors, this includes constants with undefined elements.
370 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
371   return cst_pred_ty<is_nonnegative>();
372 }
373 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
374   return V;
375 }
376 
377 struct is_one {
378   bool isValue(const APInt &C) { return C.isOneValue(); }
379 };
380 /// Match an integer 1 or a vector with all elements equal to 1.
381 /// For vectors, this includes constants with undefined elements.
382 inline cst_pred_ty<is_one> m_One() {
383   return cst_pred_ty<is_one>();
384 }
385 
386 struct is_zero_int {
387   bool isValue(const APInt &C) { return C.isNullValue(); }
388 };
389 /// Match an integer 0 or a vector with all elements equal to 0.
390 /// For vectors, this includes constants with undefined elements.
391 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
392   return cst_pred_ty<is_zero_int>();
393 }
394 
395 struct is_zero {
396   template <typename ITy> bool match(ITy *V) {
397     auto *C = dyn_cast<Constant>(V);
398     return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
399   }
400 };
401 /// Match any null constant or a vector with all elements equal to 0.
402 /// For vectors, this includes constants with undefined elements.
403 inline is_zero m_Zero() {
404   return is_zero();
405 }
406 
407 struct is_power2 {
408   bool isValue(const APInt &C) { return C.isPowerOf2(); }
409 };
410 /// Match an integer or vector power-of-2.
411 /// For vectors, this includes constants with undefined elements.
412 inline cst_pred_ty<is_power2> m_Power2() {
413   return cst_pred_ty<is_power2>();
414 }
415 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
416   return V;
417 }
418 
419 struct is_negated_power2 {
420   bool isValue(const APInt &C) { return (-C).isPowerOf2(); }
421 };
422 /// Match a integer or vector negated power-of-2.
423 /// For vectors, this includes constants with undefined elements.
424 inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
425   return cst_pred_ty<is_negated_power2>();
426 }
427 inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
428   return V;
429 }
430 
431 struct is_power2_or_zero {
432   bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
433 };
434 /// Match an integer or vector of 0 or power-of-2 values.
435 /// For vectors, this includes constants with undefined elements.
436 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
437   return cst_pred_ty<is_power2_or_zero>();
438 }
439 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
440   return V;
441 }
442 
443 struct is_sign_mask {
444   bool isValue(const APInt &C) { return C.isSignMask(); }
445 };
446 /// Match an integer or vector with only the sign bit(s) set.
447 /// For vectors, this includes constants with undefined elements.
448 inline cst_pred_ty<is_sign_mask> m_SignMask() {
449   return cst_pred_ty<is_sign_mask>();
450 }
451 
452 struct is_lowbit_mask {
453   bool isValue(const APInt &C) { return C.isMask(); }
454 };
455 /// Match an integer or vector with only the low bit(s) set.
456 /// For vectors, this includes constants with undefined elements.
457 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
458   return cst_pred_ty<is_lowbit_mask>();
459 }
460 
461 struct icmp_pred_with_threshold {
462   ICmpInst::Predicate Pred;
463   const APInt *Thr;
464   bool isValue(const APInt &C) {
465     switch (Pred) {
466     case ICmpInst::Predicate::ICMP_EQ:
467       return C.eq(*Thr);
468     case ICmpInst::Predicate::ICMP_NE:
469       return C.ne(*Thr);
470     case ICmpInst::Predicate::ICMP_UGT:
471       return C.ugt(*Thr);
472     case ICmpInst::Predicate::ICMP_UGE:
473       return C.uge(*Thr);
474     case ICmpInst::Predicate::ICMP_ULT:
475       return C.ult(*Thr);
476     case ICmpInst::Predicate::ICMP_ULE:
477       return C.ule(*Thr);
478     case ICmpInst::Predicate::ICMP_SGT:
479       return C.sgt(*Thr);
480     case ICmpInst::Predicate::ICMP_SGE:
481       return C.sge(*Thr);
482     case ICmpInst::Predicate::ICMP_SLT:
483       return C.slt(*Thr);
484     case ICmpInst::Predicate::ICMP_SLE:
485       return C.sle(*Thr);
486     default:
487       llvm_unreachable("Unhandled ICmp predicate");
488     }
489   }
490 };
491 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
492 /// to Threshold. For vectors, this includes constants with undefined elements.
493 inline cst_pred_ty<icmp_pred_with_threshold>
494 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
495   cst_pred_ty<icmp_pred_with_threshold> P;
496   P.Pred = Predicate;
497   P.Thr = &Threshold;
498   return P;
499 }
500 
501 struct is_nan {
502   bool isValue(const APFloat &C) { return C.isNaN(); }
503 };
504 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
505 /// For vectors, this includes constants with undefined elements.
506 inline cstfp_pred_ty<is_nan> m_NaN() {
507   return cstfp_pred_ty<is_nan>();
508 }
509 
510 struct is_any_zero_fp {
511   bool isValue(const APFloat &C) { return C.isZero(); }
512 };
513 /// Match a floating-point negative zero or positive zero.
514 /// For vectors, this includes constants with undefined elements.
515 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
516   return cstfp_pred_ty<is_any_zero_fp>();
517 }
518 
519 struct is_pos_zero_fp {
520   bool isValue(const APFloat &C) { return C.isPosZero(); }
521 };
522 /// Match a floating-point positive zero.
523 /// For vectors, this includes constants with undefined elements.
524 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
525   return cstfp_pred_ty<is_pos_zero_fp>();
526 }
527 
528 struct is_neg_zero_fp {
529   bool isValue(const APFloat &C) { return C.isNegZero(); }
530 };
531 /// Match a floating-point negative zero.
532 /// For vectors, this includes constants with undefined elements.
533 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
534   return cstfp_pred_ty<is_neg_zero_fp>();
535 }
536 
537 ///////////////////////////////////////////////////////////////////////////////
538 
539 template <typename Class> struct bind_ty {
540   Class *&VR;
541 
542   bind_ty(Class *&V) : VR(V) {}
543 
544   template <typename ITy> bool match(ITy *V) {
545     if (auto *CV = dyn_cast<Class>(V)) {
546       VR = CV;
547       return true;
548     }
549     return false;
550   }
551 };
552 
553 /// Match a value, capturing it if we match.
554 inline bind_ty<Value> m_Value(Value *&V) { return V; }
555 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
556 
557 /// Match an instruction, capturing it if we match.
558 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
559 /// Match a binary operator, capturing it if we match.
560 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
561 
562 /// Match a ConstantInt, capturing the value if we match.
563 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
564 
565 /// Match a Constant, capturing the value if we match.
566 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
567 
568 /// Match a ConstantFP, capturing the value if we match.
569 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
570 
571 /// Match a basic block value, capturing it if we match.
572 inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
573 inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
574   return V;
575 }
576 
577 /// Match a specified Value*.
578 struct specificval_ty {
579   const Value *Val;
580 
581   specificval_ty(const Value *V) : Val(V) {}
582 
583   template <typename ITy> bool match(ITy *V) { return V == Val; }
584 };
585 
586 /// Match if we have a specific specified value.
587 inline specificval_ty m_Specific(const Value *V) { return V; }
588 
589 /// Stores a reference to the Value *, not the Value * itself,
590 /// thus can be used in commutative matchers.
591 template <typename Class> struct deferredval_ty {
592   Class *const &Val;
593 
594   deferredval_ty(Class *const &V) : Val(V) {}
595 
596   template <typename ITy> bool match(ITy *const V) { return V == Val; }
597 };
598 
599 /// A commutative-friendly version of m_Specific().
600 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
601 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
602   return V;
603 }
604 
605 /// Match a specified floating point value or vector of all elements of
606 /// that value.
607 struct specific_fpval {
608   double Val;
609 
610   specific_fpval(double V) : Val(V) {}
611 
612   template <typename ITy> bool match(ITy *V) {
613     if (const auto *CFP = dyn_cast<ConstantFP>(V))
614       return CFP->isExactlyValue(Val);
615     if (V->getType()->isVectorTy())
616       if (const auto *C = dyn_cast<Constant>(V))
617         if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
618           return CFP->isExactlyValue(Val);
619     return false;
620   }
621 };
622 
623 /// Match a specific floating point value or vector with all elements
624 /// equal to the value.
625 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
626 
627 /// Match a float 1.0 or vector with all elements equal to 1.0.
628 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
629 
630 struct bind_const_intval_ty {
631   uint64_t &VR;
632 
633   bind_const_intval_ty(uint64_t &V) : VR(V) {}
634 
635   template <typename ITy> bool match(ITy *V) {
636     if (const auto *CV = dyn_cast<ConstantInt>(V))
637       if (CV->getValue().ule(UINT64_MAX)) {
638         VR = CV->getZExtValue();
639         return true;
640       }
641     return false;
642   }
643 };
644 
645 /// Match a specified integer value or vector of all elements of that
646 /// value.
647 struct specific_intval {
648   APInt Val;
649 
650   specific_intval(APInt V) : Val(std::move(V)) {}
651 
652   template <typename ITy> bool match(ITy *V) {
653     const auto *CI = dyn_cast<ConstantInt>(V);
654     if (!CI && V->getType()->isVectorTy())
655       if (const auto *C = dyn_cast<Constant>(V))
656         CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
657 
658     return CI && APInt::isSameValue(CI->getValue(), Val);
659   }
660 };
661 
662 /// Match a specific integer value or vector with all elements equal to
663 /// the value.
664 inline specific_intval m_SpecificInt(APInt V) {
665   return specific_intval(std::move(V));
666 }
667 
668 inline specific_intval m_SpecificInt(uint64_t V) {
669   return m_SpecificInt(APInt(64, V));
670 }
671 
672 /// Match a ConstantInt and bind to its value.  This does not match
673 /// ConstantInts wider than 64-bits.
674 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
675 
676 /// Match a specified basic block value.
677 struct specific_bbval {
678   BasicBlock *Val;
679 
680   specific_bbval(BasicBlock *Val) : Val(Val) {}
681 
682   template <typename ITy> bool match(ITy *V) {
683     const auto *BB = dyn_cast<BasicBlock>(V);
684     return BB && BB == Val;
685   }
686 };
687 
688 /// Match a specific basic block value.
689 inline specific_bbval m_SpecificBB(BasicBlock *BB) {
690   return specific_bbval(BB);
691 }
692 
693 /// A commutative-friendly version of m_Specific().
694 inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
695   return BB;
696 }
697 inline deferredval_ty<const BasicBlock>
698 m_Deferred(const BasicBlock *const &BB) {
699   return BB;
700 }
701 
702 //===----------------------------------------------------------------------===//
703 // Matcher for any binary operator.
704 //
705 template <typename LHS_t, typename RHS_t, bool Commutable = false>
706 struct AnyBinaryOp_match {
707   LHS_t L;
708   RHS_t R;
709 
710   // The evaluation order is always stable, regardless of Commutability.
711   // The LHS is always matched first.
712   AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
713 
714   template <typename OpTy> bool match(OpTy *V) {
715     if (auto *I = dyn_cast<BinaryOperator>(V))
716       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
717              (Commutable && L.match(I->getOperand(1)) &&
718               R.match(I->getOperand(0)));
719     return false;
720   }
721 };
722 
723 template <typename LHS, typename RHS>
724 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
725   return AnyBinaryOp_match<LHS, RHS>(L, R);
726 }
727 
728 //===----------------------------------------------------------------------===//
729 // Matchers for specific binary operators.
730 //
731 
732 template <typename LHS_t, typename RHS_t, unsigned Opcode,
733           bool Commutable = false>
734 struct BinaryOp_match {
735   LHS_t L;
736   RHS_t R;
737 
738   // The evaluation order is always stable, regardless of Commutability.
739   // The LHS is always matched first.
740   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
741 
742   template <typename OpTy> bool match(OpTy *V) {
743     if (V->getValueID() == Value::InstructionVal + Opcode) {
744       auto *I = cast<BinaryOperator>(V);
745       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
746              (Commutable && L.match(I->getOperand(1)) &&
747               R.match(I->getOperand(0)));
748     }
749     if (auto *CE = dyn_cast<ConstantExpr>(V))
750       return CE->getOpcode() == Opcode &&
751              ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
752               (Commutable && L.match(CE->getOperand(1)) &&
753                R.match(CE->getOperand(0))));
754     return false;
755   }
756 };
757 
758 template <typename LHS, typename RHS>
759 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
760                                                         const RHS &R) {
761   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
762 }
763 
764 template <typename LHS, typename RHS>
765 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
766                                                           const RHS &R) {
767   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
768 }
769 
770 template <typename LHS, typename RHS>
771 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
772                                                         const RHS &R) {
773   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
774 }
775 
776 template <typename LHS, typename RHS>
777 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
778                                                           const RHS &R) {
779   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
780 }
781 
782 template <typename Op_t> struct FNeg_match {
783   Op_t X;
784 
785   FNeg_match(const Op_t &Op) : X(Op) {}
786   template <typename OpTy> bool match(OpTy *V) {
787     auto *FPMO = dyn_cast<FPMathOperator>(V);
788     if (!FPMO) return false;
789 
790     if (FPMO->getOpcode() == Instruction::FNeg)
791       return X.match(FPMO->getOperand(0));
792 
793     if (FPMO->getOpcode() == Instruction::FSub) {
794       if (FPMO->hasNoSignedZeros()) {
795         // With 'nsz', any zero goes.
796         if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
797           return false;
798       } else {
799         // Without 'nsz', we need fsub -0.0, X exactly.
800         if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
801           return false;
802       }
803 
804       return X.match(FPMO->getOperand(1));
805     }
806 
807     return false;
808   }
809 };
810 
811 /// Match 'fneg X' as 'fsub -0.0, X'.
812 template <typename OpTy>
813 inline FNeg_match<OpTy>
814 m_FNeg(const OpTy &X) {
815   return FNeg_match<OpTy>(X);
816 }
817 
818 /// Match 'fneg X' as 'fsub +-0.0, X'.
819 template <typename RHS>
820 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
821 m_FNegNSZ(const RHS &X) {
822   return m_FSub(m_AnyZeroFP(), X);
823 }
824 
825 template <typename LHS, typename RHS>
826 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
827                                                         const RHS &R) {
828   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
829 }
830 
831 template <typename LHS, typename RHS>
832 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
833                                                           const RHS &R) {
834   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
835 }
836 
837 template <typename LHS, typename RHS>
838 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
839                                                           const RHS &R) {
840   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
841 }
842 
843 template <typename LHS, typename RHS>
844 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
845                                                           const RHS &R) {
846   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
847 }
848 
849 template <typename LHS, typename RHS>
850 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
851                                                           const RHS &R) {
852   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
853 }
854 
855 template <typename LHS, typename RHS>
856 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
857                                                           const RHS &R) {
858   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
859 }
860 
861 template <typename LHS, typename RHS>
862 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
863                                                           const RHS &R) {
864   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
865 }
866 
867 template <typename LHS, typename RHS>
868 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
869                                                           const RHS &R) {
870   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
871 }
872 
873 template <typename LHS, typename RHS>
874 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
875                                                         const RHS &R) {
876   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
877 }
878 
879 template <typename LHS, typename RHS>
880 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
881                                                       const RHS &R) {
882   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
883 }
884 
885 template <typename LHS, typename RHS>
886 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
887                                                         const RHS &R) {
888   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
889 }
890 
891 template <typename LHS, typename RHS>
892 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
893                                                         const RHS &R) {
894   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
895 }
896 
897 template <typename LHS, typename RHS>
898 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
899                                                           const RHS &R) {
900   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
901 }
902 
903 template <typename LHS, typename RHS>
904 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
905                                                           const RHS &R) {
906   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
907 }
908 
909 template <typename LHS_t, typename RHS_t, unsigned Opcode,
910           unsigned WrapFlags = 0>
911 struct OverflowingBinaryOp_match {
912   LHS_t L;
913   RHS_t R;
914 
915   OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
916       : L(LHS), R(RHS) {}
917 
918   template <typename OpTy> bool match(OpTy *V) {
919     if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
920       if (Op->getOpcode() != Opcode)
921         return false;
922       if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
923           !Op->hasNoUnsignedWrap())
924         return false;
925       if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
926           !Op->hasNoSignedWrap())
927         return false;
928       return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
929     }
930     return false;
931   }
932 };
933 
934 template <typename LHS, typename RHS>
935 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
936                                  OverflowingBinaryOperator::NoSignedWrap>
937 m_NSWAdd(const LHS &L, const RHS &R) {
938   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
939                                    OverflowingBinaryOperator::NoSignedWrap>(
940       L, R);
941 }
942 template <typename LHS, typename RHS>
943 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
944                                  OverflowingBinaryOperator::NoSignedWrap>
945 m_NSWSub(const LHS &L, const RHS &R) {
946   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
947                                    OverflowingBinaryOperator::NoSignedWrap>(
948       L, R);
949 }
950 template <typename LHS, typename RHS>
951 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
952                                  OverflowingBinaryOperator::NoSignedWrap>
953 m_NSWMul(const LHS &L, const RHS &R) {
954   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
955                                    OverflowingBinaryOperator::NoSignedWrap>(
956       L, R);
957 }
958 template <typename LHS, typename RHS>
959 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
960                                  OverflowingBinaryOperator::NoSignedWrap>
961 m_NSWShl(const LHS &L, const RHS &R) {
962   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
963                                    OverflowingBinaryOperator::NoSignedWrap>(
964       L, R);
965 }
966 
967 template <typename LHS, typename RHS>
968 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
969                                  OverflowingBinaryOperator::NoUnsignedWrap>
970 m_NUWAdd(const LHS &L, const RHS &R) {
971   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
972                                    OverflowingBinaryOperator::NoUnsignedWrap>(
973       L, R);
974 }
975 template <typename LHS, typename RHS>
976 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
977                                  OverflowingBinaryOperator::NoUnsignedWrap>
978 m_NUWSub(const LHS &L, const RHS &R) {
979   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
980                                    OverflowingBinaryOperator::NoUnsignedWrap>(
981       L, R);
982 }
983 template <typename LHS, typename RHS>
984 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
985                                  OverflowingBinaryOperator::NoUnsignedWrap>
986 m_NUWMul(const LHS &L, const RHS &R) {
987   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
988                                    OverflowingBinaryOperator::NoUnsignedWrap>(
989       L, R);
990 }
991 template <typename LHS, typename RHS>
992 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
993                                  OverflowingBinaryOperator::NoUnsignedWrap>
994 m_NUWShl(const LHS &L, const RHS &R) {
995   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
996                                    OverflowingBinaryOperator::NoUnsignedWrap>(
997       L, R);
998 }
999 
1000 //===----------------------------------------------------------------------===//
1001 // Class that matches a group of binary opcodes.
1002 //
1003 template <typename LHS_t, typename RHS_t, typename Predicate>
1004 struct BinOpPred_match : Predicate {
1005   LHS_t L;
1006   RHS_t R;
1007 
1008   BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1009 
1010   template <typename OpTy> bool match(OpTy *V) {
1011     if (auto *I = dyn_cast<Instruction>(V))
1012       return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1013              R.match(I->getOperand(1));
1014     if (auto *CE = dyn_cast<ConstantExpr>(V))
1015       return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1016              R.match(CE->getOperand(1));
1017     return false;
1018   }
1019 };
1020 
1021 struct is_shift_op {
1022   bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1023 };
1024 
1025 struct is_right_shift_op {
1026   bool isOpType(unsigned Opcode) {
1027     return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1028   }
1029 };
1030 
1031 struct is_logical_shift_op {
1032   bool isOpType(unsigned Opcode) {
1033     return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1034   }
1035 };
1036 
1037 struct is_bitwiselogic_op {
1038   bool isOpType(unsigned Opcode) {
1039     return Instruction::isBitwiseLogicOp(Opcode);
1040   }
1041 };
1042 
1043 struct is_idiv_op {
1044   bool isOpType(unsigned Opcode) {
1045     return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1046   }
1047 };
1048 
1049 struct is_irem_op {
1050   bool isOpType(unsigned Opcode) {
1051     return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1052   }
1053 };
1054 
1055 /// Matches shift operations.
1056 template <typename LHS, typename RHS>
1057 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1058                                                       const RHS &R) {
1059   return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1060 }
1061 
1062 /// Matches logical shift operations.
1063 template <typename LHS, typename RHS>
1064 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1065                                                           const RHS &R) {
1066   return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1067 }
1068 
1069 /// Matches logical shift operations.
1070 template <typename LHS, typename RHS>
1071 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1072 m_LogicalShift(const LHS &L, const RHS &R) {
1073   return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1074 }
1075 
1076 /// Matches bitwise logic operations.
1077 template <typename LHS, typename RHS>
1078 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1079 m_BitwiseLogic(const LHS &L, const RHS &R) {
1080   return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1081 }
1082 
1083 /// Matches integer division operations.
1084 template <typename LHS, typename RHS>
1085 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1086                                                     const RHS &R) {
1087   return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1088 }
1089 
1090 /// Matches integer remainder operations.
1091 template <typename LHS, typename RHS>
1092 inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1093                                                     const RHS &R) {
1094   return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1095 }
1096 
1097 //===----------------------------------------------------------------------===//
1098 // Class that matches exact binary ops.
1099 //
1100 template <typename SubPattern_t> struct Exact_match {
1101   SubPattern_t SubPattern;
1102 
1103   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1104 
1105   template <typename OpTy> bool match(OpTy *V) {
1106     if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1107       return PEO->isExact() && SubPattern.match(V);
1108     return false;
1109   }
1110 };
1111 
1112 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1113   return SubPattern;
1114 }
1115 
1116 //===----------------------------------------------------------------------===//
1117 // Matchers for CmpInst classes
1118 //
1119 
1120 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1121           bool Commutable = false>
1122 struct CmpClass_match {
1123   PredicateTy &Predicate;
1124   LHS_t L;
1125   RHS_t R;
1126 
1127   // The evaluation order is always stable, regardless of Commutability.
1128   // The LHS is always matched first.
1129   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1130       : Predicate(Pred), L(LHS), R(RHS) {}
1131 
1132   template <typename OpTy> bool match(OpTy *V) {
1133     if (auto *I = dyn_cast<Class>(V))
1134       if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
1135           (Commutable && L.match(I->getOperand(1)) &&
1136            R.match(I->getOperand(0)))) {
1137         Predicate = I->getPredicate();
1138         return true;
1139       }
1140     return false;
1141   }
1142 };
1143 
1144 template <typename LHS, typename RHS>
1145 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1146 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1147   return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1148 }
1149 
1150 template <typename LHS, typename RHS>
1151 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1152 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1153   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1154 }
1155 
1156 template <typename LHS, typename RHS>
1157 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1158 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1159   return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1160 }
1161 
1162 //===----------------------------------------------------------------------===//
1163 // Matchers for instructions with a given opcode and number of operands.
1164 //
1165 
1166 /// Matches instructions with Opcode and three operands.
1167 template <typename T0, unsigned Opcode> struct OneOps_match {
1168   T0 Op1;
1169 
1170   OneOps_match(const T0 &Op1) : Op1(Op1) {}
1171 
1172   template <typename OpTy> bool match(OpTy *V) {
1173     if (V->getValueID() == Value::InstructionVal + Opcode) {
1174       auto *I = cast<Instruction>(V);
1175       return Op1.match(I->getOperand(0));
1176     }
1177     return false;
1178   }
1179 };
1180 
1181 /// Matches instructions with Opcode and three operands.
1182 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1183   T0 Op1;
1184   T1 Op2;
1185 
1186   TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1187 
1188   template <typename OpTy> bool match(OpTy *V) {
1189     if (V->getValueID() == Value::InstructionVal + Opcode) {
1190       auto *I = cast<Instruction>(V);
1191       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1192     }
1193     return false;
1194   }
1195 };
1196 
1197 /// Matches instructions with Opcode and three operands.
1198 template <typename T0, typename T1, typename T2, unsigned Opcode>
1199 struct ThreeOps_match {
1200   T0 Op1;
1201   T1 Op2;
1202   T2 Op3;
1203 
1204   ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1205       : Op1(Op1), Op2(Op2), Op3(Op3) {}
1206 
1207   template <typename OpTy> bool match(OpTy *V) {
1208     if (V->getValueID() == Value::InstructionVal + Opcode) {
1209       auto *I = cast<Instruction>(V);
1210       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1211              Op3.match(I->getOperand(2));
1212     }
1213     return false;
1214   }
1215 };
1216 
1217 /// Matches SelectInst.
1218 template <typename Cond, typename LHS, typename RHS>
1219 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1220 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1221   return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1222 }
1223 
1224 /// This matches a select of two constants, e.g.:
1225 /// m_SelectCst<-1, 0>(m_Value(V))
1226 template <int64_t L, int64_t R, typename Cond>
1227 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1228                       Instruction::Select>
1229 m_SelectCst(const Cond &C) {
1230   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1231 }
1232 
1233 /// Matches InsertElementInst.
1234 template <typename Val_t, typename Elt_t, typename Idx_t>
1235 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1236 m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1237   return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1238       Val, Elt, Idx);
1239 }
1240 
1241 /// Matches ExtractElementInst.
1242 template <typename Val_t, typename Idx_t>
1243 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1244 m_ExtractElement(const Val_t &Val, const Idx_t &Idx) {
1245   return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1246 }
1247 
1248 /// Matches ShuffleVectorInst.
1249 template <typename V1_t, typename V2_t, typename Mask_t>
1250 inline ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>
1251 m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) {
1252   return ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>(v1, v2,
1253                                                                         m);
1254 }
1255 
1256 /// Matches LoadInst.
1257 template <typename OpTy>
1258 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1259   return OneOps_match<OpTy, Instruction::Load>(Op);
1260 }
1261 
1262 /// Matches StoreInst.
1263 template <typename ValueOpTy, typename PointerOpTy>
1264 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1265 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1266   return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1267                                                                   PointerOp);
1268 }
1269 
1270 //===----------------------------------------------------------------------===//
1271 // Matchers for CastInst classes
1272 //
1273 
1274 template <typename Op_t, unsigned Opcode> struct CastClass_match {
1275   Op_t Op;
1276 
1277   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1278 
1279   template <typename OpTy> bool match(OpTy *V) {
1280     if (auto *O = dyn_cast<Operator>(V))
1281       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1282     return false;
1283   }
1284 };
1285 
1286 /// Matches BitCast.
1287 template <typename OpTy>
1288 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1289   return CastClass_match<OpTy, Instruction::BitCast>(Op);
1290 }
1291 
1292 /// Matches PtrToInt.
1293 template <typename OpTy>
1294 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1295   return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1296 }
1297 
1298 /// Matches Trunc.
1299 template <typename OpTy>
1300 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1301   return CastClass_match<OpTy, Instruction::Trunc>(Op);
1302 }
1303 
1304 template <typename OpTy>
1305 inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
1306 m_TruncOrSelf(const OpTy &Op) {
1307   return m_CombineOr(m_Trunc(Op), Op);
1308 }
1309 
1310 /// Matches SExt.
1311 template <typename OpTy>
1312 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1313   return CastClass_match<OpTy, Instruction::SExt>(Op);
1314 }
1315 
1316 /// Matches ZExt.
1317 template <typename OpTy>
1318 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1319   return CastClass_match<OpTy, Instruction::ZExt>(Op);
1320 }
1321 
1322 template <typename OpTy>
1323 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
1324 m_ZExtOrSelf(const OpTy &Op) {
1325   return m_CombineOr(m_ZExt(Op), Op);
1326 }
1327 
1328 template <typename OpTy>
1329 inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
1330 m_SExtOrSelf(const OpTy &Op) {
1331   return m_CombineOr(m_SExt(Op), Op);
1332 }
1333 
1334 template <typename OpTy>
1335 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1336                         CastClass_match<OpTy, Instruction::SExt>>
1337 m_ZExtOrSExt(const OpTy &Op) {
1338   return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1339 }
1340 
1341 template <typename OpTy>
1342 inline match_combine_or<
1343     match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1344                      CastClass_match<OpTy, Instruction::SExt>>,
1345     OpTy>
1346 m_ZExtOrSExtOrSelf(const OpTy &Op) {
1347   return m_CombineOr(m_ZExtOrSExt(Op), Op);
1348 }
1349 
1350 /// Matches UIToFP.
1351 template <typename OpTy>
1352 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1353   return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1354 }
1355 
1356 /// Matches SIToFP.
1357 template <typename OpTy>
1358 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1359   return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1360 }
1361 
1362 /// Matches FPTrunc
1363 template <typename OpTy>
1364 inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1365   return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1366 }
1367 
1368 /// Matches FPExt
1369 template <typename OpTy>
1370 inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1371   return CastClass_match<OpTy, Instruction::FPExt>(Op);
1372 }
1373 
1374 //===----------------------------------------------------------------------===//
1375 // Matchers for control flow.
1376 //
1377 
1378 struct br_match {
1379   BasicBlock *&Succ;
1380 
1381   br_match(BasicBlock *&Succ) : Succ(Succ) {}
1382 
1383   template <typename OpTy> bool match(OpTy *V) {
1384     if (auto *BI = dyn_cast<BranchInst>(V))
1385       if (BI->isUnconditional()) {
1386         Succ = BI->getSuccessor(0);
1387         return true;
1388       }
1389     return false;
1390   }
1391 };
1392 
1393 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1394 
1395 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1396 struct brc_match {
1397   Cond_t Cond;
1398   TrueBlock_t T;
1399   FalseBlock_t F;
1400 
1401   brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1402       : Cond(C), T(t), F(f) {}
1403 
1404   template <typename OpTy> bool match(OpTy *V) {
1405     if (auto *BI = dyn_cast<BranchInst>(V))
1406       if (BI->isConditional() && Cond.match(BI->getCondition()))
1407         return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1408     return false;
1409   }
1410 };
1411 
1412 template <typename Cond_t>
1413 inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
1414 m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1415   return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1416       C, m_BasicBlock(T), m_BasicBlock(F));
1417 }
1418 
1419 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1420 inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
1421 m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1422   return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1423 }
1424 
1425 //===----------------------------------------------------------------------===//
1426 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1427 //
1428 
1429 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1430           bool Commutable = false>
1431 struct MaxMin_match {
1432   LHS_t L;
1433   RHS_t R;
1434 
1435   // The evaluation order is always stable, regardless of Commutability.
1436   // The LHS is always matched first.
1437   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1438 
1439   template <typename OpTy> bool match(OpTy *V) {
1440     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1441     auto *SI = dyn_cast<SelectInst>(V);
1442     if (!SI)
1443       return false;
1444     auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1445     if (!Cmp)
1446       return false;
1447     // At this point we have a select conditioned on a comparison.  Check that
1448     // it is the values returned by the select that are being compared.
1449     Value *TrueVal = SI->getTrueValue();
1450     Value *FalseVal = SI->getFalseValue();
1451     Value *LHS = Cmp->getOperand(0);
1452     Value *RHS = Cmp->getOperand(1);
1453     if ((TrueVal != LHS || FalseVal != RHS) &&
1454         (TrueVal != RHS || FalseVal != LHS))
1455       return false;
1456     typename CmpInst_t::Predicate Pred =
1457         LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1458     // Does "(x pred y) ? x : y" represent the desired max/min operation?
1459     if (!Pred_t::match(Pred))
1460       return false;
1461     // It does!  Bind the operands.
1462     return (L.match(LHS) && R.match(RHS)) ||
1463            (Commutable && L.match(RHS) && R.match(LHS));
1464   }
1465 };
1466 
1467 /// Helper class for identifying signed max predicates.
1468 struct smax_pred_ty {
1469   static bool match(ICmpInst::Predicate Pred) {
1470     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1471   }
1472 };
1473 
1474 /// Helper class for identifying signed min predicates.
1475 struct smin_pred_ty {
1476   static bool match(ICmpInst::Predicate Pred) {
1477     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1478   }
1479 };
1480 
1481 /// Helper class for identifying unsigned max predicates.
1482 struct umax_pred_ty {
1483   static bool match(ICmpInst::Predicate Pred) {
1484     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1485   }
1486 };
1487 
1488 /// Helper class for identifying unsigned min predicates.
1489 struct umin_pred_ty {
1490   static bool match(ICmpInst::Predicate Pred) {
1491     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1492   }
1493 };
1494 
1495 /// Helper class for identifying ordered max predicates.
1496 struct ofmax_pred_ty {
1497   static bool match(FCmpInst::Predicate Pred) {
1498     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1499   }
1500 };
1501 
1502 /// Helper class for identifying ordered min predicates.
1503 struct ofmin_pred_ty {
1504   static bool match(FCmpInst::Predicate Pred) {
1505     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1506   }
1507 };
1508 
1509 /// Helper class for identifying unordered max predicates.
1510 struct ufmax_pred_ty {
1511   static bool match(FCmpInst::Predicate Pred) {
1512     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1513   }
1514 };
1515 
1516 /// Helper class for identifying unordered min predicates.
1517 struct ufmin_pred_ty {
1518   static bool match(FCmpInst::Predicate Pred) {
1519     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1520   }
1521 };
1522 
1523 template <typename LHS, typename RHS>
1524 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1525                                                              const RHS &R) {
1526   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1527 }
1528 
1529 template <typename LHS, typename RHS>
1530 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1531                                                              const RHS &R) {
1532   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1533 }
1534 
1535 template <typename LHS, typename RHS>
1536 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1537                                                              const RHS &R) {
1538   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1539 }
1540 
1541 template <typename LHS, typename RHS>
1542 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1543                                                              const RHS &R) {
1544   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1545 }
1546 
1547 /// Match an 'ordered' floating point maximum function.
1548 /// Floating point has one special value 'NaN'. Therefore, there is no total
1549 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1550 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1551 /// semantics. In the presence of 'NaN' we have to preserve the original
1552 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1553 ///
1554 ///                         max(L, R)  iff L and R are not NaN
1555 ///  m_OrdFMax(L, R) =      R          iff L or R are NaN
1556 template <typename LHS, typename RHS>
1557 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1558                                                                  const RHS &R) {
1559   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1560 }
1561 
1562 /// Match an 'ordered' floating point minimum function.
1563 /// Floating point has one special value 'NaN'. Therefore, there is no total
1564 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1565 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1566 /// semantics. In the presence of 'NaN' we have to preserve the original
1567 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1568 ///
1569 ///                         min(L, R)  iff L and R are not NaN
1570 ///  m_OrdFMin(L, R) =      R          iff L or R are NaN
1571 template <typename LHS, typename RHS>
1572 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1573                                                                  const RHS &R) {
1574   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1575 }
1576 
1577 /// Match an 'unordered' floating point maximum function.
1578 /// Floating point has one special value 'NaN'. Therefore, there is no total
1579 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1580 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1581 /// semantics. In the presence of 'NaN' we have to preserve the original
1582 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1583 ///
1584 ///                         max(L, R)  iff L and R are not NaN
1585 ///  m_UnordFMax(L, R) =    L          iff L or R are NaN
1586 template <typename LHS, typename RHS>
1587 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1588 m_UnordFMax(const LHS &L, const RHS &R) {
1589   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1590 }
1591 
1592 /// Match an 'unordered' floating point minimum function.
1593 /// Floating point has one special value 'NaN'. Therefore, there is no total
1594 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1595 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1596 /// semantics. In the presence of 'NaN' we have to preserve the original
1597 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1598 ///
1599 ///                          min(L, R)  iff L and R are not NaN
1600 ///  m_UnordFMin(L, R) =     L          iff L or R are NaN
1601 template <typename LHS, typename RHS>
1602 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1603 m_UnordFMin(const LHS &L, const RHS &R) {
1604   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1605 }
1606 
1607 //===----------------------------------------------------------------------===//
1608 // Matchers for overflow check patterns: e.g. (a + b) u< a
1609 //
1610 
1611 template <typename LHS_t, typename RHS_t, typename Sum_t>
1612 struct UAddWithOverflow_match {
1613   LHS_t L;
1614   RHS_t R;
1615   Sum_t S;
1616 
1617   UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1618       : L(L), R(R), S(S) {}
1619 
1620   template <typename OpTy> bool match(OpTy *V) {
1621     Value *ICmpLHS, *ICmpRHS;
1622     ICmpInst::Predicate Pred;
1623     if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1624       return false;
1625 
1626     Value *AddLHS, *AddRHS;
1627     auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1628 
1629     // (a + b) u< a, (a + b) u< b
1630     if (Pred == ICmpInst::ICMP_ULT)
1631       if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1632         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1633 
1634     // a >u (a + b), b >u (a + b)
1635     if (Pred == ICmpInst::ICMP_UGT)
1636       if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1637         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1638 
1639     // Match special-case for increment-by-1.
1640     if (Pred == ICmpInst::ICMP_EQ) {
1641       // (a + 1) == 0
1642       // (1 + a) == 0
1643       if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1644           (m_One().match(AddLHS) || m_One().match(AddRHS)))
1645         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1646       // 0 == (a + 1)
1647       // 0 == (1 + a)
1648       if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
1649           (m_One().match(AddLHS) || m_One().match(AddRHS)))
1650         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1651     }
1652 
1653     return false;
1654   }
1655 };
1656 
1657 /// Match an icmp instruction checking for unsigned overflow on addition.
1658 ///
1659 /// S is matched to the addition whose result is being checked for overflow, and
1660 /// L and R are matched to the LHS and RHS of S.
1661 template <typename LHS_t, typename RHS_t, typename Sum_t>
1662 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
1663 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1664   return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1665 }
1666 
1667 template <typename Opnd_t> struct Argument_match {
1668   unsigned OpI;
1669   Opnd_t Val;
1670 
1671   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1672 
1673   template <typename OpTy> bool match(OpTy *V) {
1674     // FIXME: Should likely be switched to use `CallBase`.
1675     if (const auto *CI = dyn_cast<CallInst>(V))
1676       return Val.match(CI->getArgOperand(OpI));
1677     return false;
1678   }
1679 };
1680 
1681 /// Match an argument.
1682 template <unsigned OpI, typename Opnd_t>
1683 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1684   return Argument_match<Opnd_t>(OpI, Op);
1685 }
1686 
1687 /// Intrinsic matchers.
1688 struct IntrinsicID_match {
1689   unsigned ID;
1690 
1691   IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1692 
1693   template <typename OpTy> bool match(OpTy *V) {
1694     if (const auto *CI = dyn_cast<CallInst>(V))
1695       if (const auto *F = CI->getCalledFunction())
1696         return F->getIntrinsicID() == ID;
1697     return false;
1698   }
1699 };
1700 
1701 /// Intrinsic matches are combinations of ID matchers, and argument
1702 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
1703 /// them with lower arity matchers. Here's some convenient typedefs for up to
1704 /// several arguments, and more can be added as needed
1705 template <typename T0 = void, typename T1 = void, typename T2 = void,
1706           typename T3 = void, typename T4 = void, typename T5 = void,
1707           typename T6 = void, typename T7 = void, typename T8 = void,
1708           typename T9 = void, typename T10 = void>
1709 struct m_Intrinsic_Ty;
1710 template <typename T0> struct m_Intrinsic_Ty<T0> {
1711   using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
1712 };
1713 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1714   using Ty =
1715       match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
1716 };
1717 template <typename T0, typename T1, typename T2>
1718 struct m_Intrinsic_Ty<T0, T1, T2> {
1719   using Ty =
1720       match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1721                         Argument_match<T2>>;
1722 };
1723 template <typename T0, typename T1, typename T2, typename T3>
1724 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1725   using Ty =
1726       match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1727                         Argument_match<T3>>;
1728 };
1729 
1730 /// Match intrinsic calls like this:
1731 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1732 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1733   return IntrinsicID_match(IntrID);
1734 }
1735 
1736 template <Intrinsic::ID IntrID, typename T0>
1737 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1738   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1739 }
1740 
1741 template <Intrinsic::ID IntrID, typename T0, typename T1>
1742 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1743                                                        const T1 &Op1) {
1744   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1745 }
1746 
1747 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1748 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1749 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1750   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1751 }
1752 
1753 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1754           typename T3>
1755 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1756 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1757   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1758 }
1759 
1760 // Helper intrinsic matching specializations.
1761 template <typename Opnd0>
1762 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
1763   return m_Intrinsic<Intrinsic::bitreverse>(Op0);
1764 }
1765 
1766 template <typename Opnd0>
1767 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1768   return m_Intrinsic<Intrinsic::bswap>(Op0);
1769 }
1770 
1771 template <typename Opnd0>
1772 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
1773   return m_Intrinsic<Intrinsic::fabs>(Op0);
1774 }
1775 
1776 template <typename Opnd0>
1777 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
1778   return m_Intrinsic<Intrinsic::canonicalize>(Op0);
1779 }
1780 
1781 template <typename Opnd0, typename Opnd1>
1782 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1783                                                         const Opnd1 &Op1) {
1784   return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1785 }
1786 
1787 template <typename Opnd0, typename Opnd1>
1788 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1789                                                         const Opnd1 &Op1) {
1790   return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1791 }
1792 
1793 //===----------------------------------------------------------------------===//
1794 // Matchers for two-operands operators with the operators in either order
1795 //
1796 
1797 /// Matches a BinaryOperator with LHS and RHS in either order.
1798 template <typename LHS, typename RHS>
1799 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
1800   return AnyBinaryOp_match<LHS, RHS, true>(L, R);
1801 }
1802 
1803 /// Matches an ICmp with a predicate over LHS and RHS in either order.
1804 /// Does not swap the predicate.
1805 template <typename LHS, typename RHS>
1806 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
1807 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1808   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
1809                                                                        R);
1810 }
1811 
1812 /// Matches a Add with LHS and RHS in either order.
1813 template <typename LHS, typename RHS>
1814 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
1815                                                                 const RHS &R) {
1816   return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
1817 }
1818 
1819 /// Matches a Mul with LHS and RHS in either order.
1820 template <typename LHS, typename RHS>
1821 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
1822                                                                 const RHS &R) {
1823   return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
1824 }
1825 
1826 /// Matches an And with LHS and RHS in either order.
1827 template <typename LHS, typename RHS>
1828 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
1829                                                                 const RHS &R) {
1830   return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
1831 }
1832 
1833 /// Matches an Or with LHS and RHS in either order.
1834 template <typename LHS, typename RHS>
1835 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
1836                                                               const RHS &R) {
1837   return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
1838 }
1839 
1840 /// Matches an Xor with LHS and RHS in either order.
1841 template <typename LHS, typename RHS>
1842 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
1843                                                                 const RHS &R) {
1844   return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
1845 }
1846 
1847 /// Matches a 'Neg' as 'sub 0, V'.
1848 template <typename ValTy>
1849 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
1850 m_Neg(const ValTy &V) {
1851   return m_Sub(m_ZeroInt(), V);
1852 }
1853 
1854 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
1855 template <typename ValTy>
1856 inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
1857 m_Not(const ValTy &V) {
1858   return m_c_Xor(V, m_AllOnes());
1859 }
1860 
1861 /// Matches an SMin with LHS and RHS in either order.
1862 template <typename LHS, typename RHS>
1863 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
1864 m_c_SMin(const LHS &L, const RHS &R) {
1865   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
1866 }
1867 /// Matches an SMax with LHS and RHS in either order.
1868 template <typename LHS, typename RHS>
1869 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
1870 m_c_SMax(const LHS &L, const RHS &R) {
1871   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
1872 }
1873 /// Matches a UMin with LHS and RHS in either order.
1874 template <typename LHS, typename RHS>
1875 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
1876 m_c_UMin(const LHS &L, const RHS &R) {
1877   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
1878 }
1879 /// Matches a UMax with LHS and RHS in either order.
1880 template <typename LHS, typename RHS>
1881 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
1882 m_c_UMax(const LHS &L, const RHS &R) {
1883   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
1884 }
1885 
1886 /// Matches FAdd with LHS and RHS in either order.
1887 template <typename LHS, typename RHS>
1888 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
1889 m_c_FAdd(const LHS &L, const RHS &R) {
1890   return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
1891 }
1892 
1893 /// Matches FMul with LHS and RHS in either order.
1894 template <typename LHS, typename RHS>
1895 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
1896 m_c_FMul(const LHS &L, const RHS &R) {
1897   return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
1898 }
1899 
1900 template <typename Opnd_t> struct Signum_match {
1901   Opnd_t Val;
1902   Signum_match(const Opnd_t &V) : Val(V) {}
1903 
1904   template <typename OpTy> bool match(OpTy *V) {
1905     unsigned TypeSize = V->getType()->getScalarSizeInBits();
1906     if (TypeSize == 0)
1907       return false;
1908 
1909     unsigned ShiftWidth = TypeSize - 1;
1910     Value *OpL = nullptr, *OpR = nullptr;
1911 
1912     // This is the representation of signum we match:
1913     //
1914     //  signum(x) == (x >> 63) | (-x >>u 63)
1915     //
1916     // An i1 value is its own signum, so it's correct to match
1917     //
1918     //  signum(x) == (x >> 0)  | (-x >>u 0)
1919     //
1920     // for i1 values.
1921 
1922     auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
1923     auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
1924     auto Signum = m_Or(LHS, RHS);
1925 
1926     return Signum.match(V) && OpL == OpR && Val.match(OpL);
1927   }
1928 };
1929 
1930 /// Matches a signum pattern.
1931 ///
1932 /// signum(x) =
1933 ///      x >  0  ->  1
1934 ///      x == 0  ->  0
1935 ///      x <  0  -> -1
1936 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
1937   return Signum_match<Val_t>(V);
1938 }
1939 
1940 } // end namespace PatternMatch
1941 } // end namespace llvm
1942 
1943 #endif // LLVM_IR_PATTERNMATCH_H
1944